Exploring the Landscape of the Space of Heuristics
for Local Search in SAT

Andrew W. Burnett
School of Computer Science
University of Nottingham
Nottingham, NG8 1BB, UK
Email: psxab4@exmail.nottingham.ac.uk

Abstract—Local search is a powerful technique on many
combinatorial optimisation problems. However, the effectiveness
of local search methods will often depend strongly on the
details of the heuristics used within them. There are many
potential heuristics, and so finding good ones is in itself a
challenging search problem. A natural method to search for
effective heuristics is to represent the heuristic as a small
program and then apply evolutionary methods, such as genetic
programming. However, the search within the space of heuristics
is not well understood, and in particular little is known of the
associated search landscapes. In this paper, we consider the
domain of propositional satisfiability (SAT), and a generic class
of local search methods called ‘WalkSAT’. We give a language
for generating the heuristics; using this we generated over three
million heuristics, in a systematic manner, and evaluated their
associated fitness values. We then use this data set as the basis for
an initial analysis of the landscape of the space of heuristics. We
give evidence that the heuristic landscape exhibits clustering. We
also consider local search on the space of heuristics and show
that it can perform quite well, and could complement genetic
programming methods on that space.

I. INTRODUCTION

Many hard combinatorial optimisation problems can be
effectively addressed using local search methods. To provide
more effective local search algorithms, heuristics are employed
to direct the search. However, designing an effective heuristic,
for use within a local search, can be a difficult task. Tree
based Genetic Programming (GP) [12], a program synthesis
technique, has previously been used to create heuristics in this
way [8]. GP is itself a search on the space of semantically
valid programs in a given language; hence, using GP, with
a language that describes heuristics, becomes a search on
the space of heuristics. In this paper, we investigate the
nature of the space of heuristics for solving SAT through a
particular kind of local search, with the intent to improve
search methods, and to ultimately find better heuristics in
a more effective manner. For clarity, we emphasise that the
search process, and landscapes, that we consider are on the
space of heuristics used for solving SAT, and not on the
original SAT problem.

The structure of this paper is as follows. In Section II, we
describe the SAT problem domain, the pertinent local search
methods, and discuss previous work in the automated synthesis
of heuristics. We also give the language we use to encode

978-1-5090-4601-0/17/$31.00 (©2017 IEEE

Andrew J. Parkes
School of Computer Science
University of Nottingham
Nottingham, NG8 1BB, UK
Email: andrew.parkes @nottingham.ac.uk

the heuristics. In Section III, we give the methods we use to
generate extensive data on the space of heuristics, and give an
some initial landscape study, as well as describing the tree-edit
distance metric [14] that we use. In Section IV, we consider
local search methods, on the search space of heuristics, and
give the results of a study of the local optima found. Finally,
in Section V, we discuss overall conclusions and future work.

II. PROBLEM DOMAIN

The Boolean Satisfiability Problem (SAT) is a standard
decision problem; given a propositional formula P, (in clausal
normal form, CNF') over a set of propositional variables v;,
determine if there exists an assignment of truth values to the
variables such that P evaluates to T'rue. Exact SAT algorithms
[9] allow us to definitively answer this question on some
classes of SAT instances. However, local search algorithms
also perform well on some classes of instances; or when
searching for a solution that maximally satisfies the set of
clauses (MaxSAT), even if the entire set of clauses cannot be
satisfied [10].

Algorithm 1 Pseudo-code for local search on SAT
Precondition: P: A SAT formula
function LOCAL-SEARCH(P)
solution < INITIALISATION(P)
if solution satisfies P then
return solution
for 0 — maxIterations do
v; < HEURISTIC
solution + solution{v; = v;}
if solution satisfies P then
return solution
return No-Solution

Local search is a (metaheuristic) technique that works by
first generating a candidate solution, then iteratively aims to
improve the solution by modifying a (small) part of it. In
SAT, a candidate solution can be represented as array of
boolean variables with each index in the array referring to a

ICNF is a conjunction of clauses; a clause is a disjunction of literals; a
literal is a variable or its negation.

variable in the problem. In this context, the heuristic chooses
an index, and then “flips” the variable value from False to
True or vice-versa. Algorithm 1 shows the pseudo-code for
this procedure.

Local search algorithms for SAT have gone through multiple
improvements since the introduction of GSAT [16] a hill-
climbing SAT heuristic. In particular, work such as that on
WalkSAT [15], Novelty [13] and, more recently, ProbSAT [2]
and configuration checking [5] have developed new heuristics,
and greatly enhanced the performance of local-search based
SAT solvers.

Separately, Fukunaga [8] observed that in the (then) better-
performing local-search SAT heuristics, there existed several
common metrics and programmatic structures used in many of
their formulations. For example, GSAT and WalkSAT pick a
variable from a broken clause according to their net gain and
negative gain respectively. Fukunaga referred to these, and an
additional positive gain, as the “gaintype”. These are defined
as follows:

e PosGain The number of clauses that will become T'rue
if this variable is flipped

o NegGain The number of clauses that will become False
if this variable is flipped

¢ NetGain The net change in the number clauses that will
become T'rue if this variable is flipped. Positive denotes
it increases, negative denotes it decreases

From these, and other observations of similarity between
heuristics, Fukunaga defined a common language that could
express many of these heuristics through combinations of the
functions and terminals. Program synthesis through tree-based
GP was then performed within this language to synthesize
new local-search SAT heuristics. The results showed that these
heuristics were able to perform as well as those then existing
in the literature.

Some subsequent research in using program synthesis tech-
niques to create heuristics for solving combinatorial optimi-
sation problems has recently been grouped under the broad
label of generative hyper-heuristic [3]. This term includes
the generation of bespoke heuristics for a specific problem
domain; GP is one of the methods commonly used as a
‘generative hyper-heuristic’.

In previous work [4], we used a subset of Fukunaga’s lan-
guage to systematically generate all heuristics that contained
15 or fewer symbols; that is, all heuristics up to depth 15.
The language used can be seen in Tables I and II. This
depth was chosen as several instances of the classic WalkSAT
algorithm [15] can be found at depth 14, each with varying
noise parameters. An example of WalkSAT encoded in the
language is shown in Figure 1.

Using systematic generation produces around three million
heuristics. We then took each of these heuristics and ran them
against a set of 100 satisfiable SAT instances taken from the
SATLIB? library of SAT problems and scored them according
to the following formula:

2http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

WalkSAT (0.5):

IfvarCond NegGain ==
(GetBestVar NegGain BCO)
(IfRandLt 0.5

(GetBestVar NegGain BCO)
(VarRandom BCO))

Fig. 1. The WalkSAT heuristic with a noise parameter of 0.5 written in the
language shown in Tables I and II

1
#Sum of flips to solution

problems solved +

We repeated this experiment 5 times and took the average
to be that heuristic’s fitness. The original WalkSAT variants
had a fitness of approximately 20 using this measure. It was
found that around 1% of all the heuristics up to a depth
of 15 had a score greater than 20, and the maximum score
was of 45.0. This gave evidence that better heuristics are
potentially available with program sizes that are within the
reach of (partial) systematic enumeration. This suggests that
search methods other than GP may also be effective, and also
that there is the potential to perform extensive studies of the
space of heuristics, rather than having to rely on a (sparse)
sampling.

III. INITIAL LANDSCAPE STUDIES

In Figure 2 we show the approximately two million heuris-
tics that contain exactly 15 symbols and their associated
fitness. The heuristics are presented in the order that they are
systematically generated. The generation algorithm is simple;
upon initialisation, a program tree with a single node is gener-
ated containing no symbol, but with an identifier representing
what the type of the expression will be that is contained this
node (in this case, of type Var) and put into the list L. The
algorithm then continues to do the following iteratively until L
is empty. It takes the first program tree p from L and performs
an in-order traversal of p, finding the first occurrence of a node
with a annotated with a “place-holder” type that needs to be
fulfilled. Each symbol in the language that could satisfy this
type are generated and inserted into this node. If any additional
arguments are required, they are inserted as children to the
inserted node as new place-holder nodes and the set of p’s
with one additional argument is then inserted into L. If the
size of p is too large, then no successors are generated and, if
p has no place-holder nodes, then the program-tree is returned
as a valid program.

In the graph in Figure 2, this means that the closer two
heuristics are together on the x axis, the more likely they are
to share a similar initial structure. Figure 2 can be expected
to give some indication of the landscape structure.

In this form, we can see that there exist regions that have
a greater density of better performing heuristics, and so there
is some clustering, but also potentially a somewhat rugged
landscape. However, with the data presented in this fashion,
it does not accurately reflect the close relationship that two

TABLE I

THE SET OF FUNCTIONS IN THE LANGUAGE

45

40

| Name | Type | Arguments | Description |

VarRandom Var VarSet vs Choose a variable randomly from vs

IfRandLt Var Probability p With random probability p, choose v1 else choose v2
Var v1, Var v2

GetBestVar Var GainType g Return variable with best GainType g from VarSet vs.
VarSet vs Break ties randomly

GetSecondBestVar | Var GainType g Return variable with second best GainType g from VarSet
VarSet vs vs. Break ties randomly

GetOldestVar Var Var v1, Var v2 Pick the oldest variable from v1 and v2

IfTabu Var Age a If v1’s Age is less than a choose v2, else choose v1
Var v1, Var v2

IfVarCompare Var Gaintype g If the result of g ¢ v1 v2 returns T'rue then v1 else v2.
Comparator ¢ For example, IfVarCompare PosGain < a b checks
Var v1, Var v2 if the PosGain of a is < b. If True, choose a else b

IfVarCond Var Gaintype g If the test g ¢ % v1 returns True, then choose vl else
Comparator ¢ choose v2 For example, IfVarCond PosGain =0 a
Integer b checks if the PosGain of a = 0. If True choose a
Var v1, Var v2 else b

IfNotMinAge Var VarSet vs If v1 does not have minimal age among the VarSet vs
Var v1, Var v2 then choose v1 else v2

T N T T
| i % i

35

T T

Fig. 2.

oA S S

500000

Bk
RN

-

1x10°

TABLE II
THE SET OF TERMINALS IN THE LANGUAGE
Type Values
Probability 0.1, 0.3, 0.5, 0.7, 0.9
Integer -2,-1,0,1,2,3,4,5
Comparator | <, <, =
GainType PosGain, NetGain, NegGain
VarSet BrokenClauseQ

heuristics may have when they are nearly identical, except
that they initially used a different construct. In essence they
could only differ by a single function or terminal, but be very

far apart in the sequence (x-axis) in Figure 2.

1.5x10° 2x106

All heuristics that contain exactly 15 symbols in the order they are generated (x-axis), plotted against their associated fitness (y-axis).

Accordingly, to investigate the similarity between any two
heuristics, we use the minimum tree-edit distance [14], a
method that has been used previously to compare tree-like
program structures in GP [14]. This is defined as the size of
the minimum set of the following operations to get from one
tree to another:

e Relabel: Change the label on a node in the tree to another
label

e Delete: Remove a node n from the tree and, if n had
children, make them the children of n’s parent node

e Insert: Insert a node as a child in a currently existing
node

Heuristics at this distance

5288228,
28 2 2 a5 828
2B F =R N BB ERS NG Y
a5 90\% Quarties ———
40
s
3 30
o
W 25
2
2 2
i
15
10 l
; Il
0
12 3 4 5 6 7 8 9 10 1 12 13 14 15 16

Distance from candidate heuritic

Heuristics at this
0

1335
3990
1978
31709
71859

0 2§

15088!

Heuristics at this distan

|

556242
641528
[}
573485 ©
370192
170851
5

e}
it}
@
2}
@
2]

180
1046
4510
15038
39289
149891
250323

<
88

9% Quartiles

20

Fitness Value
[~
]

o O— 33—

10
; i
1 10 11 12 13 14 15 16 17
Distance from candidate heuritic

distance
Q v = 0 n
SEES 8
m o 3] L]
BRRBERJ

43
4
3

[Z =Y

2;
2
1
1

Fitness Value
o o

(=]

;

=)

90\% Quartiles 1

g
2

!

1

!

10 11 12 13 14 15 16

Distance from candidate heuritic

Fig. 3. Box and whisker plots of typical heuristics compared to all other heuristics within the data-base. At each distance, from the candidate we show (using
a whisker plot) the median fitness, the 90% quartiles of fitness, and the minimum and maximum fitness values. On the top x-axis is the number of heuristics
at that distance. Top-left: A heuristic of good quality with fitness of 30.4. Top-right: A heuristic of WalkSAT-like quality of fitness 21.4. Bottom: A heuristic

of poor quality with fitness 7.8.

Using the tree-edit distance metric described above, we can
now compare any two heuristics. Using this metric, we firstly
looked at a random selection of good and bad performing
heuristics, and computed the distance for all other heuristics
from these. We then put these heuristics into sets ordered by
their distance from the candidate, and gathered statistics on
the fitness of the heuristics in each set.

As an example, we show three typical heuristic’s results
in Figure 3. One clear observation we can make is that for
these candidate heuristics, the number of heuristics within an
edit distance of 3 is small compared to the whole search
space. We can also see that, on the two examples of better
performing heuristics, other better quality heuristics exist
at small distances in comparison to the worse performing
heuristic.

IV. LOCAL SEARCH FOR LOoCAL OPTIMA

The results in the previous section suggest that some
heuristic within a distance of 3 of a candidate heuristic may
well have a better fitness; and also the number of heuristics
within this neighbourhood would not be excessive. Hence, in
this section, we describe experiments using direct simple hill-
climbing, with restarts, on the space of heuristics; investigating
the effectiveness of the search in terms of the fitness of the

resulting local optima, and also doing an initial study of their
distribution in the search space.

Our experiments are designed as follows; given a set of
heuristics, we pick a random starting point and perform local
search on it, with the neighbourhood of heuristics consisting
of those heuristics within a minimum tree-edit distance of 1,
2 or 3 of the current candidate. From this set we either pick
the heuristics randomly (terminating when we have evaluated
all neighbours and no better successor has been found that
improves on the current candidate) or we pick the best
heuristic in the neighbourhood (terminating when a heuristic
does not have a better neighbour). We consider three sets of
heuristics, consisting of all heuristics up to the depths of 13, 14
and 15, respectively. We repeated these experiments multiple
times: 1,000 times for depth 13; 500 times for depth 14;
and 100 times for depth 15. It is worth noting that during
these experiments we used the pre-computed fitness so that
computation time was greatly reduced, enabling a much better
exploration of different local search options.

The results of these experiments are given in Figures 4, 5, 6
and 7; and show the fitnesses of the final solutions arrived at by
the local searches. Note that different runs of the local search
can finish at the same local optima, and so give duplicate
heuristics. Accordingly, in the results we have also provided
graphs of the results with the duplicate heuristics removed. We

have only included the results from the best heuristic method
of local search for heuristics at depth 13, as the results at the
other depths are very similar to the results for the random-
first method. (Due to the nature of the fitness evaluation as a
floating point number arising from detailed tests on multiple
instances, then there is a very little chance that two different
heuristics will have the same fitness value. So there are no
plateaux or neutral directions in the landscape, and these need
not be accounted for in this work; in particular, duplicates
in the fitness function do correspond to duplicates in the
heuristics discovered.)

We can see that, with duplicates removed, the number
of actual heuristics that these searches arrive at is reduced
significantly. In Figure 4(right) there are only 80 unique
heuristics from the total 1,000 runs performed. At higher
heuristic depth this effect is lessened. This suggests that there
are many local-optima among solutions, and this method of
local-search allows this to be illustrated.

Furthermore, unsurprisingly, we can see that the fitness of
the final solutions is generally better when the minimum tree-
edit distance is larger. Also, of interest are the areas on these
graphs where it appears that there is a clustering of heuristics
around a certain fitness - for example at distance 2 on Figure
6(left), with a fitness level of approximately 25. Of these runs,
we found that on average the changes made to the current
best heuristic for the random method was between 5 and 20.
The average number of heuristics considered as candidates at
distance 1 was between 30 and 50. For distance 2, between
250 and 400 and for distance 3 between 1800 and 2300.

Finally, we remark that 80 - 90 % of runs generate a
heuristic that is of comparable or better fitness than the original
WalkSAT achieved on our fitness function.

A. Analysis of the good optimal solutions

In the previous experiments, we noted that in comparison to
the number of runs, very few unique heuristics were generated.
This can be seen in Figure 4(right). Using the minimum tree-
edit distance, we computed the distance matrix between the 80
unique heuristics found for the random-first sampling method,
with a tree-edit distance of 3, on the set of heuristics up to
depth 13. From these, taking the 20 heuristics with the best
fitness, we show the partial distance matrix in Table III. Note
that the smallest distance allowed in the matrix is 4, because
if the distance were 3 or less then one of the heuristics would
be better and so not a local optimum. When considering the
whole matrix of the 80 unique heuristics, the largest distance
was 15. We can see that in the partial distance matrix between
the top 20, the largest distance is just 12 and even that is
fairly rare. For the sub-matrix between the top 9 heuristic, the
largest distance drops to be only 9. We believe this gives initial
indications of a general structure to the space of heuristics —
maybe even a broad big-valley structure.

Figure 8 gives the plot of fitnesses of the 80 local optima
as a distance from the best heuristic of that set. It gives some
evidence of a fitness-distance correlation; as we move further
away from the best heuristic then the fitness tends to drop.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the search for heuristics to be
used within local search to solve SAT. We consider heuristics
in the same style as variations of the WalkSAT algorithm,
and gave the language/grammar for such variations. We were
then able to systematically generate all heuristics to a given
depth (number of terminals in the heuristic), and furthermore
were able to evaluate a measure of the fitness of each of these
heuristics be (exhaustively) running them on a standard suite of
SAT instances. With a choice of depth 15 as the largest size
(maximum number of terminals) this resulted in generating
a dataset® of just over three million heuristics together with
their fitness values. This dataset contained heuristics that were
at least as good as the original WalkSAT; one of surprises
to us was that ‘only’ three million were needed. Note that
such numbers of heuristics are in the realm of ‘big data’ and
so the data set is a strong candidate for analysis using big
data techniques. The relatively manageable size of the useful
space of heuristics is in strong contrast to the underlying
combinatorial problems where the size of the search space
is invariably far too large for enumeration.

The explicit complete enumeration of the heuristics, then
gave a novel opportunity to be able to study the nature of
the associated landscape; and for the notion of distance we
used the ‘tree-edit distance’. Initial studies based on sampling
within the set of heuristics gave evidence of a clustering;
better heuristics tend to be more likely to be close to other
good heuristics. In fact it seems that within a distance of
just 3 there were often better heuristics, and this suggested
studying local search on the space. The dataset allowed to do
this conveniently and relatively quickly by using it as a cache
of the fitness value. Simple hill-climbing tended to reach a
local optimum within typically 5-20 moves, and depending
upon the distance used, between 50 and 2300 candidate
heuristics considered. Running the hill-climbing many times
with random initial starting positions then allowed us to collect
sets of local optima. With neighbourhoods of distance 3,
around 80 - 90 % of hill-climbing runs generated a heuristic
that had a better fitness than the original WalkSAT (though
not as good as more recent advances in local search SAT
heuristics), demonstrating the potential power of such a simple
method. We performed an initial analysis of the resulting set of
local optima; finding that they were quite widely distributed
in the search space, but did show signs of some clustering.
Other evidence for the clustering, or exploitable structure,
was that many runs of the hill-climbing, from random initial
heuristics, ended up at the same final heuristic. To the best of
our knowledge, these results provide the first large-scale study
of the landscape of the space of (SAT) heuristics represented
as tree-based programs. (Though note a landscape study of
heuristics, represented as matrices rather than trees, was given
in [1].) Hopefully, this study will provide a potential basis for
insights into genetic programming and other related methods,
such as hyper-heuristics, or heuristics in general.

3Which we intend to make openly available in due course.

Fitness
N
o
Fitness

Distance =1 ——
Distance £2 ——
IDist?ncels 3 |

' 0

Distance =1 —— -
Distance £2 —— |
IDistapce < I3

0 100 200 300 400 500 600 700 800 9001000 0

Run (sorted)

100 200 300 400 500 600 700 800

Run (sorted)

Fig. 4. Graph of the final heuristics returned after 1000 runs of random-greedy local search on all heuristics at depth 13 or below, terminated when no
neighbours that are within tree-edit distance of 1,2 or 3 of the candidate solution. Left: all results, Right: duplicates removed

Distance =1 —— 4
Distance =2 —— |
IDistapc:r—.\ < I3

45 45
40 40
35 35
30 30
[17] wy
§ 25 § 25 -
= 20 = 20
15 15
10 —% Distance =1 —— 4 10
5 Distance =2 —— | 5
| Distance <3]
D | | | | | | | | 0
0 100 200 300 400 500 600 700 800 9001000 0

Run (sorted)

100 200 300 400 500 600 700 800

Run (sorted)

Fig. 5. Graph of the final heuristics returned after 1000 runs of best-greedy local search on all heuristics at depth 13 or below, terminated when no neighbours
that are within tree-edit distance of 1,2 or 3 of the candidate solution. Left: all results, Right: duplicates removed

0

6 0

6 5 0

6 8 7 0

5 6 8 4 0

6 6 4 5 6 0

6 6 6 5 4 4 0

7 6 8 8 6 6 9 0

6 5 6 6 6 5 8 4 0

6 10 8 6 8 9 8 10 8 0

7 7 8 5 7 6 4 10 8 8 0
7 4 7 7 7 6 6 6 4 8 6
7 8 100 10 7 10 10 8 9 11 11
9 8 10 9 6 8 100 5 7 12 11
100 10 12 8 7 100 10 9 8 11 10
9 10 10 7 7 8 8 9 8 9 10
100 10 9 8 9 7 9 7 7 11 11
7 7 6 9 10 8 10 9 6 4 10
8 10 11 7 6 9 9 10 10 10 10
8 9 8 9 8 8 9 100 10 12 9

~N O O o v \voo

o =

TABLE III

EXAMPLE OF A DISTANCE MATRIX. USING THE TOP 20 LOCALLY-OPTIMAL HEURISTICS OBTAINED AT LEVEL 13, WITH RANDOM HILL-CLIMBING, AND
NEIGHBOURHOOD SIZE 3. THE BEST HEURISTIC IS AT THE TOP, SO THE QUALITY DROPS AS GOING DOWN THE ROWS. (ONLY THE LOWER LEFT IS SHOWN
AS THE MATRIX IS SYMMETRIC.)

Fitness
Fitness

Distance =1 ——
Distance £2 ——
IDist:?mcels 3 |

0 50 100 150 200 250 300 350 400 450 500
Run (sorted)

Fig. 6. Graph of the final heuristics returned after 500 runs of random-greedy
neighbours that are within tree-edit distance of 1,2 or 3 of the candidate solution.

45 T T T T T
40
35
30 -
25 -
20 -
15 .]
10 -

Fitness
Fitness

Distance =1 ——
Distance €2 ——
e ‘ | | IDlstélmcels 3 |

0 10 20 30 40 50 60 70 80 90 100
Run (sorted)

Fig. 7. Graph of the final heuristics returned after 100 runs of random-greedy

Distance =1 ——
Distance £2 ——
IDistalmc:eI <3 |

0 50 100 150 200 250 300 350 400 450 500
Run (sorted)

local search on all heuristics at depth 14 or below, terminated when no

Left: all results, Right: duplicates removed

45 T T T T T
40
35 -
30 -
25 -
20 - ¥
15 .]
10

Distance =1 —— 4
Distance €2 ——
IDist:—lmceI <3 |

0 10 20 30 40 50 60 70 80 90 100
Run (sorted)

local search on all heuristics at depth 15 or below, terminated when no

neighbours that are within tree-edit distance of 1,2 or 3 of the candidate solution. Left: all results, Right: duplicates removed

50 T T
40 |- §¥§ |
+
- s
$30_ + +$$+ |
g S I T
w 20~ .
£y
10 .
o L ! ! ! ! [s

0 2 4 6 8

Distance

10 12 14

Fig. 8. Distance against fitness for the 80 unique heuristics from 1,000
runs of random-greedy local search with distance < 3. The fitness distance
correlation [11] - that is, the relationship between the fitness and the distance
is -0.645876264 suggesting some correlation between fitness and distance

A. Future Work

Naturally, future work could be aimed at a deeper under-
standing of the landscape. Potentially, using a study of the

space of local optima, e.g. by extending the methods discussed
in [6], [17] (and references therein). It is worth noting that
that such previous work was directly on the solution space;
and so impractical for full-sized instances. However, this work
concerns the landscape of the search space of heuristics. A
‘solution’ is then a heuristic and so is no longer directly
tied to be the size of the underlying problem instance; the
SAT heuristics are much smaller than the SAT problems that
they are working on. This gives a direct relevance of the
landscape properties of the heuristic search space, to realistic
sizes of problems instances. The landscape analysis should be
further extended with studies of different distance functions.
Potentially, the analysis could result in generating a better
distance function that gives neighbourhoods resulting in a
more effective (cheaper) hill-climbing.

We also intend to apply a variety of machine learning or
statistical analysis techniques to the data-set in order to ‘data-
mine’ for properties of heuristics that are correlating with good
(or bad) performance. The intent would be to generate insight
and understanding of the space of heuristics, and use such
knowledge to guide the search for better heuristics, and also

the workings of evolutionary algorithms (such as GP) on the
space of heuristics.

Note that emulating the local search via caching the fitnesses
allowed much faster study of the comparative value of different
local search methods. Of course, in practice the local search
would need to evaluate the fitness on demand, and then
cache the values; however these results do still suggest that
such methods could well be practical. The design of search
algorithms working on the space of heuristics could take many
standard ideas from metaheuristics and mix these together
with a "GP” style. That is, extend crossover and mutation
with neighbourhood search. Combining such local search with
GP could give what one might call "Memetic Programming”
(MP); where local search is added to GP. Previous work in this
area of memetic genetic programming [7] has been proposed,
where sub-trees of a candidate program are refined by local
search through the use of fitness cases - pairs of input and
desired output. In our domain, this is not applicable due to
the nature of heuristics typically not having obvious examples
of fitness cases. Our method does not use domain knowledge
and instead works solely on the semantics of the language
used. However, the success of memetic algorithms in general,
and from the results from [7], suggest there is a potential role
for such “memetic programming on the space of heuristics”.

ACKNOWLEDGEMENTS

Andrew Burnett would like to thank the EPSRC for financial
support, via the Doctoral Training Grant (DTG), grant number
EP/L.50502X/1. The data produced in this work, the set of
heuristics and their associated fitness values, will be made
publicly available*.

REFERENCES

[1] Asta, S., Ozcan, E., Parkes, A.J.: CHAMP: creating heuristics via many
parameters for online bin packing. Expert Syst. Appl. 63, 208-221
(2016), http://dx.doi.org/10.1016/j.eswa.2016.07.005

[2] Balint, A., Schoning, U.: Choosing probability distributions for stochas-
tic local search and the role of make versus break. In: International
Conference on Theory and Applications of Satisfiability Testing. pp.
16-29. Springer (2012)

[3] Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan,
E., Qu, R.: Hyper-heuristics: A survey of the state of the art. Journal of
the Operational Research Society 64(12), 1695-1724 (2013)

[4] Burnett, A.W., Parkes, A.J.: Systematic search for local-search SAT
heuristics. In: Proceedings of META2016, 6th International Conference
on Metaheuristics and Nature Inspired computing (2016)

[5] Cai, S., Su, K.: Local search with configuration checking for SAT. In:
Tools with Artificial Intelligence (ICTAI), 2011 23rd IEEE International
Conference on. pp. 59-66. IEEE (2011)

[6] Chicano, F., Daolio, F., Ochoa, G., Vérel, S., Tomassini, M., Alba, E.:
Local optima networks, landscape autocorrelation and heuristic search
performance. In: Parallel Problem Solving from Nature - PPSN XII:
12th International Conference, Taormina, Italy, September 1-5, 2012,
Proceedings, Part II. pp. 337-347 (2012)

[7] Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming.
In: Proceedings of the 2015 Annual Conference on Genetic and Evolu-
tionary Computation. pp. 1023-1030. ACM (2015)

[8] Fukunaga, A.S.: Automated discovery of local search heuristics for
satisfiability testing. Evolutionary Computation 16(1), 31-61 (2008)

[91 Gu, J., Purdom, P.W., Franco, J., Wah, B.W.: Algorithms for the satis-
fiability (SAT) problem. In: Handbook of Combinatorial Optimization,
pp. 379-572. Springer (1999)

4Via http://www.cs.nott.ac.uk/~pszajp/ AB/

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Jiang, Y., Kautz, H., Selman, B.: Solving problems with hard and
soft constraints using a stochastic algorithm for MAX-SAT. In: Ist
International Joint Workshop on Artificial Intelligence and Operations
Research (1995)

Jones, T., Forrest, S.: Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. In: Proceedings of the 6th
International Conference on Genetic Algorithms. pp. 184-192. Morgan
Kaufmann Publishers Inc. (1995)

Koza, J.R.: Genetic programming: on the programming of computers by
means of natural selection, vol. 1. MIT press (1992)

McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local
search. In: Proceedings of National Conf. on Artificial Intelligence
(AAAI). p. 459465 (1997)

O’Reilly, UM.: Using a distance metric on genetic programs to un-
derstand genetic operators. In: Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation., 1997 IEEE International
Conference on. vol. 5, pp. 4092-4097. IEEE (1997)

Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving
local search. In: Proceedings of the Twelfth National Conf. on Artificial
intelligence (vol. 1). pp. 337-343. American Association for Artificial
Intelligence (1994)

Selman, B., Levesque, H.J., Mitchell, D.G., et al.: A new method for
solving hard satisfiability problems. In: Proceedings of National Conf.
on Artificial Intelligence (AAAI). vol. 92, pp. 440-446 (1992)
Tayarani-N., M.H., Priigel-Bennett, A.: On the landscape of combi-
natorial optimization problems. IEEE Transactions on Evolutionary
Computation 18(3), 420-434 (June 2014)

