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Abstract A two phased approach incorporating the extended great deluge technique is detailed 
in relation to the Examination Timetabling Problem as described in the 2nd International 
Timetabling Competition (ITC2007). The approach proves to be both robust and general.  
Robust in the sense that it is capable of producing six of the best results published in literature 
so far on the benchmark datasets and general as the technique has produced in the recent past 
some of the best results on existing course timetabling benchmark datasets. The datasets used 
as part of this research, introduced during ITC2007, are described and discussed in detail. We 
present the results of our technique in relation to the competition results and provide a 
comparison between the outlined method and those of the competition entrants from the 
international arena, in order to highlight both characteristics of the technique on the datasets 
used.  



1 Introduction 

The automated timetabling of examinations associated with courses within universities is 
often a complex and time consuming task. From a practical perspective, the quality of the final 
solution is usually measured firstly in terms of how workable the solution is in terms of 
resource assignment e.g. availability of students, accessibility of rooms, ordering of 
examinations, etc. and secondly, on how well a number of institutional defined quality 
measures are satisfied e.g. how well student exams are spread out throughout the designated 
examination period [1]. From a research perspective, this measure of quality translates into the 
satisfaction of what are termed hard and soft constraints and is often achieved through an 
automatic scheduling process comprising of a two-stage methodology involving the 
construction and subsequent improvement of a timetabled solution. Construction involves 
achieving a feasible solution whereby no hard constraints are broken e.g. no students should be 
expected to take more than one examination at one time. Improvement minimises the violation 
of desirable constraints termed soft constraints e.g. a student having to sit two examinations in 
a row. The quality of the final solution is assessed by measuring the outcome after these phases 
i.e. the degree of satisfaction of hard and soft constraints.  Although the problem is similar 
across universities, various formulations of the problem have appeared within the academic 
literature over the past fifty years or so. Many search based techniques have been applied to 
various formulations of the problem and the associated datasets. For a detailed overview of 
these the reader is referred to [2].  

Recently, the 2nd International Timetabling Competition [3] had examination timetabling 
of one of its three tracks. This track introduced a formulation of the problem which 
incorporated and brought together a number of real world constraints [4]. This problem 
formulation adds significantly to previously used models within the research field as many 
more real world constraints were described and whose cost to overall solution quality were 
incorporated within the evaluation process. In addition, during the competition, twelve 
associated data sets were released to the research community. The problem studied here relates 
to that introduced formulation. Detailed information relating to this exam timetabling 
formulation, details of the other two tracks, and also overall competition rules can be found at 
the competition website (www.cs.qub.ac.uk/itc2007). Five finalists from the original 
submissions were chosen by the competition organisers based on reported results. Importantly, 
a limit was placed on the computation time allowed for competitor’s technique to produce a 
solution. Competition organisers ran the finalists submitted techniques on a number of 
previously non-released datasets (‘Hidden’), as well as those datasets released as part of the 
competition (‘Early and Late’). Subsequently an ordering was calculated to decide the overall 
winner based on performance on all the datasets. This can be viewed at 
http://www.cs.qub.ac.uk/itc2007/winner/bestexamtrack.htm.  

Here, the organisers of the examination track report the results achieved through the use 
of an two phase approach incorporating an adaptive construction phase followed by the 
employment of an extended great deluge technique. The purpose of running the organisers’ 
solvers on the instances and releasing these results is twofold: On one hand, the organisers had 
to ensure that a feasible solution could be reached for all instances, thus the results are a proof 
of existence of a feasible solution. On the other hand, from the optimisation point of view, 
these results form what can be considered a baseline (upper-bound) that can be exploited in 
future comparisons. 

The remainder of this paper is as follows; Section 2 provides the necessary information 
on the formulation of the examination timetabling problem as introduced as part of ITC2007; 
Section 3 provides a background to the technique reported as part of this work; Section 4 
describes the approaches taken by the five finalists who took part in the competition. It should 
be noted that all background material described is related to these finalists. This will be 
updated as further researchers trial their techniques on the formulation and datasets; Section 5 
describes the detailed implementation of the extended great deluge along with the results 



obtained. Finally the paper is concluded making comment on the effectiveness of the technique 
studied and potential future research areas. 

2 The Examination Timetabling Model 

 The formulation of the Examination Timetabling Problem introduced as part of ITC2007 
is described as ‘post-enrolment’, as the individual examinations each student is taking are 
known before the timetabling process. This is an important distinction within the area of 
University Timetabling as the closely related problem, that of course timetabling, can be 
considered as either post-enrolment or curriculum based.  Conflicts between course events can 
be determined either by common students in the post-enrolment model, or by a hierarchical 
modular structure within the curriculum based model. Both of these formulations are described 
as part of ITC2007 [3]. The timetabling process associated with examination timetabling 
involves placing exams into a number of pre-defined periods within a defined examination 
session while satisfying a number of hard and soft constraints. A feasible solution is one in 
which all hard constraints are satisfied. As described in the introduction, the quality of the 
solution is measured in terms of soft constraints satisfaction. The characteristics which are 
used to define an individual problem instance include the examinations, students and 
enrolments, resources such as periods and rooms, hard constraints applied to resources, and 
general institutional soft constraints. Table 1 lists the main characteristics for each of the 
examination competition data sets. 
 

Instance Conflict 
Density (%) Exams Students Periods Rooms Period HC Room HC 

Exam_1 5.05 607 7891 54 7 12 0 

Exam_2 1.17 870 12743 40 49 12 2 

Exam_3 2.62 934 16439 36 48 170 15 

Exam_4 15.0 273 5045 21 1 40 0 

Exam_5 0.87 1018 9253 42 3 27 0 

Exam_6 6.16 242 7909 16 8 23 0 

Exam_7 1.93 1096 14676 80 15 28 0 

Exam_8 4.55 598 7718 80 8 20 1 

Exam_9 7.84 169 655 25 3 10 0 

Exam_10 4.97 214 1577 32 48 58 0 

Exam_11 2.62 934 16439 26 40 170 15 

Exam_12 18.45 78 1653 12 50 9 7 

 
Table 1 – Problem Benchmark Characteristics 

 
The conflict density is a measurement of the number of conflicts examinations i.e. how 

tightly the problem is constrained in terms of student enrolments. The initial observation is that 
the conflict density for most of the data sets is quite low (for the most part around 5% or 6%). 
This is reflective of the amount of choice allowed to students within the modern curriculum, 
with a large variation in course or subject choices between each student. The measurable 
problem ‘size’ (number of exams and students) varies to a certain extent across the set of 
problems, the largest of which could be argued as either exam_3/exam_11 or exam_7 and the 
smallest as exam_9 or exam_12. The periods and rooms available will also have a measurable 
effect on the difficulty of achieving feasibility and/or a quality solution. The instances exam_3 
and exam_11 are practically the same data sets, although exam_11 has a much smaller set of 
period resources available with which to timetable. The instances used reflect the ‘real-world’ 
nature of the data sets which are encountered in actual institutions. In the case of exam_3 and 



exam_11 a common situation arises where the examination session must be shortened to 
minimize space and staff costs, although all existing constraints must still be adhered to as 
much as possible. 

Information on the structure, length and number of individual periods is also made 
available. An examination session is made of a number of periods over a specified length of 
time. This can range from one to two weeks in relation to the data provided. Period lengths, 
within which a set of examinations or varying duration must be placed, range from one to three 
hours. A set of rooms and associated capacities are provided.   

A feasible timetable is one in which all examinations have been assigned to a period and 
room so that the following hard constraints are satisfied: 

• No student sits more than one examination at the same time;  
• The capacity of individual rooms is not exceeded at any time throughout the 
examination session;  
• Period duration restrictions are not violated; 
• Period related hard constraints e.g. Exam_A must be placed after Exam_B;  
• Room related hard constraints e.g. Exam_A must use Room 101. 

 
A candidate timetable is penalised for each occurrence of the following soft constraints:  

• Student has to sit two exams in a row (adjacent on same day); 
• Student has to sit two exams in a day; 
• Student does not have a specified spread (in terms of periods) of examinations; 
• Mixed durations of examinations occur within individual periods; 
• Examinations of large class sizes appear later in the examination session; 
• Period related soft constraints;  
• Room related soft constraints; 

  
 As can be seen, these constraints can effectively be split into two groups; those which are 
resource specific and those which can have a global setting. Resource specific constraints can 
be set for each period and each room and allows ‘control’ of how resources can be used in 
constructing a solution. Global Setting constraints can be set relative to each other. Within the 
described model, institutions weight these soft constraints differently relative to one another in 
an attempt to produce a solution which is appropriate for their particular needs. This is defined 
as the Institutional Model Index. This is a relative weighting of the soft constraints which 
effectively provides a quality measure of the solution to be built. The Period and Room Hard 
Constraints will also add to the measurable difficulty of each problem set, although it can be 
seen that Room Hard Constraints are rarely enforced, and when used, to a limited extent. The 
amount and type of Period Hard Constraints are reasonably similar across the data sets. 
However, given the size and amount of exams and enrolments in some of the problem 
instances compared to resources available, some could be considered more difficult in this 
regard and possible more difficult to schedule, both in terms of achieving feasibility and in 
obtaining a competitive evaluation score. 

3 Competition Entrants and Placings 

A summary of the competition results is presented in Table 3a in Section 5. However the 
overall placings are as follows. 

Tomáš Müller from Purdue University was the competition winner, having achieved ten 
out of twelve of the best scores. The algorithm described used a three phased incremental 
approach [5]. During construction an Iterative Forward Search algorithm was employed in 
finding an initial feasible solution. During each iteration of the algorithm an examination is 
chosen and assigned to a room and time. If the assignment causes a hard constraint to be 
broken then the existing assignment which is causing the problem is unassigned. The process 
ends when all examinations are assigned a room and time. The algorithm employs both 



ordering and assignment heuristics in order to speed up the process. In addition Conflict-based 
Statistics are used during the iterations in an attempt to avoid repetitive assignments which 
have previously proven to be detrimental to the developing solution. During the second phase 
of the algorithm, hill climbing is used to find the local optimal. A neighbourhood is chosen 
with equal probability from a determined list relating to swapping/changing periods and rooms 
for randomly chosen examinations. This phase is terminated after a specified number of 
iterations during which no improvement is experienced. The Great Deluge Algorithm is then 
engaged in an attempt to improve the solution through widening the search.  

Christos Cogos from University of Patras, Greece, was placed second in the competition. 
His method utilised a GRASP (Greedy Randomized Adaptive Search Procedure) based process 
combined with other meta-heuristic techniques [6]. The construction phase begins by building 
five lists of examinations based on various criteria. A tournament based algorithm is used in 
selecting which exam should be placed in the timetable until all lists are empty. This is carried 
out iteratively using different starting points in relation to initial time periods. A backtracking 
strategy, employing a tabu list is employed as required.  A Simulated annealing procedure is 
used in the second phase. In a third phase, integer programming using branch and bound is 
used to scrutinize and analyse individual periods with the purpose of room changes. Periods 
are chosen based on an ordering based on overall satisfaction (CSP) of particular soft 
constraints.  

Atusta et al. from Japan used a constraint satisfaction problem solver incorporating tabu 
search and iterated local search [7,17]. By specifying initial weights, the solver distinguishes 
between soft and hard constraints and their weights are dynamically controlled during 
computation to improve performance. The instances were formulated using linear 0-1 
inequalities, quadratic 0-1 inequalities, and all-different constraints. The technique proved to 
be very effective across all three tracks of the competition. 
 Geoffrey De Smet from Belgium incorporated local search techniques within the Drools 
solver [8]. Drools is an Open-Source Business Rule Management System (BRMS) 
(http://www.jboss.org/drools/). The developers have provided an integrated environment 
which allows problem specific semantics to be linked with Domain Specific Languages, 
graphical editing tools, web based tools and developer productivity tools. The approach 
described develops the Drools-solver incorporating the Drools rule engine and a local search 
mechanism. Initially each constraint is written in the Drools Rule Language. Examinations are 
subsequently ordered on the basis of size and duration. Examinations are assigned to the 'best' 
position within the timetable chosen by a placing heuristic. This is followed by a local search 
mechanism which uses three neighbourhoods related to moving and swapping time periods and 
rooms. The searching continues based on a heuristic which incorporates a tabu based approach. 
 Nelishia Pillay from the University of KwaZulu-Natal, South Africa came fifth. Inspired 
by a biological approach, the algorithm mimics cell behaviour [9]. After examinations are 
ordered heuristically using saturation degree, the examinations are sequentially allocated to the 
available “cells” within the timetable structure i.e. available times. If more than one time 
allocation is possible the choice is based on minimum overall solution penalty. If there is a 
choice once again, allocation is made on a random basis. Rooms are chosen on a best fit 
heuristic with respect to rooms. Eventually, no cells remain where an examination on the list 
can be placed without breaking a hard constraint. When this is the case, the already placed 
examination is moved to a cell which allows minimisation of the overall soft constraint 
penalty. This is described as cell division. Once this is not possible without the subsequent 
breaking of hard constraints, a process called cell interaction takes place. This involves a 
swapping process with the purpose of removing the hard constraint. This process continues 
until a feasible solution has been reached. The authors liken this to the development of a fully 
functional organism. Once a feasible solution is reached, improvement is achieved through a 
process known as cell migration. This involves heuristically swapping the contents of cells that 
have equal durations. 

 



4 The EGD Approach 

The EGD approach has a construction phase followed by improvement. Construction is 
implemented using the existing adaptive ordering heuristic from [10]; it uses a weighted order 
list of the examinations to be scheduled based on individual soft penalties and ‘difficulty to 
schedule’ penalties. Weightings are increased for each examination based on localised 
penalties encountered as each are placed, with unscheduled examinations given a much larger 
increase, based on a formulation involving the maximum general penalty encountered. This 
latter is an extension to [10] and has been seen in experimentation to achieve improved 
construction solutions to the standard adaptive construction technique. Once feasibility is 
achieved, the heuristic continues with the aim of providing an improved solution. It has been 
found that it is preferable that the construction phase should continue until approximately 9% 
of the entire process has completed, at which point the improvement phase begins [11]. 

Figure 1: Extended Great Deluge Algorithm 

Set the initial solution s using a construction heu ristic; 

Calculate initial cost function f(s) 

Set Initial Boundary Level B 0 = f(s) 

Set initial decay Rate •B based on Cooling Paramete r 

While stopping criteria not met do 

   Apply neighbourhood Heuristic S* on S 

   Calculate f(s*) 

   If f(s*) <= f(s) or (f(s*) <= B Then 

   Accept s = s* 

   Lower Boundary B = B – •B 

   If no improvement in given time T Then 

  Reset Boundary Level B 0 = f(s) 

  Set new decay rate •B based on Secondary 

          Cooling Parameter 

 
 

Improvement is carried out through implementation of an extended version of the Great 
Deluge Algorithm. Pseudo code for the algorithm for the Extended Great Deluge is presented 
in Figure 1. The Great Deluge (also known as Degraded Ceiling) was introduced by Dueck 
[12] as a faster alternative to Simulated Annealing. It uses a boundary condition rather than a 
probability measure with which to accept worse solutions i.e. if the penalty function is below a 
certain value a move in the selected neighbourhood will be automatically accepted, but if it is 
above it will be rejected The boundary is initially set slightly higher than the initial solution 
cost, and reduced gradually through the improvement process. This has already been applied 
successfully to construction and improvement techniques in timetabling [13,14]. In addition, 
[15] describes a modification of the Great Deluge algorithm for Multi-criteria decision making. 
The extended technique employs a reheat mechanism with guided parameters to avoid local 
optimum and attempt to provide a much wider search of the solution neighbourhood [15]. The 
aim of this approach is to both improve the speed at which an optimal solution can be found 



and at the same time utilise the benefits of this technique in avoiding the trap of local optima. 
Once again, in order to reduce the amount of time taken, relatively simple neighbourhood 
moves are employed. In further explanation of the difference, generally, the Great Deluge will 
terminate when a lack of improvement has been observed for a specified amount of time, as 
the best solution using a particular neighbourhood has been reached. Rather than terminating, 
the extended approach employs reheating in order to relax the boundary condition to allow 
worse moves to be applied to the current solution. Cooling continues and the boundary is 
reduced at a rate according to the remaining length of the run.  

 Two basic neighbourhoods are employed within local search, i.e. random moving and 
swapping individual examinations, while maintaining feasibility and attempting to continually 
improve the solution or keep the evaluation within a given boundary limit. The application of 
these simple heuristics allows the algorithm to explore more neighbourhoods efficiently in a 
limited time environment (such as with a time-limited competition), as computation time is not 
generally spent on making specific choices for moves or swaps. A full description of the 
algorithm along with the results achieved in relation to a set of course timetabling problems is 
given in [16]. 

The parameters used within the Extended Great Deluge determine the behaviour of the 
method during improvement, and are listed as follows: 

 
- Initial Boundary 
- Decay Rate 
- ‘Wait for Non-Improvement’ parameter 
- Post-reheat boundary 
- Post-reheat decay rate 
- Probability of heuristics employed 
 
The primary parameters used, initial boundary and initial decay rate, dictate how fast the 

boundary is reduced and ultimately the narrowing condition for accepting worse moves. The 
approach outlined in this paper uses a Decay Rate proportional to 50% of the entire run. Based 
on initial iteration timings and the remaining time to produce a final solution within the time 
limit, the total number of iterations allowed can be calculated in order to determine the 
appropriate proportions for decay rate. This faster decay will force the algorithm to attempt to 
reach the optimal solution by, at the very most, half-way through the process. Generally, a 
continuous lack of improvement will occur before this is reached, at which time the re-heat 
mechanism is activated. 

 The ‘wait’ parameter dictates when to activate the re-heat mechanism due to lack of 
improvement, specified in terms of percentage or number of total moves in the process. 
Through experimentation with a number of data set instances a general value for this parameter 
was established, roughly 5% of the complete run. After reheat the Boundary ceiling is once 
again set to be greater than the current best evaluation by a similar percentage to that applied in 
the initial boundary setting. The subsequent decay is set to a ‘quicker’ rate than with the initial 
decay, in order to increase the speed of the exploration of neighbouring solutions for 
improvement. The general setting chosen for the algorithm outlined is set to 25% of the 
remaining time, with the improvement wait time remaining unchanged. All parameters were 
established as the most effective as a result of experimentation. The two heuristics used are 
“Move” (random examination is moved to a random timeslot) and “Swap” (two random 
examinations swap timeslots), while ensuring that a feasible solution is maintained. Both 
heuristics may cause a new choice of room allocation if required. There are approximately two 
“Moves” made for each “Swap”. 

The choice of parameter values is historical from application to the original course 
timetabling problems. The ultimate values chosen through experimentation proved highly 
effective in obtaining best results for these problem data sets, but required further application 
to a wider range and type of data sets in order to ensure these were not tuned to the specific 



data sets used. As we shall see in the next section, the results obtained when applying the 
technique to the new competition data sets are also highly competitive to current results from 
the other entrants. It was important to use the same parameter values for these data sets rather 
than apply new values in order to obtain best results. 

5 Experimental Results 

As with the competition submissions, the algorithms described here are stochastic, 
meaning that different runs are generated with different random seeds. During construction of 
a feasible solution, random weightings may be given for equally ‘difficult to schedule’ 
examinations. Random choices of examinations, periods and to a certain extent room 
allocations allow a more diverse search of each current neighbourhood. Statistics calculated 
from multiple runs are therefore presented in order to provide information on the types of 
solutions these algorithms are able to produce in general. Firstly for EGD we performed 51 
runs on each instance using a different seed in each case and, for each run, calculated the soft 
cost of the best solution found. From these, we then identified the worst, median, and best 
solutions that were obtained in the 51 runs, together with the upper and lower quartiles. Note 
that by using 51 runs here (instead of, say, 50), we are able to obtain the median without the 
need for interpolation. By using 51 runs rather than the 10 or 11 of the competition we are also 
able to give reasonable results for the quartiles.  

 
Instance Best Q1 Median Q3 Worst 

Exam_1 4633 4750 4799 4852 4889 

Exam_2 405 405 425 430 441 

Exam_3 9064 9214 9251 9388 9440 

Exam_4 15663 15764 15821 15991 16365 

Exam_5 3042 3062 3072 3104 3149 

Exam_6 25880 25915 25935 26000 26080 

Exam_7 4037 4091 4185 4257 4268 

Exam_8 7461 7563 7599 7689 7827 

Exam_9 1071 1071 1071 1076 1079 

Exam_10 14374 14464 14552 14629 14668 

Exam_11 29180 29257 29358 29594 29699 

Exam_12 5693 5693 5699 5711 5751 

 
Table 2 - Results using the EGD method 

 
Table 2 provides a summary of the results achieved by the EGD algorithm. The first 

purpose of these results is to give an indication of the variability between runs of the 
algorithm. The next point to note is that feasibility was gained on all of the data sets. Some of 
the data sets took a little longer to achieve feasibility during the construction phase than others, 
but all achieved a feasible solution within one minute of construction. In general, the most 
difficult solutions proved to be Exam_1, Exam_5 and Exam_6, with the improvement getting 
stuck in local optima more often than the others. As expected, the larger data sets took more 
computation time per solution generation and evaluation, therefore less iteration time could be 
spent on these within the imposed competition time limit. Exam_2 was an interesting case, as 
the evaluation function based on the soft constraints imposed gave a much smaller value than 
with any of the others.  

The “ITC-2007” block of results in Table 3a provides the best values (highlighted in 
bold) obtained using the submitted competitor’s techniques using 11 independent runs on each 



instances (that is, using a different random seed for those entries that used randomised 
methods). The results in this block were obtained by the organisers under the competition 
rules. The result format is a dash indicating that no feasible solution was achieved. Otherwise, 
the best overall soft constraint violation score is provided.  

 
 

 (a) ITC-2007  
(11 runs per instance) 

 (b) Post ITC-2007 
(51 runs per instance) 

Solver 
 

Instance 

Muller Cogos Atsuta 
et al 

De Smet Pillay  Muller 
(ITC2007 

code) 

EGD 

Exam_1 4370 5905 8006 6670 12035  4370 4633 

Exam_2 400 1008 3470 623 3074  385 405 

Exam_3 10049 13862 18622 - 15917  9378 9064 

Exam_4 18141 18674 22559 - 23582  15368 15663 

Exam_5 2988 4139 4714 3847 6860  2988 3042 

Exam_6 26950 27640 29155 27815 32250  26365 25880 

Exam_7 4213 6683 10473 5420 17666  4138 4037 

Exam_8 7861 10521 14317 - 16184  7516 7461 

Exam_9 1047 1159 1737 1288 2055  1014 1071 

Exam_10 16682 - 15085 14778 17724  14555 14374 

Exam_11 34129 43888 - - 40535  31425 29180 

Exam_12 5535 - 5264 - 6310  5357 5693 

 
Table 3 -  Combined Results, (a) The entries in the first block are results for entrants as obtained in 

the competition itself, (b)The second block contains the more recent results. 
 

The winner, Tomas Muller, produced 10 of the best results from the top five competitors. 
Cogos achieved 10 feasible solutions. Atsuta produced 11 feasible solutions and recorded the 
best result on Exam_12. De Smet achieved 7 feasible solutions and the best recorded score for 
Exam_10. Pillay achieved 12 feasible solutions. Note that although Cogos came second, he 
only achieved 50% feasibility with the hidden data sets Exam_9 to Exam_12, and had the 
worst result for Exam_11 compared to Pillay (fifth place) who achieved 100% feasibility and 
had a better result than Cogos on Exam_11. This could suggest that Pillays technique is more 
effective as a general solution, in terms of feasibility at least, than that employed by Cogos. 

Given that Muller was the winner of the competition, Table 3b compares Mullers original 
submission and the EGD technique on a larger number of runs than the competition. Note that 
the 51 runs for EGD make it incomparable with the competition results as such. Also, we do 
emphasise that this should not be taken to reflect badly on the initial entrants. In particular the 
EGD is produced after the competition and so has had significantly more development time. 
Furthermore, the parameters within EGD were selected on the basis of access to all 12 
instances; in contrast, the competition entrants did not have access to the hidden instances and 
so might well be argued to be less suitable on those. 

Under this comparison Muller and EGD both get 6 best each, and so it seems that EGD is 
comparable to existing state of the art techniques, and from previous application to other data 
sets and a different problem domain (course timetabling), can be considered as a generalised 
technique to solving timetabling problems. It will be interesting to run all techniques at some 
future point with further hidden data sets, in order to provide a wider test for consistency in the 
approaches outlined above. 

 
 



 

6 Conclusion and Future Work 

This paper has described the application of a two-phased approach to solving the 
Examination Timetabling problem introduced as part of the 2nd International Timetabling 
Competition. An adaptive heuristic is used to gain feasibility during an initial construction 
phase. Improvement is achieved through employment of a variant of the Great Deluge 
(Degraded Ceiling) algorithm. The approach attempts to exploit the inherent advantages with 
this Extended Great Deluge technique in escaping from local optima while also maintaining a 
relatively simple set of neighbourhood moves. This is particularly effective here as it reduces 
the time required for an iterative search process, allowing a balance to be achieved between 
diversification and intensification within the search strategy. As has been shown, the approach 
has been successful in achieving a general improvement in solution evaluation as compared to 
currently published results for the examination timetabling problem, given a common 
termination criterion. 

It is stressed that the results presented here are obtained by examining a greater number 
of runs that those used during the verification stage of ITC2007.  As detailed this was to allow 
more detailed analysis of the technique. Although, the rules of the competition did not permit 
the organisers to enter for sound academic reasons, it was felt here for the sake of fairness, the 
competition time limit should be adhered to in reporting results.  In future comparisons, it is 
proposed various time limits will be used to allow analysis of the effectiveness of techniques 
when more realistic times are available for the provision of solutions. 
 In general, this research is part of a much wider analysis of the technique in order to 
determine whether further improvement can be achieved by modification of the associated 
parameters and variables used in the process, as outlined in Section 4, while retaining 
generality for all data sets. It is intended to provide some mechanism for self-adaptation of 
these parameters based on characteristics of the data sets under consideration as part of this 
goal. In addition the relationship between the construction and improvement will be 
investigated to establish rules between the trade-off between the two phases.  This would 
further add to the capability of providing a general algorithm which can ultimately be used for 
both examination and course timetabling. 
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