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Abstract—Portfolio optimization is one of the most important
problems in the finance field. The traditional mean-variance
model has its drawbacks since it fails to take the market
uncertainty into account. In this work, we investigate a two-stage
stochastic portfolio optimization model with a comprehensive
set of real world trading constraints in order to capture the
market uncertainties in terms of future asset prices. A hybrid
approach, which integrates genetic algorithm (GA) and a linear
programming (LP) solver is proposed in order to solve the model,
where GA is used to search for the assets selection heuristically
and the LP solver solves the corresponding sub-problems of
weight allocation optimally. Scenarios are generated to capture
uncertain prices of assets for five benchmark market instances.
The computational results indicate that the proposed hybrid
algorithm can obtain very promising solutions. Possible future
research directions are also discussed.

Index Terms—Hybrid Algorithm; Portfolio Optimization;
Stochastic Programming; Genetic Algorithm.

I. INTRODUCTION

With the advances in computer processors in recent decades,
quantitative trading is increasingly taking the place of profes-
sional investors in financial centers across the world. The in-
vestment decisions are made not only by the financial experts,
but also based on mathematical computations and number
crunching by mathematicians or computer scientists. Portfolio
optimization is one of the important areas in quantitative
trading. The idea is to allocate a certain amount of capital over
different assets to form a portfolio. The goal is to minimize the
portfolio risk for a specific level of return set by investors. This
is often referred as the portfolio optimization problem. The
first modern portfolio optimization model was proposed by
Markowitz in the 1950s [1], [2], where, the risk of the portfolio
is measured as the variance of the asset return and therefore
the problem can be viewed as a mean-variance optimization
problem. The original problem is a quadratic programming
problem therefore can be solved in an exact manner with a
reasonable computational time. By imposing more real world
constraints, for example cardinality and bounding, it changes
the model into an NP-hard problem. In our previous work
[3], we proposed a combinatorial algorithm for the cardinality
constrained portfolio optimization problem using the classic
mean-variance model.

Despite the real world constraints being added in the classic
mean-variance model, the investors still need to consider one
more important market factor in order to make better invest-
ment decisions - the uncertainty. In the current work of mean-
variance portfolio optimization problem [3]–[6], the mean
expected return and the covariance between assets are assumed
to be static, which is often not true due to the economic
turmoil and the market uncertainties in practice. It has been
pointed out in [7], [8] that the investment decisions should
be made based on consideration of the market uncertainties.
Usually, the random uncertainty factors are taken into account
(i.e. the asset price and the currency exchange rate, etc.).
There are also some other non-probabilistic uncertainty factors
(i.e. the vagueness and the ambiguity, etc.) which are mainly
modeled using fuzzy techniques [9], [10]. In this work, we
will mainly focus on the random uncertainty of the market,
more specifically, we consider the future asset prices to be
uncertain.

Stochastic programming [11], [12] is a useful technique
for modeling optimization problems with uncertain factors.
It can model uncertainty and impose real world constraints
in a flexible way [13]. As it has been showed in [14],
stochastic programming has been applied to many different
areas successfully (finance, sports, scheduling [15], telecom-
munications, energy, production control and capacity planning,
etc.). For this work, we propose to use stochastic programming
to model uncertain future asset price.

Another drawback of the mean-variance model is how it
characterizes the risk. In the classical Markowitz portfolio
optimization model, the risk is measured as the variance
of the asset returns. Because such characterization of the
risk is a measure of the dispersion of the values of the
variable around its expected value, therefore it penalizes the
portfolio profits and the portfolio losses at the same time.
Practically, people may only want to minimize the possibility
of the portfolio losses, therefore Rockafella and Uryasev [16]
proposed a different risk measure namely Conditional Value at
Risk (CVaR) which calculates the expected loss for the worst
case scenarios. As it has been showed in [17], CVaR is a sub-
additive and convex risk measure, therefore it can be optimized



using stochastic programming.
There exists some research using stochastic programming

models in the portfolio optimization literature. For example
Topaloglou et al. [18] proposed a multi-stage stochastic pro-
gramming model for international portfolio management in
a dynamic setting. The uncertainties are modeled in terms
of the asset prices and exchange rates. Stoyan and Kwon
[19] considered a stochastic-goal mixed-integer programming
model for the integrated stock and bond portfolio problem.
The uncertainties are modeled in terms of the asset prices
and the real world trading constraints are imposed. The model
was solved by a decomposition based algorithm. He and Qu
[20] proposed a two stage portfolio selection problem with
a comprehensive set of real world trading constraints. The
uncertainties are modeled in terms of the asset prices. A hybrid
algorithm integrated local search and a default Branch-and-
Bound method is proposed to solve the problem.

In this work, we adapt the stochastic portfolio optimiza-
tion model in the literature [18], [20] and propose a hybrid
algorithm for the two-stage stochastic portfolio optimization
problem with a comprehensive set of real world trading
constraints. We integrate genetic algorithm (GA) together with
a commercial LP solver so that GA is used to search for
the assets selection heuristically while the LP solver can
solve the corresponding sub-problems optimally. The main
advantage of such an approach is that we can guarantee the
optimal allocation for a given assets combination provided by
GA and the computational cost for solving a sub-problem is
inexpensive since all the stochastic zero-value variables are
not considered.

The outline of the rest part is as follows: Section II reviews
the general concepts of stochastic programming, scenario tree
and percentile risk function. Section III gives the statement
of the problem as well as the corresponding notations used.
In section IV we provide a detailed description of our hybrid
algorithm. The datasets, scenario generation method and pa-
rameter settings are stated in section V. Computational results
are presented in section VI and final conclusions are given in
section VII.

II. PRELIMINARIES

A. Two-Stage Stochastic Programming Problem With Re-
course

Stochastic programming is a common approach to deal with
uncertainty. The general concepts of stochastic programming
have been discussed in [11], [12]. For this work, we consider
a widely applied class of stochastic programming problem,
namely the recourse problem. It seeks a policy that can take
the actions after some realisation of the uncertain variables
as well as make the recourse decisions based on temporarily
available information.

The simplest case of the recourse problem have two stages:
• first stage: A current decision needs to be made.
• second stage: The values of the uncertain variables are

revealed and further decisions are made in order to

t = 0

t = 1

t = 2

Fig. 1. An example of a scenario tree. Each path from the root node to a
leaf node represents one scenario.

avoid constraints violations. Usually a decision in the
second stage will depend on a particular realisation of
the uncertain variables.

B. Scenario Tree

There are two common methods which can be used to deal
with multistage stochastic programming problems, namely
decision rule approximation and scenario tree approximation.
For this work, we will use the scenario tree approximation tree
method.

A scenario is defined as the possible realisation of the
uncertain data ξ in each stage t ∈ T . An example of a scenario
tree is showed in Figure 1. The nodes in the scenario tree
represent a possible realisation of the uncertain data ξT . Each
node is denoted by n = (s, t) where s is a scenario and t
is the level of the node in the tree and the decisions will be
made at each node. The parent of node n is represented by
at−1(n). The branching probability of node n is denoted by pn
which is a conditional probability on its parent node at−1(n).
The path to node n is a partial scenario with the probability
Prn =

∏
pn along the path and the sum of Prn is up to 1

across each level of the scenario tree.
In order to apply the scenario tree approximation method

for the stochastic programming problem with recourse, the
uncertain data ξ needs to be discretized and all possible
realisations of ξ can be represented by a discrete set of
scenarios. Thus, scenario generation methods are required.
There are several scenario generation methods in the literature.
For this work, we applied a shape based method [21].

C. Percentile Risk Function

In the real-world situation, portfolio managers may only
need to reduce the possibility of high loss. Value at Risk (VaR)
[22], [23] gives the maximum possible loss α with a specified
confidence level β. That is, by the end of the investing period,
the probability of the loss exceeding the threshold α is 1− β
(see Figure 2).

Formally, let f(x, ξ) be the loss function where x ∈ R is the
decision vector and ξ ∈ R is the uncertain (random) vector.
The density of the probability distribution of ξ is denoted by
p(ξ). The probability of the loss function f(x, ξ) not exceeding
a threshold α is given by:

Ψ(x, α) =

∫
f(x,ξ)≤α

p(ξ)dξ
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Fig. 2. Value at Risk (VaR) and Conditional Value at Risk (CVaR).

The β-VaR for the loss random variable associated with x
and the specified probability β in (0, 1) is denoted by αβ(x)
and formally we have the following:

αβ(x) = min{α ∈ R : Ψ(x, α) ≥ β}

As it has been pointed out in [17], VaR does not satisfy
the sub-additivity and the convexity and generally it is not a
coherent risk measure. In order to eliminate the drawbacks
of VaR, a more consistent risk measure, Conditional Value
at Risk (CVaR) is proposed. It satisfies sub-additivity and the
convexity [17] and is also proven to be a coherent risk measure
[24].

CVaR calculates the expected value of the loss which
exceeds the VaR value (see Figure 2). Formally, CVaR is
defined as the follows [16]:

φβ(x) = (1− β)−1

∫
f(x,ξ)≥αβ(x)

f(x, ξ)p(ξ)dξ

By having the analytical representation to replace VaR
αβ(x), we can have:

Fβ(x, α) = α+ (1− β)−1

∫
f(x,ξ)≤α

(f(x, ξ)− α)p(ξ)dξ

It has been proved in [16] that Fβ(x, α) is a convex function
with respect to α and the minimum point of Fβ(x, α) is
VaR with respect to α. The CVaR value can be obtained by
minimizing Fβ(x, α) with respect to α.

III. PROBLEM STATEMENT

A. Notations

The notations we used in this work are given in Table I.

B. Two-stage stochastic portfolio optimization model with
recourse

Now we propose our two-stage stochastic portfolio opti-
mization model with recourse. Inspired by [18], the model
was originally proposed in [20] and we adapt the model by
changing and adding some conditions. The proposed model is
divided into two stages.

min

(
α+ (1− β)−1

∑
j∈Nr

pjzj

)
(1)

s.t .

First Stage - Portfolio Selection:

wi = w0
i + bi − si, ∀i ∈ A (2)

h+
∑
i∈A

(siP
0
i )−

∑
i∈A

(ηsgi + siρsP
0
i )

=
∑
i∈A

(biP
0
i ) +

∑
i∈A

(ηbfi + biρbP
0
i ) (3)∑

i∈A

ci = K (4)

wminci ≤ wi ∀i ∈ A (5)
tminfi ≤ bi ∀i ∈ A (6)
tmingi ≤ si ∀i ∈ A (7)
fi + gi ≤ 1 ∀i ∈ A (8)
fiM ≥ bi ∀i ∈ A (9)
giM ≥ si ∀i ∈ A (10)
biM ≥ fi ∀i ∈ A (11)
siM ≥ gi ∀i ∈ A (12)
wi, bi, si ∈ R (13)
ci, fi, gi ∈ B (14)

Second Stage - Recourse:

wj
i = wi + bji − s

j
i ∀i ∈ A, ∀j ∈ Nr (15)∑

i∈A

(sjiP
j
i )−

∑
i∈A

(ηsg
j
i + sjiρsP

j
i )

=
∑
i∈A

(bjiP
j
i ) +

∑
i∈A

(ηbf
j
i + biρbP

j
i ) ∀j ∈ Nr (16)∑

i∈A

cji = K ∀j ∈ Nr (17)

wminc
j
i ≤ w

j
i ∀i ∈ A, ∀j ∈ Nr (18)

tminf
j
i ≤ b

j
i ∀i ∈ A, ∀j ∈ Nr (19)

tming
j
i ≤ s

j
i ∀i ∈ A, ∀j ∈ Nr (20)

f j
i + gji ≤ 1 ∀i ∈ A, ∀j ∈ Nr (21)

f j
iM ≥ b

j
i ∀i ∈ A, ∀j ∈ Nr (22)

gjiM ≥ s
j
i ∀i ∈ A, ∀j ∈ Nr (23)

bjiM ≥ f
j
i ∀i ∈ A, ∀j ∈ Nr (24)

sjiM ≥ g
j
i ∀i ∈ A, ∀j ∈ Nr (25)

V j =
∑
i∈A
e∈Nje

p(j,e)P
(j,e)
i wj

i ∀j ∈ Nr (26)

Rj = V j − V 0 ∀j ∈ Nr (27)

zj ≥ −Rj − α ∀j ∈ Nr (28)
zj ≥ 0 ∀j ∈ Nr (29)∑
j∈Nr

pjR
j ≥ µ (30)

wj
i , b

j
i , s

j
i ∈ R (31)

cji , f
j
i , g

j
i ∈ B (32)

α, zj ∈ R (33)

The objective function (1) calculates the β-percentile CVaR
of the portfolio loss at the end of the second stage where α is
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TABLE I
NOTATIONS IN THE MODEL

Type of Data Notation Meaning
Set A The set of assets
Set Nr The set of recourse nodes. One node corresponds to one recourse portfolio
Set Nj

e The set of evaluate nodes on recourse node j where j ∈ Nr

User-specific parameter µ The target return
User-specific parameter β Quantile (percentile) for VaR and CVaR
User-specific parameter M The big constant
Deterministic input data h The initial cash to invest
Deterministic input data w0

i The initial position of asset i (in number of units)
Deterministic input data ηb The fixed buying cost
Deterministic input data ηs The fixed selling cost
Deterministic input data ρb The variable buying cost
Deterministic input data ρs The variable selling cost
Deterministic input data K The number of asset held in the portfolio (cardinality)
Deterministic input data wmin The minimum holding position
Deterministic input data tmin The minimum trading size
Scenario dependent data pj The probability of recourse node j in the second stage
Scenario dependent data p(j,e) The probability of evaluate node e of recourse node j in the second stage
Scenario dependent data P 0

i The price of asset i in the first stage (per unit)
Scenario dependent data P j

i The price of asset i on recourse node j in the second stage (per unit)
Scenario dependent data P

(j,e)
i The price of asset i on evaluate node e of recourse node j in the second stage (per unit)

Scenario dependent data V 0 The initial portfolio wealth
Scenario dependent data V j The final portfolio wealth on recourse node j

Auxiliary variable zj Portfolio shortfall in excess of VaR at recourse node j
Auxiliary variable α The optimal VaR value
Decision variable bi The number of units of asset i purchased in the first stage
Decision variable si The number of units of asset i sold in the first stage
Decision variable wi The final position of asset i in the first stage
Decision variable bji The number of units of asset i purchased on recourse node j in the second stage
Decision variable sji The number of units of asset i sold on recourse node j in the second stage
Decision variable wj

i The final position of asset i on recourse node j in the second stage
Decision variable ci The binary holding decision variable in the first stage
Decision variable fi The binary buying decision variable in the first stage
Decision variable gi The binary selling decision variable in the first stage
Decision variable cji The binary holding decision variable on recourse node j in the second stage
Decision variable fji The binary buying decision variable on recourse node j in the second stage
Decision variable gji The binary selling decision variable on recourse node j in the second stage

the corresponding optimal VaR value. Eq. (2) is the first stage
asset balance condition and Eq. (15) is the second stage asset
balance condition. Equations (3), (16) are the cash balance
conditions for the first and second stage respectively. We apply
a fixed transaction cost and a linear variable transaction cost
to both buying and selling an asset. The idea is that the cash
inflows should equal to the cash outflows in both stages (i.e. no
cash left). Equations (4), (17) are the cardinality constraints for
the first and second stage respectively where K is the desired
number of the assets held within a portfolio. Equations (5) and
(18) put the restrictions on the minimum holding size of an
asset in order to prevent very small asset positions for the first
and second stages. Equations (6),(7), are the minimum trading
conditions for the first stage and equations 19,20, are the
minimum trading conditions for the second stage. The idea is
to prevent trading a very small proportion of an asset. Buying
and selling the same asset at the same time is not allowed, this
is given in equation (8) for the first stage and equation (21)
for the second stage. The big-M formulations are used in the
model in order to bound the decision variables and the binary
decision variables (constraints (9), (10), (11),(12) for the first
stage and constraints (22), (23), (24), (25) for the second

stage). The idea is, if the decision variables for buying/selling
an asset is greater than 0, then the corresponding binary
decision variables should equal; if the decision variables for
buying/selling an asset is 0, then the corresponding binary
decision variables should be 0 and vice versa. Equations (26),
(27) calculate the portfolio return on each recourse node by
using a different set of evaluate scenarios in order to have
a better reflection of changing price scenarios in the reality.
Equations (28), (29) define the excess shortfall zj of the
recourse portfolio where zj = max[0,−Rj − α] for each
recourse node. The minimum portfolio target return µ is given
in equation (30). The decision variables wi, bi, si, w

j
i , b

j
i , s

j
i

specify the exact amount of the units for an asset to buy or sell
and in a real-world situation, these decision variables should
be integers. As they increase the computational difficulty
significantly, we took the same method suggested in [20], [25]
to relax these decision variables as continuous variables.

C. Computational complexity

The optimization problems using a stochastic model are
much more difficult compared to using a deterministic model.
It has been proved in [26] that, linear two-stage stochastic
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programming problems are #P-hard, which is at least as hard
as the corresponding NP-hard problem and for multistage
stochastic programming problems, it is generally computation-
ally intractable even for the medium-accuracy solutions [27].

IV. THE PROPOSED HYBRID ALGORITHM

It has been pointed out that in the classic constrained mean-
variance portfolio optimization model, the most challenging
part comes from the cardinality constraint [19], [28]. It is
mainly because the cardinality constraint is discrete and there-
fore the solution space is discontinuous. When comes to the
two-stage stochastic portfolio optimization model, the problem
becomes even more challenging since it dramatically increases
the search space due to the additional variables involved in the
second stage.

To deal with the cardinality constraint, we took the idea
of variable fixing [29]. Instead of having the binary decision
variables ci, c

j
i , we have exact K core variables. Each of the

core variables has a numerical value. The main advantage
of doing this is it drops off the cardinality binary decision
variables thus reduces the computational complexity.

In order to reduce the search space, we generate the reduced
sub-problems by removing all the non-selected assets (the
details are discussed later in section IV-A). The purpose of
solving the reduced sub-problems is to assign weights to the
selected assets. The main advantage of generating the reduced
sub-problems is it can significantly narrow the search space.
Then the reduced sub-problem can be solved by the LP solver
efficiently.

For this work, we used genetic algorithm (GA) to search
for the asset combination and a CPLEX LP solver to solve
the sub-problems.

A. The reduced sub-problem

In this work, GA is used to search for the assets com-
bination. Each chromosome in GA represents a potential
sub-problem to the original problem defined on the two-
stage stochastic model. The sub-problems are generated by
dropping off all the non-selected assets, in other words, each
chromosome is fixed in both the first and second stage (i.e.
ci = cji = 1 if GA picks asset i). The recourse are limited to
assets rebalancing, but not swapping the assets and therefore
we can call such sub-problem the reduced sub-problem. The
logic behind this idea is, if some assets need to be dropped
in the second stage for most of the scenarios, they will be
probably not selected in the first stage. As the transaction
costs and the minimum holding constraint are considered
in the model, the cost of buying an entirely new asset is
probably significantly higher than just adjusting the holding
of an existing one.

Then the fitness value is obtained by solving the corre-
sponding sub-problem using an LP solver in order to get
the weight allocation of the selected assets. There are three
main advantages of such an approach. Firstly, the binary
decision variables for the cardinality constraints are dropped
off, therefore it reduces the complexity; Secondly, all the

zero-value variables are removed, therefore it can significantly
narrows the search space. It is especially useful when there is a
big amount of stochastic variables in the second stage. Thirdly,
we can control the numerical properties of the solutions to
the sub-problems by setting up different Markowitz threshold
(which is used to control the kinds of pivots permitted), and in
most cases, we can obtain the optimal allocations for a given
asset combination.

B. Genetic algorithm

Genetic algorithm (GA) is a metaheuristics searching tech-
nique inspired by natural evolution process. It was first
proposed by John Holland in the 1970s [30]. It simulates
the survival of the fittest principal among a population of
individuals over iterative generations in order to solve an
optimization problem. Each individual is encoded into a string
(called chromosome or genotype) which represents a possible
solution to the given problem.

Starting with an initial generation of the population, each
individual is evaluated by a fitness function. Based on the
fitness values, some individuals are probabilistically selected
to remain unchanged to the next generation, some individuals
are probabilistically selected to participate in the genetic oper-
ations to produce offsprings for the next generation. Normally
there are two genetic operations, crossover and mutation.
After a new generation of individuals is created, the fitness
of each individual is evaluated again. This whole process
is repeated until an acceptable individual is found or other
termination criterion is satisfied (usually up to some certain
number of generations). The best individual will be returned
as the solution.

C. Problem representation

In this paper, genetic algorithm is utilized to evolve best
values for discrete variables in the stochastic model. The
search space is different for different benchmark datasets
(characterized by Q, see Section V-A). The objective is to
find the best K items from Q possible assets for a given
target return µ specified by the investor. The details of problem
representation are as follows:

• The fitness function F maps from a list of K integers
and a target return µ to a real number: F (ZK , µ)→ R.

• Each chromosome represents a potential sub-problem to
the original problem defined on the two-stage stochastic
model. It is encoded as a fixed length vector of k =
(k0, k1, ..., kK) which represents the selected K assets
of the portfolio and ki ∈ {1, 2, . . . , Q}. The selection
of the ith asset is dependent on other assets, i.e., the
search problem is a dimensional dependent problem and
the dimension of GA’s search space is increased with the
increase of dataset’s dimension. The sub-problem can be
solved by a standard LP solver.

• Elitist selection is used in our GA approach, i.e., we keep
the best chromosome in each generation.
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• The global best solution xgb is recorded such that
F (xgb, µ) ≤ F (xi, µ) for all xi at the given return level
µ.

The procedure of genetic algorithm used in this work is
given as Algorithm 1 and the parameters are given in section
V-C1.

Algorithm 1: Genetic algorithm for searching the set of
assets

1 Initialize generation 0 by randomly creating a population
of individuals;

2 for each individual in the initial generation do
3 Solve the corresponding sub-problems using CPLEX

LP solver;
4 Evaluate the fitness;

5 while stopping criteria is not met;
6 do
7 Elitism: Select the best individual from the current

generation and insert it into the next new generation;
8 Copy: Select (ϑ× Po− 1) individuals using a

roulette wheel selection from the current generation,
copy them and insert into the next new generation;

9 Crossover: Select the individuals from the current
generation using a roulette wheel selection, pair them
up to produce (%× Po) offsprings and insert the
offsprings into the next new generation;

10 Mutate: Select (ς × Po) individuals from the current
generation randomly, alter one asset number and
insert it into the next new generation;

11 for each individual in the new generation do
12 Evaluate individual’s fitness by solving the

corresponding sub-problem using CPLEX LP
solver;

V. DATA SET, SCENARIOS AND PARAMETER SETTINGS

A. The data set

In this paper, we extend the five benchmark instances
which are available from the OR-library [31]. It contains 261
weekly historical price data for each asset of the following
five different capital market indices:

• Hang Seng in Hong Kong, Q = 31.
• DAX 100 in Germany, Q = 85.
• FTSE 100 in UK, Q = 89.
• S&P 100 in US, Q = 98.
• Nikkei 225 in Japan, Q = 225.

Q is the number of assets available for each market index.
The weekly historical price data are used for generating the
scenarios for the two-stage stochastic portfolio optimization
model.

B. Scenario generation

Since we have a two-stage model, we cannot use the
261 weekly historical price data directly because it would

lead to a prohibitively huge multi-stage problem. Instead,
we have the following: we take the week 1 data q11 , . . . , q

Q
1

as the initial price for the assets. Start from week 2, we
calculate the difference between the price of the assets of
two consecutive weeks ∆t = qit+1 − qit where i = 1 . . . Q,
t = 1 . . . 260. Then we can obtain 260 new price data by
computing qi1 + ∆t∀i ∈ Q, t = 1 . . . 260.

We take the copula scenario generation method presented in
[21] to generate 100 scenarios for the recourse nodes and 20
scenarios for the evaluate nodes by using 260 newly-generated
data described above. Therefore there will be 2000 possibilities
of scenarios in total. The reason of doing that is because
we want to test the effectiveness of our proposed hybrid
algorithm. We do not claim this is the optimal number for
generating scenarios. Our primary aim is rather to develop an
efficient method that can solve two-stage stochastic portfolio
optimization problem.

C. Parameter settings

1) GA parameters: We set population size Po = 500,
the number of generations Ge = 500, copy rate ϑ = 10%,
crossover rate % = 80% and mutation rate ς = 10%.

2) Model parameters: For each given target expected return
µ, we set the critical percentile level of CVaR β = 95%,
fixed buying cost ηb = 0.5, variable buying cost ρb = 0.1%,
fixed selling cost ηs = 0.5, variable selling cost ρs = 0.1%,
cardinality K = 10, minimum holding position wmin = 1%,
minimum trading size tmin = 0.1%. The initial portfolio only
involves cash and we set the initial cash h = 100000. We
assume the probability of each scenario is equal and therefore
pj = 1/Nr, p(j,e) = 1/N j

e .

VI. EXPERIMENTAL RESULTS

A. Computational results for a small number of scenarios

In order to test the effectiveness of our algorithm, we
use CPLEX (version 12.4) to obtain the optimal solutions
for Hang Seng instance (Q = 31) with a small number
(Nr = 20, N j

e = 5, 100 possibilities in total) of scenarios.
Consider the time limitation, we choose 20 equally spaced
return levels and for each return level, we use CPLEX to
solve the two-stage stochastic model directly. For each return
level, CPLEX can solve the whole model to the optimality
within a few minutes. We also use CPLEX to solve the
model without cardinality constraint using the same data and
parameter settings to obtain an efficient frontier (see the red
line in Figure 3). This efficient frontier can be considered as
an upper bound of the frontier obtained with the cardinality
constraint [4].

For each of the same return level, we run our hybrid
algorithm to obtain a portfolio. The results are shown in Figure
3. We can see that all the green points lie exactly on the blue
dashed line. In fact, for each of the 20 different return levels,
our algorithm obtains exact the same CVaR value with CPLEX
(i.e. optimal).

We also apply a percentage deviation method which is
widely used in the literature [3], [4], [6] to determine the
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Fig. 3. Computational results for the Hang Seng instance with 100 possibili-
ties of scenarios. The red line is the optimal upper bound efficient frontier (i.e.
without cardinality constraint), the blue dashed line is the optimal efficient
frontier for the whole problem computed by CPLEX and the green points are
the portfolios obtained by our algorithm.

quality of the portfolios obtained. The percentage deviation
error is measured by calculating the distance between the
obtained portfolio and the upper bound efficient frontier, both
horizontally and vertically. Formally, let (xuef, yuef) be a dis-
crete point on the upper bound efficient frontier. The horizontal
distance is calculated by taking the portfolio expected return
as fixed (y = yuef), linearly interpolating the point on the
upper bound efficient frontier to get the x value xinterpolation
and take the absolute value of the difference between xuef
and xinterpolation. Then the percentage deviation error in the
x-direction is computed as |xuef − xinterpolation|/xuef × 100%.
The percentage deviation error in the y-direction can be
calculated in a similar way. The final percentage deviation
error is the minimum of the percentage deviation error of the
both directions. The results are given in Table II. Here BPE
denotes the best percentage deviation error, MedPE denotes
the median percentage deviation error and MPE denotes the
mean percentage deviation error.

TABLE II
PERCENTAGE DEVIATION ERROR OF HANG SENG INSTANCE WITH 100

POSSIBILITIES OF SCENARIOS

Instance BPE(%) MedPE(%) MPE(%)
Index Q Nr Nj

e

Hang Seng 31 20 5 0.7421 2.4866 2.0687

B. Computational results for the five general benchmark in-
stances

For each market instance, we generate 100 scenarios for
the recourse nodes and 20 scenarios for the evaluate nodes
(Nr = 100, N j

e = 20, 2000 possibilities in total). Then we
choose 20 equally spaced return levels. For the full problem,
CPLEX fails to give any feasible solution within a time limit of
3 hours. But we can use CPLEX to compute the corresponding
optimal upper bound efficient frontier (i.e. without cardinality).

Figure 4 shows the comparison results of the frontier obtained
by our hybrid algorithm with the optimal upper bound effi-
cient frontier. Computational results for percentage deviation
method are given in Table III.

TABLE III
PERCENTAGE DEVIATION ERROR OF 5 BENCHMARK INSTANCES WITH

2000 POSSIBILITIES OF SCENARIOS

Instance BPE(%) MedPE(%) MPE(%)
Index Q Nr Nj

e

Hang Seng 31 100 20 2.0457 2.2093 2.2090
DAX 100 85 100 20 0.2189 1.5361 1.4772
FTSE 100 89 100 20 0.3341 1.1789 1.0475
S&P 100 98 100 20 0.2986 1.2584 1.3120

Nikkei 225 225 100 20 0.3550 1.2731 1.3189
Average 0.6505 1.4912 1.4729

C. The Computational time

The hybrid algorithm for the two-stage stochastic portfolio
optimization model was implemented in C# with concert
technology in CPLEX on top of CPLEX 12.4 solver. All
the tests were run on the same Intel(R) Core(TM) i7-4600M
2.90GHz processor with 16.00 GB RAM PC and Windows 7
operating system. For a given return level of each different
instance, the computational time is given in table IV.

TABLE IV
COMPUTATIONAL TIME OF PROPOSED HYBRID ALGORITHM FOR A GIVEN
RETURN LEVEL OF 5 BENCHMARK INSTANCES USING 2000 POSSIBILITIES

OF SCENARIOS

Instance min
Index Q Nr Nj

e

Hang Seng 31 100 20 32.1
DAX 100 85 100 20 57.3
FTSE 100 89 100 20 54.9
S&P 100 98 100 20 63.7

Nikkei 225 225 100 20 75.6
Average 56.7

D. Discussions

The aims of our experiments are to test the effectiveness of
our hybrid algorithm and to evaluate the performance of the
two-stage stochastic portfolio optimization model. Although
we cannot guarantee the optimality of the solutions obtained
due to the heuristic nature of our proposed hybrid algorithm,
as it has been shown in Section VI-A, for the problem using
a minor instance with a small number of scenarios, our
algorithm can get the optimal results. For the problem using a
larger instance with a bigger number of scenarios, we use the
percentage deviation method which is widely applied in the
literature for the classic cardinality constrained mean-variance
portfolio optimization problem to determine the quality of the
solutions obtained. We can see from Section VI-A that the
MPE of the optimal solution for Hang Seng instance with
100 possibilities of scenarios is 2.0687%. The average MPE
of our results for Hang Seng instance with 2000 possibilities
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Fig. 4. Comparison of the frontier obtained by our algorithm with the optimal upper bound efficient frontier using 2000 possibilities of scenarios. The red
line is the optimal upper bound efficient frontier and the blue dashed line is the final frontier found by our algorithm.

of scenarios is 2.2090%, indicating that our solutions to the
overall problem are very promising, at least not far from the
optimal ones.

In the literature, it is difficult to conduct fair comparisons
of the related work using the two-stage stochastic model.
One main reason is that involves a lot of uncertainties.
Different scenario generation methods will lead to different
scenarios used in the second stage. One interesting observation
is, by performing some experiments, we find our two-stage
stochastic portfolio optimization model is sensitive to the
generated scenarios. For example we can see that the MPE of
Hang Seng instance is around 2.2% while the MPE of other
instances is less than 1.5%. This is mainly because of the
randomness involved in the generated scenarios. To compare
and analyze the different scenario generation methods, as well
as to reduce the number of scenarios generated in order to
reduce the computational complexity is not the main focus
of this work. This leads to some possible interesting future
research directions.

VII. CONCLUSION AND FURTHER WORK

In this work, we investigate a two-stage stochastic portfolio
optimization model which minimizes the Conditional Value at
Risk (CVaR) of the portfolio loss with a comprehensive set of
real world trading constraints. The two-stage stochastic model
can capture the market uncertainty in terms of future asset
prices therefore it enables the investors rebalancing the assets.

A hybrid approach which integrates genetic algorithm (GA)
and an LP solver is proposed for the two-stage stochastic

model. The idea is that GA can search for the assets selection
heuristically while the LP solver can solve the corresponding
reduced sub-problems optimally. The main advantage of such
an approach is, by solving a sub-problem, some original
constraints can be eliminated and all zero-value variables are
dropped off. Therefore it reduces the complexity and narrows
the search space. The experimental results indicate that it
is very useful strategy for the problems using a stochastic
programming model.

We used a copula-based method to generate scenarios
for this work. Comparing and analyzing different scenario
generation methods, and reducing the number of the scenarios
generated in order to reduce the computational complexity
further, can be the possible future research directions.
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