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Abstract A two phased approach incorporating the extendedtgleluge technique is detailed
in relation to the Examination Timetabling Problera described in the"® International
Timetabling Competition (ITC2007). The approachva® to be both robust and general.
Robust in the sense that it is capable of produsin@f the best results published in literature
so far on the benchmark datasets and general asdheique has produced in the recent past
some of the best results on existing course tiniatalbenchmark datasets. The datasets used
as part of this research, introduced during ITC2@0& described and discussed in detail. We
present the results of our technique in relationtite competition results and provide a
comparison between the outlined method and thosthefcompetition entrants from the
international arena, in order to highlight both rdgderistics of the technique on the datasets
used.
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1 Introduction

The automated timetabling of examinations assatiaféh courses within universities is
often a complex and time consuming task. From atjwal perspective, the quality of the final
solution is usually measured firstly in terms ofwhavorkable the solution is in terms of
resource assignment e.g. availability of studertscessibility of rooms, ordering of
examinations, etc. and secondly, on how well a rermif institutional defined quality
measures are satisfied e.g. how well student examspread out throughout the designated
examination period [1]. From a research perspective measure of quality translates into the
satisfaction of what are termed hard and soft caimds and is often achieved through an
automatic scheduling process comprising of a twget methodology involving the
construction and subsequent improvement of a tiohedasolution. Construction involves
achieving a feasible solution whereby no hard cairds are broken e.g. no students should be
expected to take more than one examination atiore tmprovement minimises the violation
of desirable constraints termed soft constrairgs & student having to sit two examinations in
a row. The quality of the final solution is assekbg measuring the outcome after these phases
i.e. the degree of satisfaction of hard and softstaints. Although the problem is similar
across universities, various formulations of thebbem have appeared within the academic
literature over the past fifty years or so. Mangrsé based techniques have been applied to
various formulations of the problem and the asdedialatasets. For a detailed overview of
these the reader is referred to [2].

Recently, the ? International Timetabling Competition [3] had exaation timetabling
of one of its three tracks. This track introducedfcamulation of the problem which
incorporated and brought together a number of vealld constraints [4]. This problem
formulation adds significantly to previously useadsls within the research field as many
more real world constraints were described and ehmst to overall solution quality were
incorporated within the evaluation process. In #@ddj during the competition, twelve
associated data sets were released to the resmanchunity. The problem studied here relates
to that introduced formulation. Detailed informatiaelating to this exam timetabling
formulation, details of the other two tracks, atgbaoverall competition rules can be found at
the competition website (www.cs.qub.ac.uk/itc200Five finalists from the original
submissions were chosen by the competition orgemisgsed on reported results. Importantly,
a limit was placed on the computation time alloviedcompetitor’s technique to produce a
solution. Competition organisers ran the finalistgomitted techniques on a number of
previously non-released datasets (‘Hidden’), ad a®lthose datasets released as part of the
competition (‘Early and Late’). Subsequently anesidg was calculated to decide the overall
winner based on performance on all the datasetsis Téan be viewed at
http://www.cs.qub.ac.uk/itc2007/winner/bestexankratm.

Here, the organisers of the examination track iteth@r results achieved through the use
of an two phase approach incorporating an adaptiwestruction phase followed by the
employment of an extended great deluge technigbe. purpose of running the organisers’
solvers on the instances and releasing these sasuitofold: On one hand, the organisers had
to ensure that a feasible solution could be reaébedll instances, thus the results are a proof
of existence of a feasible solution. On the othend) from the optimisation point of view,
these results form what can be considered a basg@lpper-bound) that can be exploited in
future comparisons.

The remainder of this paper is as follows; Secfgorovides the necessary information
on the formulation of the examination timetablingipem as introduced as part of ITC2007;
Section 3 provides a background to the techniqperted as part of this work; Section 4
describes the approaches taken by the five fisali$to took part in the competition. It should
be noted that all background material describedelated to these finalists. This will be
updated as further researchers trial their teclesigun the formulation and datasets; Section 5
describes the detailed implementation of the exdngreat deluge along with the results



obtained. Finally the paper is concluded making m@mt on the effectiveness of the technique
studied and potential future research areas.

2  The Examination Timetabling Model

The formulation of the Examination Timetabling Bllem introduced as part of ITC2007
is described as ‘post-enrolment’, as the individeghminations each student is taking are
known before the timetabling process. This is apdrtant distinction within the area of
University Timetabling as the closely related pesh) that of course timetabling, can be
considered as either post-enrolment or curriculased. Conflicts between course events can
be determined either by common students in the-grustiment model, or by a hierarchical
modular structure within the curriculum based mo@elth of these formulations are described
as part of ITC2007 [3]. The timetabling processoaiged with examination timetabling
involves placing exams into a number of pre-defipediods within a defined examination
session while satisfying a number of hard and softstraints. A feasible solution is one in
which all hard constraints are satisfied. As désadiin the introduction, the quality of the
solution is measured in terms of soft constrairtstaction. The characteristics which are
used to define an individual problem instance ideluthe examinations, students and
enrolments, resources such as periods and rooms,chastraints applied to resources, and
general institutional soft constraints. Table Z1slithe main characteristics for each of the
examination competition data sets.

Instance Dgnos?tf;/ic(g@ Exams Students | Periods | Rooms |Period HC | Room HC
Exam_1 5.05 607 7891 54 7 12 0
Exam_2 1.17 870 12743 40 49 12 2
Exam_3 2.62 934 16439 36 48 170 15
Exam_4 15.0 273 5045 21 1 40 0
Exam 5 0.87 1018 9253 42 3 27 0
Exam_6 6.16 242 7909 16 8 23 0
Exam_7 1.93 1096 14676 80 15 28 0
Exam_8 4.55 598 7718 80 8 20 1
Exam_9 7.84 169 655 25 3 10 0
Exam_10 4.97 214 1577 32 48 58 0
Exam_11 2.62 934 16439 26 40 170 15
Exam_12 18.45 78 1653 12 50 9 7

Table 1 — Problem Benchmark Characteristics

The conflict density is a measurement of the nunaferonflicts examinations i.e. how
tightly the problem is constrained in terms of stadenrolments. The initial observation is that
the conflict density for most of the data setsugeglow (for the most part around 5% or 6%).
This is reflective of the amount of choice allowedstudents within the modern curriculum,
with a large variation in course or subject choibetween each student. The measurable
problem ‘size’ (number of exams and students) gatte a certain extent across the set of
problems, the largest of which could be arguedithemexam 3/exam 11 or exam 7 and the
smallest agxam 9 or exam 12. The periods and rooms available will also haveeasurable
effect on the difficulty of achieving feasibilitynd/or a quality solution. The instanaeam 3
andexam 11 are practically the same data sets, althomgim 11 has a much smaller set of
period resources available with which to timetaBlee instances used reflect the ‘real-world’
nature of the data sets which are encounteredtirakbinistitutions. In the case ekam 3 and



exam 11 a common situation arises where the examinati@si@e must be shortened to
minimize space and staff costs, although all engsttonstraints must still be adhered to as
much as possible.

Information on the structure, length and numberirafividual periods is also made
available. An examination session is made of a rarnalf periods over a specified length of
time. This can range from one to two weeks in i@fato the data provided. Period lengths,
within which a set of examinations or varying digatmust be placed, range from one to three
hours. A set of rooms and associated capacitiegraxeded.

A feasible timetable is one in which all examinachave been assigned to a period and
room so that the following hard constraints arésgat:

* No student sits more than one examination at threegane;

e The capacity of individual rooms is not exceededaay time throughout the

examination session;

*  Period duration restrictions are not violated;

* Period related hard constraints e.g. Exam_A mugldeed after Exam_B;

* Room related hard constraints e.g. Exam_A musRasen 101.

A candidate timetable is penalised for each ocoggef the following soft constraints:
» Student has to sit two exams in a row (adjacerdaone day);
e Student has to sit two exams in a day;
e Student does not have a specified spread (in tefqperiods) of examinations;
* Mixed durations of examinations occur within indival periods;
e Examinations of large class sizes appear latdrarekamination session;
* Period related soft constraints;
* Room related soft constraints;

As can be seen, these constraints can effectbeelplit into two groups; those which are
resource specific and those which can have a gksttihg. Resource specific constraints can
be set for each period and each room and allowstral of how resources can be used in
constructing a solution. Global Setting constrag#@n be set relative to each other. Within the
described model, institutions weight these softst@ints differently relative to one another in
an attempt to produce a solution which is approgfiar their particular needs. This is defined
as the Institutional Model Index. This is a relatiweighting of the soft constraints which
effectively provides a quality measure of the doluto be built. The Period and Room Hard
Constraints will also add to the measurable difficof each problem set, although it can be
seen that Room Hard Constraints are rarely enfored when used, to a limited extent. The
amount and type of Period Hard Constraints areoreddy similar across the data sets.
However, given the size and amount of exams andlments in some of the problem
instances compared to resources available, somle beuconsidered more difficult in this
regard and possible more difficult to schedule hbiotterms of achieving feasibility and in
obtaining a competitive evaluation score.

3 Competition Entrants and Placings

A summary of the competition results is presentedable 3a in Section 5. However the
overall placings are as follows.

Tomas Miller from Purdue University was the contaati winner, having achieved ten
out of twelve of the best scores. The algorithmcdbed used a three phased incremental
approach [5]. During construction an lIterative Fargh Search algorithm was employed in
finding an initial feasible solution. During eaderation of the algorithm an examination is
chosen and assigned to a room and time. If thgy@asEnt causes a hard constraint to be
broken then the existing assignment which is cauie problem is unassigned. The process
ends when all examinations are assigned a roomtiam&l The algorithm employs both



ordering and assignment heuristics in order to dpgethe process. In addition Conflict-based
Statistics are used during the iterations in aangtt to avoid repetitive assignments which
have previously proven to be detrimental to theettsping solution. During the second phase
of the algorithm, hill climbing is used to find thecal optimal. A neighbourhood is chosen

with equal probability from a determined list réhat to swapping/changing periods and rooms
for randomly chosen examinations. This phase imiteated after a specified number of

iterations during which no improvement is experghcThe Great Deluge Algorithm is then

engaged in an attempt to improve the solution tiinowidening the search.

Christos Cogos from University of Patras, Greecas placed second in the competition.
His method utilised a GRASP (Greedy Randomized fidefsearch Procedure) based process
combined with other meta-heuristic techniques Téle construction phase begins by building
five lists of examinations based on various criteA tournament based algorithm is used in
selecting which exam should be placed in the tibletantil all lists are empty. This is carried
out iteratively using different starting pointsriglation to initial time periods. A backtracking
strategy, employing a tabu list is employed as irequ A Simulated annealing procedure is
used in the second phase. In a third phase, infggramming using branch and bound is
used to scrutinize and analyse individual periods the purpose of room changes. Periods
are chosen based on an ordering based on ovetidfasion (CSP) of particular soft
constraints.

Atusta et al. from Japan used a constraint satisfaproblem solver incorporating tabu
search and iterated local search [7,17]. By spegfynitial weights, the solver distinguishes
between soft and hard constraints and their weigines dynamically controlled during
computation to improve performance. The instancesewformulated using linear 0-1
inequalities, quadratic 0-1 inequalities, and dfledent constraints. The technique proved to
be very effective across all three tracks of thapetition.

Geoffrey De Smet from Belgium incorporated loadush techniques within the Drools
solver [8]. Drools is an Open-Source Business RManagement System (BRMS)
(http://www.jboss.org/drools/). The developers hgwevided an integrated environment
which allows problem specific semantics to be loshkeith Domain Specific Languages,
graphical editing tools, web based tools and deeglgproductivity tools. The approach
described develops the Drools-solver incorporativegy Drools rule engine and a local search
mechanism. Initially each constraint is writterttie Drools Rule Language. Examinations are
subsequently ordered on the basis of size andidard&xaminations are assigned to the 'best’
position within the timetable chosen by a placimgitistic. This is followed by a local search
mechanism which uses three neighbourhoods relatewting and swapping time periods and
rooms. The searching continues based on a heusistah incorporates a tabu based approach.

Nelishia Pillay from the University of KwaZulu-Nat South Africa came fifth. Inspired
by a biological approach, the algorithm mimics dadhaviour [9]. After examinations are
ordered heuristically using saturation degree ett@minations are sequentially allocated to the
available “cells” within the timetable structuree.i.available times. If more than one time
allocation is possible the choice is based on mininoverall solution penalty. If there is a
choice once again, allocation is made on a randasisbRooms are chosen on a best fit
heuristic with respect to rooms. Eventually, ndsetmain where an examination on the list
can be placed without breaking a hard constrairtiefiVthis is the case, the already placed
examination is moved to a cell which allows miniatisn of the overall soft constraint
penalty. This is described as cell division. Onlgis fs not possible without the subsequent
breaking of hard constraints, a process called iotdraction takes place. This involves a
swapping process with the purpose of removing thel ftonstraint. This process continues
until a feasible solution has been reached. Thieoasifiken this to the development of a fully
functional organism. Once a feasible solution &ched, improvement is achieved through a
process known as cell migration. This involves fetigally swapping the contents of cells that
have equal durations.



4  The EGD Approach

The EGD approach has a construction phase folloimedmprovement. Construction is
implemented using the existing adaptive orderingriséic from [10]; it uses a weighted order
list of the examinations to be scheduled basedndividual soft penalties and ‘difficulty to
schedule’ penalties. Weightings are increased facheexamination based on localised
penalties encountered as each are placed, witthedsted examinations given a much larger
increase, based on a formulation involving the mmaxn general penalty encountered. This
latter is an extension to [10] and has been seeaxperimentation to achieve improved
construction solutions to the standard adaptivesitaotion technique. Once feasibility is
achieved, the heuristic continues with the aim mviging an improved solution. It has been
found that it is preferable that the constructitvage should continue until approximately 9%
of the entire process has completed, at which ghantmprovement phase begins [11].

Figure 1: Extended Great Deluge Algorithm

Set the initial solution s using a construction heu ristic;
Calculate initial cost function f(s)
Set Initial Boundary Level B , = f(s)
Set initial decay Rate *B based on Cooling Paramete r
While stopping criteria not met do
Apply neighbourhood Heuristic S* on S
Calculate f(s*)
If f(s*) <= f(s) or (f(s*) <= B Then
Accept s = s*
Lower Boundary B = B — B
If no improvement in given time T Then
Reset Boundary Level B o, =f(s)
Set new decay rate *B based on Secondary

Cooling Parameter

Improvement is carried out through implementatidnao extended version of the Great
Deluge Algorithm. Pseudo code for the algorithmtfoe Extended Great Deluge is presented
in Figure 1. The Great Deluge (also known as Dezpta@eiling) was introduced by Dueck
[12] as a faster alternative to Simulated Anneallbgises a boundary condition rather than a
probability measure with which to accept worse sohs i.e. if the penalty function is below a
certain value a move in the selected neighbourhlabde automatically accepted, but if it is
above it will be rejected The boundary is initiallgt slightly higher than the initial solution
cost, and reduced gradually through the improvempemtess. This has already been applied
successfully to construction and improvement tegqimes in timetabling [13,14]. In addition,
[15] describes a modification of the Great Delulgmathm for Multi-criteria decision making.
The extended technique employs a reheat mechanigmguided parameters to avoid local
optimum and attempt to provide a much wider seafdhe solution neighbourhood [15]. The
aim of this approach is to both improve the speedtach an optimal solution can be found



and at the same time utilise the benefits of tbéhmnique in avoiding the trap of local optima.
Once again, in order to reduce the amount of tialen, relatively simple neighbourhood
moves are employed. In further explanation of tifiei@nce, generally, the Great Deluge will
terminate when a lack of improvement has been gbdeior a specified amount of time, as
the best solution using a particular neighbourhbas been reached. Rather than terminating,
the extended approach employs reheating in ordeeléx the boundary condition to allow
worse moves to be applied to the current solutfdooling continues and the boundary is
reduced at a rate according to the remaining leafjthe run.

Two basic neighbourhoods are employed within Isedrch, i.e. random moving and
swapping individual examinations, while maintainiiegsibility and attempting to continually
improve the solution or keep the evaluation withigiven boundary limit. The application of
these simple heuristics allows the algorithm tolesg more neighbourhoods efficiently in a
limited time environment (such as with a time-liesitcompetition), as computation time is not
generally spent on making specific choices for nsowe swaps. A full description of the
algorithm along with the results achieved in relatio a set of course timetabling problems is
given in [16].

The parameters used within the Extended Great Betiggermine the behaviour of the
method during improvement, and are listed as fadtow

- Initial Boundary

- Decay Rate

- ‘Wait for Non-Improvement’ parameter
- Post-reheat boundary

- Post-reheat decay rate

- Probability of heuristics employed

The primary parameters used, initial boundary aitthl decay rate, dictate how fast the
boundary is reduced and ultimately the narrowingdition for accepting worse moves. The
approach outlined in this paper uses a Decay Rapopional to 50% of the entire run. Based
on initial iteration timings and the remaining tin@e produce a final solution within the time
limit, the total number of iterations allowed cae balculated in order to determine the
appropriate proportions for decay rate. This fadmray will force the algorithm to attempt to
reach the optimal solution by, at the very mostf-Way through the process. Generally, a
continuous lack of improvement will occur beforéstis reached, at which time the re-heat
mechanism is activated.

The ‘wait’ parameter dictates when to activate théheat mechanism due to lack of
improvement, specified in terms of percentage omber of total moves in the process.
Through experimentation with a number of datasetiainces a general value for this parameter
was established, roughly 5% of the complete runerAfeheat the Boundary ceiling is once
again set to be greater than the current best avatuby a similar percentage to that applied in
the initial boundary setting. The subsequent déeagt to a ‘quicker’ rate than with the initial
decay, in order to increase the speed of the exfdor of neighbouring solutions for
improvement. The general setting chosen for therdlgn outlined is set to 25% of the
remaining time, with the improvement wait time rénidag unchanged. All parameters were
established as the most effective as a result péraxentation. The two heuristics used are
“Move” (random examination is moved to a randometsot) and “Swap” (two random
examinations swap timeslots), while ensuring thdeasible solution is maintained. Both
heuristics may cause a new choice of room allonaficequired. There are approximately two
“Moves” made for each “Swap”.

The choice of parameter values is historical fropplization to the original course
timetabling problems. The ultimate values chosewufh experimentation proved highly
effective in obtaining best results for these peabldata sets, but required further application
to a wider range and type of data sets in ordemture these were not tuned to the specific



data sets used. As we shall see in the next sedtienresults obtained when applying the
technique to the new competition data sets aretatguy competitive to current results from
the other entrants. It was important to use theespanameter values for these data sets rather
than apply new values in order to obtain best tesul

5  Experimental Results

As with the competition submissions, the algorithdescribed here are stochastic,
meaning that different runs are generated withedifit random seeds. During construction of
a feasible solution, random weightings may be gi¥en equally ‘difficult to schedule’
examinations. Random choices of examinations, gsriand to a certain extent room
allocations allow a more diverse search of eacheatimeighbourhood. Statistics calculated
from multiple runs are therefore presented in orgeprovide information on the types of
solutions these algorithms are able to produceeimetpl. Firstly for EGD we performed 51
runs on each instance using a different seed ih ease and, for each run, calculated the soft
cost of the best solution found. From these, wen tidentified the worst, median, and best
solutions that were obtained in the 51 runs, togrettith the upper and lower quartiles. Note
that by using 51 runs here (instead of, say, 5@)ave able to obtain the median without the
need for interpolation. By using 51 runs rathenttize 10 or 11 of the competition we are also
able to give reasonable results for the quartiles.

Instance Best Q1 Median Q3 Worst
Exam_1 4633 4750 4799 4852 4889
Exam_2 405 405 425 430 441
Exam_3 9064 9214 9251 9388 9440
Exam_4 15663 15764 15821 15991 16365
Exam_5 3042 3062 3072 3104 3149
Exam_6 25880 25915 25935 26000 26080
Exam_7 4037 4091 4185 4257 4268
Exam_8 7461 7563 7599 7689 7827
Exam_9 1071 1071 1071 1076 1079
Exam_10 14374 14464 14552 14629 14668
Exam_11 29180 29257 29358 29594 29699
Exam_12 5693 5693 5699 5711 5751

Table 2 - Results using the EGD method

Table 2 provides a summary of the results achidwedhe EGD algorithm. The first
purpose of these results is to give an indicatibnthe variability between runs of the
algorithm. The next point to note is that feasipilivas gained on all of the data sets. Some of
the data sets took a little longer to achieve fakitsi during the construction phase than others,
but all achieved a feasible solution within one ménof construction. In general, the most
difficult solutions proved to b&xam 1, Exam 5 andExam 6, with the improvement getting
stuck in local optima more often than the others.eXpected, the larger data sets took more
computation time per solution generation and evaoatherefore less iteration time could be
spent on these within the imposed competition fiiné. Exam_2 was an interesting case, as
the evaluation function based on the soft condsdamposed gave a much smaller value than
with any of the others.

The “ITC-2007" block of results in Table 3a providéhe best values (highlighted in
bold) obtained using the submitted competitor'shitégues using 11 independent runs on each



instances (that is, using a different random semdtliose entries that used randomised
methods). The results in this block were obtaingdth® organisers under the competition
rules. The result format is a dash indicating timfeasible solution was achieved. Otherwise,
the best overall soft constraint violation scorprisvided.

(a) ITC-2007 (b) Post ITC-2007
(11 runs per instance) (51 runs per instance)

Solver | Muller Cogos Atsuta | De Smet Pillay Muller EGD

etal (ITc2007
Instance code)

Exam_1 4370 5905 8006 6670 12035 4370 4633

Exam_2 400 1008 3470 623 3074 385 405

Exam_3 10049 13862 18622 - 15917 9378 9064
Exam_4 18141 18674 22559 - 23582 15368 15663

Exam_5 2988 4139 4714 3847 6860 2988 3042
Exam_6 26950 27640 29155 27815 3225 26365 25880

Exam_7 4213 6683 10473 5420 17666 4138 4037

Exam_8 7861 10521 14317 - 16184 7516 7461

Exam_9 1047 1159 1737 1288 2055 1014 1071
Exam_10 16682 - 15085 14778 17724 14555 14374
Exam_11 34129 | 43888 - - 40535 31425 29180
Exam_12 5535 - 5264 - 6310 5357 5693

Table 3 - Combined Results, (a) The entries in thérét block are results for entrants as obtained in
the competition itself, (b)The second block contagmthe more recent results.

The winner, Tomas Muller, produced 10 of the bestilts from the top five competitors.
Cogos achieved 10 feasible solutions. Atsuta predul feasible solutions and recorded the
best result oitxam 12. De Smet achieved 7 feasible solutions and therbesrded score for
Exam 10. Pillay achieved 12 feasible solutions. Note thihough Cogos came second, he
only achieved 50% feasibility with the hidden dattsExam 9 to Exam 12, and had the
worst result forExam 11 compared to Pillay (fifth place) who achieved 10@2asibility and
had a better result than CogoskEwxam 11. This could suggest that Pillays technique is more
effective as a general solution, in terms of fedigitat least, than that employed by Cogos.

Given that Muller was the winner of the competitidiable 3b compares Mullers original
submission and the EGD technique on a larger numbems than the competition. Note that
the 51 runs for EGD make it incomparable with tbenpetition results as such. Also, we do
emphasise that this should not be taken to reffladty on the initial entrants. In particular the
EGD is produced after the competition and so hakdignificantly more development time.
Furthermore, the parameters within EGD were sefecte the basis of access to all 12
instances; in contrast, the competition entrardsndit have access to the hidden instances and
so might well be argued to be less suitable onethos

Under this comparison Muller and EGD both get & besh, and so it seems that EGD is
comparable to existing state of the art technigaad, from previous application to other data
sets and a different problem domain (course tiniigig)y can be considered as a generalised
technique to solving timetabling problems. It viikk interesting to run all techniques at some
future point with further hidden data sets, in aribeprovide a wider test for consistency in the
approaches outlined above.



6 Conclusion and Future Work

This paper has described the application of a thaspd approach to solving the
Examination Timetabling problem introduced as pafrtthe 2 International Timetabling
Competition. An adaptive heuristic is used to ggasibility during an initial construction
phase. Improvement is achieved through employména wariant of the Great Deluge
(Degraded Ceiling) algorithm. The approach atterbptexploit the inherent advantages with
this Extended Great Deluge technique in escapimg focal optima while also maintaining a
relatively simple set of neighbourhood moves. Tikiparticularly effective here as it reduces
the time required for an iterative search procae#iewing a balance to be achieved between
diversification and intensification within the selarstrategy. As has been shown, the approach
has been successful in achieving a general imprexmeim solution evaluation as compared to
currently published results for the examination efiabling problem, given a common
termination criterion.

It is stressed that the results presented herel#egned by examining a greater number
of runs that those used during the verificatiomystaf ITC2007. As detailed this was to allow
more detailed analysis of the technique. Althoubh, rules of the competition did not permit
the organisers to enter for sound academic reagomas felt here for the sake of fairness, the
competition time limit should be adhered to in rmg results. In future comparisons, it is
proposed various time limits will be used to allanalysis of the effectiveness of techniques
when more realistic times are available for thevimion of solutions.

In general, this research is part of a much walealysis of the technique in order to
determine whether further improvement can be aelielyy modification of the associated
parameters and variables used in the process, tiseduin Section 4, while retaining
generality for all data sets. It is intended toyidle some mechanism for self-adaptation of
these parameters based on characteristics of thesdts under consideration as part of this
goal. In addition the relationship between the tmwsion and improvement will be
investigated to establish rules between the trdiibetween the two phases. This would
further add to the capability of providing a genedgorithm which can ultimately be used for
both examination and course timetabling.
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