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Abstract—Variable ordering has been a recurrent topic of
study in the field of constraint satisfaction because of its impact
in the cost of the search. Various variable ordering heuristics
have been proposed to help guiding the search under different
situations. One important direction of the study about variable
ordering is the use of distinct heuristics as the search progresses to
reduce the cost of the search. Even though the idea of combining
heuristics goes back to the 60’s, only a few works that study which
heuristics to use and how they interact with each other have
been described. In this investigation, we analyse the interactions
of four important variable ordering heuristics by combining
them through hyper-heuristics that decide the heuristic to apply
based on the depth of the nodes in the search tree. The paper
does not include any specific model for generating such hyper-
heuristics; instead, it presents an analysis of the changes in
the cost when different heuristics are applied during the search
by using one simple hyper-heuristic representation. The results
show that selectively applying distinct heuristics as the search
progresses may lead to important reductions in the cost of the
search with respect to the performance of the same heuristics
used in isolation.

I. INTRODUCTION

A constraint satisfaction problem (CSP) is defined by a
set of variables Xy, Xo, ..., X,, and a set of constraints
Cq, Cs, ..., C,,. Each variable X; has a nonempty domain
D, of possible values. Each constraint C; involves some
subset of variables and specifies the allowable combinations of
values for that subset [1]. CSPs can be solved by local search
algorithms that do not guarantee to find a solution [2]; or by
complete methods that guarantee to find a solution if at least
one exists [3]. We will focus on complete methods that require
to expand a search tree to find a solution. Each time a variable
has to be instantiated, a heuristic is invoked and as result, the
next variable to instantiate is selected (according to the crite-
rion of such heuristic). Because of this, the (variable) ordering
heuristic has a tremendous effect in the structure of the search
tree, because it decides which variables will be instantiated
before the others. For small combinatorial problems, exact
methods can be applied and optimal orderings can be found.
However, when larger and more complex problems appear,
exact solutions are not a reasonable choice since the search
space grows exponentially with the number of variables, and
so does the time for finding the optimal ordering of variables.

Various heuristic and approximation approaches have been
proposed that find near optimal solutions. But, it has not been
possible to find a reliable heuristic to solve all instances of
a given problem. In general, some heuristics work well for
particular instances, but not for all of them because each
heuristic exploits distinct features (or combinations of features)
of the instances under exploration.

The idea of selecting the most suitable solution method
for a given problem is usually referred to as the algorithm
selection problem [4]. This problem has been addressed in
many investigations where distinct solution approaches have
been proposed (see for example [5] and [6]. In this investi-
gation we will use the hyper-heuristic terminology to refer to
the method that selects among heuristics based on the current
problem features [7].

Hyper-heuristics can be divided into two main classes:
those which select from existing heuristics and those that
generate new heuristics [8]. A more detailed description about
the classification of hyper-heuristics can be found in [9],
[10]. In this investigation we will focus our attention on
selective hyper-heuristics; hyper-heuristics that select from
existing heuristics according to the current problem state [11].
The hyper-heuristic should decide when and where to apply
each single heuristic, based on some criterion. The choice of
heuristics may depend on the features of the problem state,
such as expected number of solutions, values on the objective
function, elapsed time, etcetera. The hyper-heuristics described
in this investigation correspond to selective hyper-heuristics,
where the output at each time they are invoked is a variable
ordering heuristic.

With respect to CSPs, one of the first attempts to sys-
tematically map CSPs to algorithms and heuristics according
to the features of the instances was presented by Tsang and
Kwan [12]. In that study, Tsang and Kwan presented a survey
of algorithms and heuristics for solving CSPs and proposed
a relation between the formulation of the CSP and the most
adequate solution method for that formulation. Petrovic and
Epstein [13], [14] studied the idea of producing mixtures of
heuristics that work well on particular classes of instances.
Also, algorithm portfolios for constraint programming have
been successfully studied before [15] with promising results.



Other studies about the dynamic combination of heuristics
applied to CSPs include the work done by Terashima-Marin
et al. [16], who proposed a genetic algorithm framework to
generate hyper-heuristics for variable ordering in CSPs and
the research developed by Bittle and Fox [17] who presented
a hyper-heuristic approach for variable and value ordering for
CSPs based on a symbolic cognitive architecture augmented
with case based reasoning. Recent ideas on selecting the most
suitable heuristic for a given problem instance include the use
of artificial neural networks [18], choice function [19] and
autonomous search [20].

The investigation in this article analyses the hyper-heuristic
approach for CSPs in a different way with respect to previous
works on hyper-heuristics for the same domain. We have
focused our interest in analysing the heuristics that compose
the hyper-heuristics and their interactions as an attempt to
understand how to make them work in collaboration. No
specific generation method is discussed in this paper and our
representation is as simple as it can be. We do not claim
that our hyper-heuristic representation could be used in a real
application as it is now, but it certainly allowed us to analyse
how heuristics behave when applied at distinct stages of the
search. Our analysis is relevant because it explores important
aspects of the representation of sequential hyper-heuristics
along with some insights about which heuristics work well
together.

The paper is organized as follows. Section II describes the
problem and presents other works related to this investigation.
The variable ordering heuristics used in this work are described
in Sec. III. Section IV presents the experiments and main
results. Finally, Sec. VI presents the conclusion and the future
directions of this investigation.

II. PROBLEM STATEMENT AND RELATED WORK

The task of the selective hyper-heuristic is to decide, at
each decision point, which one of the available heuristics
to apply. In the case of CSPs, the search is performed by
using depth first search (DFS) [21]. In the search tree, every
time a variable is instantiated, the constraints in which that
variable is involved must be checked to verify that none of
them is violated; this is known as a consistency check. When
an assignment breaks one or more constraints, the instantiation
must be undone, and another value must be considered for such
variable. If there are no more values available, the value of the
previous instantiated variable must be changed; this technique
is known as backtracking [22]. There are some improvements
to this basic search method which try to reduce the number of
revisions of the constraints (consistency checks) like constraint
propagation [23] and backjumping [24]. The CSP solver used
for this investigation incorporates constraint propagation by us-
ing the AC3 algorithm [25] and also implements backjumping.

Each node in the search tree represents the instantiation of
one variable. We can consider that each time a node in the
tree is to be expanded, a decision point occurs and a heuristic
has to be invoked. It is at these decision points where the
hyper-heuristic works and decides which heuristic to apply.
The hyper-heuristic indirectly decides the order in which the
variables are instantiated, because it has no information about
how the heuristics work. In the simplest form, it also has no

access to the problem state, however, it does have access to
the position of the node within the search tree and so can be
allowed to rely on that information. We will take a scheme
in which the decision is allowed to depend on the depth d
of search node in the tree, that is, it depends on the number
of decision points made to reach that node. We will also take
that it is done in a static static fashion; that is, a fixed heuristic
is picked at each value of the depth. For an instance with n
variables, then it cannot use a list of decision points larger
than n. Hence, the hyper-heuristic is given by a sequence of
n low-level heuristics (hg, b1, ..., hn,—1) with depth d always
corresponding to the use of heuristic hg.

Given a set of k heuristics and a CSP instance with n
variables, the maximum number of sequences of heuristics
that can be formed is k™, assuming the instance is satisfiable
(one of the k heuristics per decision point in the instance). Of
course, because of propagation or pruning due to reaching a
contradiction, then the depth achieved will be usually smaller
than n. It is important to stress that these sequences are not
affected by the backtrack movements during the search. If the
search fails at certain point and it has to go back to a previously
visited node to change the value of one variable, the heuristic
to use will depend again on the depth of the node in the search
tree and the same heuristic that was used before will be used
this time for the same node. Of course, the heuristic will be
the same but the selected variable may be different because
the properties of the instance have already changed.

The analysis described in this investigation is related to
some studies about the hyper-heuristic landscape and heuristic
synergies. To the authors’ best knowledge, the first work about
the analysis of the hyper-heuristic landscape was presented
only a few years ago by Vazquez et al. for the hybrid flow shop
scheduling problem [26]. Their work introduced important
concepts in the topic, like the associated space for hyper-
heuristics (the heuristic space) and how they are related to
the solution space. Later, Ochoa et al. [27], [28] described a
landscape analysis technique which provides means for under-
standing the influence of operators and algorithmic behaviour
for a given problem. Also, Maden and Ozcan analysed a
set of perturbative hyper-heuristics through landscape analysis
based on an auto-correlation function on various benchmark
functions [29].

With respect to the interactions of heuristics, Wallace [30]
conducted an analysis about the search on CSPs when the de-
cision of the next variable to instantiate is guided by a ranking
given by various heuristics applied at the same time. Wallace
used the term ‘heuristic synergies’ to refer to the phenomenon
that the combination of heuristics produces results which are
better than the heuristics applied in isolation. Among the most
relevant findings in his investigation is the evidence that it is
not enough to combine heuristics to improve the search, but
the combination must have some properties because not all the
heuristics work well together.

III. VARIABLE ORDERING HEURISTICS

Four variable ordering Heuristics were used in this inves-
tigation: Min-domain [31], [32], Max-conflicts, dom/deg [31],
[33] and kappa [34]. Each one of these heuristics works under
the principle of ‘fail first’, that suggests to select first the



variables which are more likely to fail. If the instantiation
of those variables is successful, then it is expected that the
remaining subproblem will be easier to solve. Each heuristic
works as follows:

Min-domain. This heuristic prefers the variable with the
smaller domain size. Then, it assumes that the variable with
the fewer values in its domain is more likely to fail [35].

Max-Conflicts. Max-conflicts uses the criterion of the num-
ber of conflicts to decide the next variable to instantiate. Max-
conflicts tries first the variable involved in the fewer conflicts
(restricted pairs of values).

dom/deg. This heuristic combines two criteria to decide
which heuristic to instantiate first. It considers both the domain
size and the forward degree of the variables. The forward
degree of a variable is the number of uninstantiated variables
connected to it. Then, dom/deg selects first the variable that
maximizes the quotient of the domain size over the forward
degree of the variable.

kappa. The kappa heuristic uses the value of x as a measure
of the difficulty of the remaining instance [34]. Then, it selects
the variable which instantiation maximizes:

_Zciecw logy (1-pe;) (1)
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where ¢; is a constraint where variable x is involved, m is the
domain size of variable  and p,, is the fraction of unfeasible
tuples on constraint c;.

Along with these four variable ordering heuristics, to order
the values of the selected variable we used Min-conflicts [2], a
heuristic that orders the values in an ascendant way according
to the number of conflicts where each value in the domain
of the selected variable is involved. In this way, Min-conflicts
tries first those values which are more likely to lead to one
solution, because they are less restricted.

In all cases, ties are broken by using the lexical ordering.

IV. EXPERIMENTS

We created a set of 300 random instances with 20 variables,
each variable with 10 values in its domain. The number of
constraints and the number of conflicts within each constraint
was decided randomly for each instance. All the random
instances were generated with model B [36]. With model B,
CSP instances are generated in two stages. In the first stage,
a constraint graph G with n nodes is randomly constructed
and then, in the second stage, the incompatibility graph C
is formed by randomly selecting a set of edges (incompatible
pairs of values) for each edge (constraint) in G. The parameter
p1 determines how many constraints exist in a CSP instance
and it is called constraint density, whereas ps determines
how restrictive the constraints are and it is called constraint
tightness. For the purpose of this investigation, using only one
generator is enough to develop the ideas that two or more
heuristics can be applied at distinct times during the search
and reduce its cost.

The set of 300 random instances will be referred to as
set A in the rest of the investigation. It is important to stress

that set A contains a mixture of instances, both satisfiable and
unsatisfiable. Regarding the hardness of the instances, set A
contains both hard and easy ones according to their location
with respect to the transition phase [37]. Thus, some of the
instances are solved with just a few consistency checks, while
others will require considerably more effort. The number of
consistency checks is used in this investigation as a reference
to measure the cost of the search. Every time a constraint has to
be revised, a constraint check occurs. Thus, the fewer the con-
sistency checks, the lower the cost of the search. For the first
set of experiments we considered the evaluation of the vari-
able ordering heuristics in pairs: (Min-domain, Max-conflicts),
(Min-domain, dom/deg), (Min-domain, kappa), (Max-conflicts,
dom/deg), (Max-Conflicts, kappa) and (dom/deg, kappa).

A. Hyper-heuristic Representation

With selective hyper-heuristics we believe that applying
distinct heuristics at different levels of the search tree may
achieve a better performance than with the use of one single
heuristic during all the search. Evidence has been gathered
before that proves that some heuristics are better than others
under certain regions of the space of instances [38]. Then,
it seems reasonable to think that we can make two or more
heuristics to collaborate to improve the performance of the
search. When combining heuristics during the search by apply-
ing distinct heuristics among the decision points of the search
tree, three scenarios can result from this combination. Then the
hyper-heuristic may: (1) reduce the cost of the search, leave
unaffected the cost of the search or (3) increase the cost of the
search. In this investigation, the cost of the search is defined as
the number of consistency checks required for a given method
to solve an instance. We expect that good combinations of
heuristics often reduce the cost of the search.

The space of heuristics is, the associated space where
hyper-heuristics work [26]. Hyper-heuristics look for combina-
tions of heuristics and by doing so, indirectly facilitate finding
a solution to a CSP. The size of the heuristic space depends on
the number of heuristics and the number of decision points.
As we mentioned before, the number of variables imposes a
maximum number of decision points during the search. Then,
given a hyper-heuristic that selects among k heuristics over
instances with up to n variables, the size of the heuristic space
is up to k™ states. Because of its size, we cannot exhaustively
search the heuristic space for large instances, like most of the
real problems are. Also, one specific sequence of heuristics
may be efficient for one particular instance but perform poorly
on others. Then, even though we could completely explore the
heuristic space looking for the best sequence, that sequence is
unlikely to work well on all the instances.

From this point on, we will use the term hyper-heuristic to
refer to selective ones only.

B. Combining Heuristics

A variable ordering heuristic is the immediate output of
a hyper-heuristic. As a result of multiple calls to the hyper-
heuristic (at different decision points of the search), a sequence
of heuristics is obtained. Then, we can analyse the outputs of
any hyper-heuristic by indirectly analysing the sequences they
produce. We will analyse the sequences of heuristics that can



be produced by different sets of heuristics. The simpler case
of study occurs when only two heuristics are involved. In this
case, the sequences of heuristics can be represented as binary
strings, where the most significant bit indicates the first heuris-
tic to apply during the search. If during the path in the search
tree to reach a node, the number of decision points exceeds the
length of the string, the sequence is repeated until the instance
is solved or proved unsatisfiable. For example, suppose we
have a sequence of heuristics defined by the string 001101 and
a set of heuristics H = {Min-domain, Max-Conflicts}. During
the search, the first two decision points will use Min-domain,
followed by two decision points where Max-Conflicts will be
used. The fifth and sixth decision points will be guided by
Min-domain and Max-conflicts, respectively. In case the search
continues, the sequence will be repeated until the instance is
solved or proved to be unsatisfiable.

In this experiment, we explored the 8-bit heuristic space
for set A. Then, 256 hyper-heuristics were generated and
their performance evaluated on set A. This number of hyper-
heuristics cover the whole 8-bit heuristic space, allowing us
to map every permutation of heuristics to one cost. Even
though we are exhaustively exploring an 8-bit heuristic space
representation, it is not the only way to code sequences of
heuristics for CSPs. For example, we may use any o«-bit
representation (. > 8) and the results may be slightly different.
The most important consideration for deciding the resolution
of the search space in this investigation is the time needed to
solve the instances. For example, if we have instances with 20
variables, a sequence of 20 bits is needed to represent all the
possible sequences of heuristics that can be formed. 20 bits
correspond to 1048576 sequences per instance, which require
significantly more time to run than the sequences we have used
for this experiment.

With the cost associated to every point in the heuristic
space, we can produce a graphical representation of the utility
function under exploration. Because we have used binary code
to represent the sequences of heuristics, each number in the
x-axis corresponds to its equivalent binary-coded value. For
example, value 200 in the z-axis corresponds to the sequence
11001000, which should be interpreted as explained before. It
is possible that some other conversion from the sequence to an
x-axis value would clarify the results and this will be explored
in future work.

1) (Min-domain, Max-Conflicts): Figure 1 presents the cost
of each of the 256 sequences of heuristics resulting from the
combination of Min-domain and Max-conflicts on set A. The
cost of solving set A is defined as the sum of the consistency
checks required to solve each instance in the set. On set A,
Min-domain has a lower cost than Max-conflicts. Some of the
sequences produce a cost which is between the cost of these
two heuristics: these sequences are better than Max-conflicts
but not better than Min-domain. 14.84% of the sequences
represent larger costs than any of the single heuristics. Finally,
12.11% of the sequences reduces the cost of both Min-domain
and Max-conflicts. For this pair of heuristics, 01111000 was
the best sequence of heuristics (0 for Min-domain, 1 for Max-
conflicts). The cost of this sequence represents a saving of
3.49% in the cost of solving set A with respect to Min-domain,
that produced the lowest cost from both heuristics on this set.
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Cost
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Fig. 1: Analysis of the 8-bit heuristic space (Min-domain,
Max-Conflicts) on set A
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Fig. 2: Analysis of the 8-bit heuristic space (Min-domain,
dom/deg) on set A

2) (Min-domain, dom/deg): This case is completely dif-
ferent to the first case described. Figure 2 shows that, in the
8-bit heuristic space, it is not possible to combine Min-domain
with dom/deg through an 8-bit length sequence to improve the
performance of dom/deg on set A. But, all the sequences of
heuristics produce a cost below the one of Min-domain. We
can say that dom/deg improves Min-domain.

3) (Min-domain, kappa): In the case of the pair (Min-
domain, kappa) (Fig. 3), 2.34% of the sequences produced
represent a lower cost than kappa on this set, which was the
best heuristic for this pair. The sequence 01101011 obtains
the lowest cost (0O for Min-domain, 1 for kappa) for this pair
of heuristics. This represents a saving of 3.77% with respect
to kappa. No cases where the combination of these heuristics
resulted in a cost larger than the cost of Min-domain, which is
used as upper-bound for this pair of heuristics. Thus. we can
also conclude that kappa improves dom/deg.

4) (Max-Conflicts, dom/deg): When we combined Max-
conflicts and dom/deg (Fig. 4), we observed that it was not
possible to obtain a sequence of heuristics with a better per-
formance than dom/deg. The same phenomena was observed
in the pair Max-conflicts and kappa (Fig. 5). Because in both
cases the cost of Max-conflicts was never increased by any of
the sequences, we can conclude that both dom/deg and kappa
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Fig. 3: Analysis of the 8-bit heuristic space (Min-domain,
kappa) on Set A
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Fig. 4: Analysis of the 8-bit heuristic space (Max-Conflicts,
dom/deg) on Set A

improve Max-conflicts.

5) (dom/deg, kappa): A very particular case occurs for
the pair (dom/deg, kappa) in Figure 5. Both heuristics show
a similar performance, being their costs practically equal.
Nevertheless, when these heuristics are used together in a
sequence, most of the times they produce reductions in the cost
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Fig. 5: Analysis of the 8-bit heuristic space (Max-Conflicts,
kappa) on set A
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Fig. 6: Analysis of the 8-bit heuristic space (dom/deg, kappa)
on set A

of solving set A. In our experiment, 62.11% of the sequences
of heuristics resulted in a reduction of the cost with respect to
kappa, which produced the lowest cost for the two heuristics.
Only 36.72% of the sequences resulted in an increase in the
cost with respect to the upper bound, given by dom/deg.
The best sequence, 00101001 (0 for dom/deg, 1 for kappa),
produced a reduction of 2.43% in the cost with respect to the
lower bound (that corresponds to the cost of kappa).

Even though these heuristics generated very similar or-
derings when applied in isolation on set A (45.33% of the
orderings were exactly the same for both heuristics), when
combined in a sequence, the orderings of the variables change
and new behaviours emerge.

V. ANALYSIS OF THE HEURISTIC INTERACTIONS

On set A, kappa and dom/deg provide the lowest cost
with 4293858 and 4294894, respectively. The difference in the
performance of these two heuristics is insignificant: the cost
of dom/deg is only 0.024% above the cost of Kappa, which
is the best heuristic on this set of instances. These heuristics
have a very similar performance but the orderings they produce
are not exactly the same. On the other hand, Min-domain and
Max-conflicts are not competent heuristics on this set. The cost
of Min-domain, 5769105, is 34.35% above the cost of kappa.
Max-conflicts is the worst heuristic on set A with a cost of
6383514, which represents 48.66% of additional consistency
checks with respect to kappa.

Figure 7 shows the box plot with the results of the six
pairs of heuristics on set A. We can observe that (dom/deg,
kappa) is the pair with the best performance on set A. Also,
dom/deg and kappa (which have a similar performance) are
a good complement for Min-domain. Max-conflicts is a bad
heuristic for this set of instances: it produces the worst results
when combined with the other heuristics.

A. Exploiting the Problem State

We have mentioned before that a hyper-heuristic which
ignores the problem state and only applies a fixed sequence
of heuristics may not be the best option. A more intelligent
approach would be to apply a sequence according to the initial
problem state of the instance to solve. With this idea on mind,
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we have slightly modified the hyper-heuristics as follows.
Now, the hyper-heuristics contain more than one sequence of
heuristics at the time and the selection of the sequence to apply
depends on the initial problem state.

This new hyper-heuristic divides the space p; X py in four
quadrants of the same size. These quadrants, and the instances
in set A which correspond to each one of them are shown
in Fig 8. Even though these features seem very simple, there
is evidence that they can be used to properly map one the
problem state to some suitable heuristics [39].

The hyper-heuristic works in two steps: (1) It reads the
initial problem state and then, it assigns the instance to one of
the four quadrants, (2) Finally, the hyper-heuristic applies the
sequence assigned to that quadrant. As we can observe, the
hyper-heuristic will produce a sequence of heuristics based on
the initial values of p; and po; it no longer returns a simple
sequence that ignores the problem state.

The new hyper-heuristic was applied to the pair (dom/deg,
kappa). This was done because this pair provided the best
results with the analysis of sequences and we are interested in
observing if the the change in the hyper-heuristics can improve

the results obtained by the first versions. To produce the
sequences for each quadrant we conducted a similar analysis
to the one presented in previous sections. Set A was divided
into quadrants as described before, and the instances in each
quadrant were solved with each of the 256 sequences that can
be produced with an 8-bit representation. The best sequence
of heuristics from each quadrant was kept to be part of the
hyper-heuristic.

Even though the best sequence obtained for the pair
(dom/deg, kappa) already produced promising results, we tried
the new hyper-heuristic representation (the one that considers
the initial problem state) and we were able to improve the
results obtained before. The sequences applied per sectors,
on set A, produced a cost of 4160582, which represents a
reduction of 3.1% with respect to the best heuristic on set A,
kappa. The results confirm our idea that using the problem
state to discriminate among sequences is a better approach
than simply using the same sequence for all the instances. As
we expected, some sequences work better for some instances
than others.

In this case, we have divided the space p; X py in an
arbitrary way just to make an example of how the hyper-
heuristics can be applied if the initial problem state is used to
determine the sequence of heuristics. But more sophisticated
methods of machine learning can be used to create more
accurate maps between problem state and hyper-heuristics to
obtain better results. In this experiment we are only interested
in showing that a unique sequence of heuristics, applied to
all the instances is unlikely to perform better than different
sequences applied according to the features of the instance at
hand. At this point we should also emphasize the importance
of a good set of features to characterize the space. For the
purpose of this investigation p; and py seem to work, but for
other applications where the instances are more diverse, the
same features may not be a good option.

B. Choosing Among More Heuristics

So far we have analysed the effect of combining pairs of
heuristics. We have identified pairs that work well together and
heuristics that seem to be unable to increase the performance
of others (for example, Max-conflicts). In this section we
will discuss what happens when we increase the number of
heuristics the hyper-heuristic can select from during the search.

When we combine the four heuristics, the space representa-
tion needs to be adjusted. This time, the sequences will not be
represented as binary strings, but strings of base 4. Thus, more
sequences can be generated with shorter strings. For example,
an 8-digit string of base 4 is enough to represent 65536
distinct sequences of heuristics. For this reason, the length
of the strings for this experiment was reduced to a 6-digit
representation, which generates 4096 sequences of heuristics.

The best sequence, 233330 (0 for MRV, 2 for dom/deg and
3 for kappa) produces a cost of 3924391, which represents
a saving of 8.60% with respect to the best heuristic for
the set, kappa. As we can see, Max-conflicts is not part of
the best sequence, which confirms our observations with the
analysis per pairs of the heuristics. From all the hyper-heuristic
produced in the 6-digit space representation, only 0.44% of
them were worse than Max-conflicts, while 4.39% of the
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sequences solved the set with fewer consistency checks than
the best single heuristic, kappa. The cost of each one of the
4096 sequences of heuristics is shown in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORK

The results confirm the idea that by combining some
heuristics it is possible to achieve a better performance than
with the isolated usage of heuristics. Nevertheless, the results
also show that not all the heuristics work well together and,
sometimes it is better to stick to one single variable ordering
heuristic and avoid combining them. Among the four variable
ordering heuristics analysed in this investigation, the perfor-
mance of kappa and dom/deg is outstanding. These heuristics,
applied in isolation produced very competitive results. More
importantly, these two heuristics work particularly well when
applied in sequence. Their combination produced changes in
the orderings of the variables and then, important reductions
in the cost of solving a complete set of instances. When we
changed the hyper-heuristic representation to exploit the initial
problem features, the results were even better. The selective
application of sequences that combine kappa and dom/deg,
based on the initial values of constraint density and tightness
of the instances, resulted in a larger reduction that the one
obtained with the simple sequences that do not consider the
problem state.

We also observed that not all the heuristics work well
together. For example, Max-conflicts is improved by kappa or
dom/deg. Then, Max-conflicts gets a benefit when combined
with such heuristics, but our experiments suggests that it is
better to apply kappa or dom/deg by themselves and exclude
Max-conflicts to achieve the best performance.

One important consideration regarding which heuristics
work well together comes from the case of Min-domain and
dom/deg. Given the results, dom/deg was better than Min-
domain when applied in isolation on set A. When combined
in sequences, none of the sequences between Min-domain and
dom/deg in the 8-bit space were able to outperform dom/deg.
We can conclude that Min-domain is not a good heuristic
to be combined with dom/deg. Nevertheless, the pair (Min-
domain, kappa) produced some sequences that reduced the
cost of kappa on set A. Actually, the reduction achieved by the
sequence 01101011 (0 for Min-domain, 1 for kappa), 3.77%

with respect to kappa, is larger than the reduction produced by
the best sequence of the pair (dom/deg, kappa), 00101001 (O
for dom/deg, 1 for kappa), with 2.43%. When we combined
the four heuristics, the fact that Min-domain can be combined
with kappa makes it possible that, even though the pair (Min-
domain, dom/deg) was not successful, the combination (Min-
domain, dom/deg, kappa) improves the search with a saving
of 8.60% with respect to the cost of the best heuristic applied
in isolation, kappa.

The heuristic space representation is very important in
any study; specially for those that will partially explore the
heuristic space. In this investigation, we have used a string
representation to map every state of the space to one list of
heuristics. We are aware that other representations may be
more suitable for some methods to explore the space. For other
methodologies, it may be necessary to change to a complete
different representation. Deciding which representation to use
for the heuristic space is always a complex task inherent to any
hyper-heuristic study. We would like to extend our results by
comparing the effect of other representations and see if they
allow us to better understand the relations between heuristics.

Finally, we are interested in testing our findings on new
sets of instances, both random with different features and
real ones taken from public repositories. Is the performance
of the pair (dom/deg, kappa) also a good option in other
types of instances? To answer questions like this, we need to
incorporate new instances with different properties. Also, we
would like to include more variable ordering heuristics, and
value ordering ones. We consider that a similar analysis about
how well variable and value ordering heuristics interact with
each other would be particularly helpful to the understanding
of more general solution methods with better results on a large
scale.
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