
Working paper

Dynamic Data Structures for Taskgraph Scheduling
Policies with Applications in OpenCL Accelerators

Jakub Mareček · Andrew J. Parkes ·
Edmund K. Burke · Robert Elliot ·
Hedley Francis · Anton Lokhmotov

Abstract OpenCL is an emerging open framework for parallel programming in het-

erogenous systems. Devices compliant with OpenCL need to schedule the execution

of submitted jobs with no (or only very imprecise) estimates of execution times, but

respecting dependencies among them, which are given in the form of directed acyclic

graph. This problem is known as stochastic taskgraph scheduling, stochastic scheduling

with precedencies, or stochastic scheduling with data dependencies.

We study the complexity of implementing static out-of-order policies for taksgraph

scheduling, which approach optimality in the long run, under certain assumptions. We

present a simple data structure allowing for the “what next” query of such scheduling

policies to be answered in time O(1), while vertices can be added in time O(1).

1 Introduction

In stochastic taskgraph scheduling, policies which run jobs with the largest sum of

expected processing times along a path in the dependency graph, out of those available

for processing, first perform particularly well. Papadimitriou and Tsitsiklis [20] have

shown that, under certain restrictions, they are asymptotically optimal. This is not

particularly surprising, as they correspond to the well-known critical path heuristics

[12] in the off-line case. An important question remains, though: how efficiently can

one implement such policies?

The implementation of “longest-path” policies requires a dynamic data structure

for maintaining a criterion related to paths in a vertex-weighted directed acyclic graph

(DAG), subject to the insertion of a sink with adjacent edges and deletion of a source

that maximises the criterion, together with adjacent edges. Let us assume edge u→ v

represents the requirement that job u finishes before job v can start. This criterion

Jakub Mareček is the contact author. E-mail: jakub@marecek.cz.

Jakub Mareček · Andrew J. Parkes · Edmund K. Burke
School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, UK
E-mail: { jxm, ajp, ekb }@cs.nott.ac.uk

Robert Elliot · Hedley Francis · Anton Lokhmotov
ARM Ltd., 110 Fulbourn Road, Cambridge CB1 9NJ, UK
E-mail: { Robert.Elliot, Hedley.Francis, Anton.Lokhmotov } @arm.com

depth 0 (ready)

depth 1

depth 2

a

b c

a is at

level 1

G

a

b c

a is at

level 2

G.merge(H,C)

d

e

f

d is at

level 1

b c d

f e

c, d are at

level 1

G.popVertex()

Fig. 1 An illustration of the effects of the required operations: Directed graph G =
({a, b, c}, {a → b, a → c}) is merged with directed graph H = ({d, e, f}, {d → e}) (shaded)
with cross edges C = {a→ e, c→ f} (dashed). Vertex a has the highest level of 2. When a is
removed, three connected components remain, with both vertices c and d at level 1.

known as “level” is typically the length of the longest out-going path, i.e. the longest

path in the subgraph reachable from the given source, possibly weighted by weights

on the vertices. This should be contrasted with the “depth”, which is the length of

the longest in-coming path in any vertex. (See Figure 1 for an example.) The required

operations are:

– popVertex: delete the vertex with no in-going edges that maximises the criterion.

– merge(H,C): add (possibly smaller) DAG H to the current (possibly larger) DAG

G. There will be no edges from H to G, but there are |C| “cross” edges from G to

H passed separately as C.

We also study the following special cases of the two operations:

– “What next” query, picking the (source) vertex with no in-going edges, which max-

imises one of the criteria mentioned above.

– Deletion of a (source) vertex with no in-going edges, together with all adjacent

out-going edges.

– Insertion of a (sink) vertex and a number of in-going edges.

As far as we know, no dynamic data structure supporting even the special cases of the

two operations efficiently has been studied previously. There are, however, dynamic

data structures for maintaining topological order in DAGs [10] subject to edge inser-

tion and deletion, dynamic data structures for maintaining the length of the shortest or

longest in-going path in a DAG [11] subject to edge insertion and deletion, and numer-

ous data structures for maintaining related information in undirected trees subject to a

wide range of operations [2,8,26]. In Section 3, we present the data structure, together

with an analysis in the input and output model of Ramaling and Reps [24], summarised

in Table 1. First, however, we introduce the motivating problem in the Section 2, with

the related work on taskgraph scheduling policies summarised in Subsection 2.4.

Table 1 Data structures for out-of-order static scheduling policies and the corresponding
upper bounds on the complexity of key operations: worst case analysis of a trivial use of linked
lists compared to the input and output model analysis [24] of the proposed data structure.
Note n is the number of vertices, |δ| is the number of vertices on the affected longest paths, and
||δ|| is the number of vertices in the neighbourhoods of the vertices along the affected longest
paths, in all three cases in the resulting graph, and Q(n) is the complexity of insertion and
extraction of an element from a priority queue with n elements, which is

√
log logn (amortised)

for melding priority queues [17].

Operation Linked lists This paper

merge(H,C) O(|C|n) O(|C| log |C|+ |δ|Q(|δ|) + ||δ||)
popVertex O(n2) O(|δ|Q(|δ|) + ||δ||)
“What next” query O(n2) O(1)
Sink insertion O(1) O(1)
Edge-to-sink insertion O(n) O(|δ|Q(|δ|) + ||δ||)
Source deletion O(n) O(|δ|Q(|δ|) + ||δ||)

2 The Motivating Problem

OpenCL is being developed by AMD, Apple, ARM, Intel, Motorola, Nokia, NVidia,

Qualcomm, Samsung, Sony, Sun, Texas Instruments, and a number of others, as an

open, royalty-free standard for parallel programming in heterogenous systems. The

OpenCL specification envisions the bulk of demanding computations being handled by

an OpenCL accelerator, rather than the central processing unit (CPU). The OpenCL

accelerator maintains a “system queue”, which describes what jobs are to be executed

and what are the acyclic dependencies among them. This work load comes from a

number application, but only indirectly. Each application can have multiple pieces of

OpenCL-accelerated code, or “kernels”, and a number of “local queues” each. Each

“kernel” can be executed multiple times and we denote each execution as a “job”.

(This is important, as one may expect multiple execution of the same kernel to have

similar properties, including run-time.) Jobs are first submitted to the “local queue”,

where the application can specify further acyclic dependencies among the jobs in the

queue, as well as dependencies on the jobs in the system queue. At the point when

a “local queue” is “flushed”, the scheduler takes over the control. We assume that at

most one “kernel” can be run on the OpenCL accelerator at any point in time, which

is realistic in embedded applications. If the scheduling was sequential and in-order,

jobs in a local queue could be sorted topologically after its flushing, and dependencies

between jobs could be disregarded in the “system queue”. When the scheduler requires

parallel or out-of-order execution, however, acyclic dependencies between jobs need to

be stored and checked, before a job is run, or maintained otherwise. Considering that

the accelerators are massively parallel and out-of-order execution may be required to

accommodate latency constraints, the latter is the case. Notice that, unlike in games

consoles where the application and hardware specification is known [3], one cannot

easily pre-compute a schedule of an unknown workload. Note that thousands or millions

of jobs may well need to be processed per second, and the overhead due to the scheduler

needs to be kept to a minimum, especially in battery-powered applications. One, hence,

needs a fast implementation of a policy for stochastic task-graph scheduling.

2.1 The Problem

In stochastic task-graph scheduling, we assume that there exists an unknown vertex-

weighted directed acyclic graph, “taskgraph”, with countably many nodes. Vertices of

the taskgraph correspond to jobs and there is an edge between vertices u, v, if and only

if job v must be run only after completion of job u. The vertex weights in the taskgraph

correspond to run-times of the jobs. Jobs (vertices) are revealed in batches, together

with some estimates of their run-times. Jobs, which do not have any dependencies, are

called “available”. There are also m identical machines, each of which can process any

of the available jobs.

A policy is a rule for deciding, which of of one of the available jobs is to be run on

a machine. In particular, we are interested in the families of:

– non-delay policies, where a job is executed, whenever there are jobs available and

there is capacity to process at least one of them

– non-anticipative policies, where no assumptions are made about jobs arriving in

the future

– non-preemptive policies, where a job is run until completion, whenever it is run.

– preemptive policies with preemption cost cp, where a job can be stopped at any

point and resumed after a preemption routine, whose runtime is cp.

In practice, there are considerable preemption costs in preemptive policies. This pre-

emption routine needs to save a great number of registers and may increase the number

of cache misses, which may be comparable to running the average job, and hence make

preemptive policies with realistic preemption costs very close to non-preemptive poli-

cies.

In the long-run horizon, we study the throughput and (discounted) weighted makespan

of policies. More formally, we focus on:

– the weighted throughput of the system, given by policy π:

J(π) = lim sup
t→∞

1

t

∑
q∈Q

w(q)E[aπq (t)]

– the α-discounted weighted makespan of the system, given by policy π:

K(π) =
∑
q∈Q

∞∑
i=1

w(q)E[e−αCi(q)]

where aq is the number of jobs from queue q completed by time t, and Ci(q) is the

completion time of ith job in queue q, both of which are well-defined random variables,

and 0 < α ≤ 1 is the discount rate.

Given an objective function f , input σ, and the optimum of f on σ, OPTf (σ), the

asymptotic approximation (performance, competitive) ratio of policy π of is:

R∞f (π) = lim sup
n→∞

{
πf (σ)

OPTf (σ)
| OPTf (σ) = n

}
.

Within a family of policies P , policies with approximation ratio:

R∞f = inf
π∈P

R∞f (π).

are asymptotically optimal.

2.2 The Complexity

The problem of scheduling the stochastic OpenCL Task System and its precisely re-

vealed deterministic snapshot, called the Precisely Revealed OpenCL Task System,

has been formalised and studied in another paper by the authors [16]. When one for-

malises the problems, it is easy to see that the problem of deciding the non-preemptive

schedulability of a Precisely Revealed OpenCL Task System within a finite time hori-

zon T is NP-Hard. Indeed, non-preemptive schedulability of jobs with precedencies on

two or more machines within a finite time horizon has been on Karp’s original list

of NP-Complete problems [9]. Perhaps more interestingly, deciding if there is a non-

preemptive policy resulting in priority-weighted throughput larger than k for a (For-

getful) OpenCL Task System in an OpenCL Acclerator is EXPTIME-Hard, if there is

a fixed assignment of queues to cores. For closed queuing systems (Forgetful OpenCL

Task System), one can use the reduction to NetworkOfQueues of Papadimitriou

and Tsitsiklis [19,21]. For open queuing systems (OpenCL Task System), one needs

to prove a similar result for a variant of NetworkOfQueues. The problem is hence

hard, independently of any unproven conjectures, such as P 6= NP . We can show,

however, that there are asymptotically optimal policies, under certain assumptions.

2.3 The Stability

Let us us consider the limits of stability of a closely related system. We define the

system to be in a “transient state” (“choked”), if the number of jobs waiting in any

queue goes to the large limit in the long run. We define the system to be “stable” if

for all queues, there is a finite bound on the expected interval between two times when

the number of work-groups waiting to be processed is zero. It is clear that the stability

depends on the arrival rates of jobs, their processing times, and dependencies between

work-groups.

In particular, we are interested in the effects of dependencies between jobs. We

assume that job j depends on any enqueued jobs with probability p, independently of

any other dependencies. λ∗ is the best possible arrival rate, that is the interval between

the arrival of two jobs. Then:

Theorem 1 (Hajek [27]) limp→0 λ
∗p = e−1

Let us now study the n −m work-groups waiting to be processed, out of n work-

groups seen so far. G[m,n] is the subgraph of the taskgraph induced by vertices {m,m+

1, . . . , n}. We denote dmn the length of longest path inG[m,n]. Further, βn = E[d1n]/n.

Then:

Theorem 2 (Tsitsiklis et al. [27]) The limit limn→∞(dmn/n) exists almost surely.

Let us use β∗ to denote the limit for any m where it exists. If λ < 1/β∗, the system is

stable.

The results below are not conditional on the system being in a stable state, but

draw a distinct inspiration from the dependency of the performance on the length of

the longest path in the data dependency graph.

2.4 A Policy and Conditions of its Asymptotic Optimality

Let us now consider the non-delay non-preemptive policy scheduling the available job

that corresponds to the root in the taskgraph maximising the numbers of jobs along

the longest path in the subgraphs reachable from the root, or “level”, whenever there

are available jobs and a core becomes available. Let us assume that:

– there are jobs with independent identically distributed processing times, drawn

from a common binomial or Poisson distribution

– data dependency graph G is a forest of in-trees, and the non-directed counterpart

of the taskgraph is hence acyclic.

When we denote these assumptions by an asteriks (*), it has been shown:

Theorem 3 (Papadimitriou and Tsitsiklis [20]) Processing the job with the high-

est level (“largest sum of expected processing times along a path in the dependency

graph”) first, as soon as any machine is available, is asymptotically optimal with re-

spect to weighted throughput, under certain conditions (*), among non-anticipative non-

delay non-preemptive policies and non-anticipative non-delay preemptive policies with

zero cost of preemption.

This means that the makespan achieved by the “largest sum of expected processing

times along a path in the dependency graph”-first policy is no larger than the optimal

makespan by a factor that goes to one in the large limit of the number of jobs. The proof

is based on an exchange argument, due initially to Papadimitriou and Tsitsiklis [20]

and extended by Liu and Sanlaville [14,15,15]. Similar techniques had appeared in the

proofs of Pinedo and Weiss [22] and Chandy and Reynolds and Bruno [4], which were

all restricted to two identical processors. Notice that if there were multiple processors

running different jobs and arbitrary restrictions on jobs running on certain servers, the

policy would no longer be even asymptotically optimal [25].

A number of important questions remain, however: What is the run-time of the

corresponding query and is it offset by the improvements over a trivial (first-come first-

served) scheduler? The problem of finding the longest path in either general graphs or

digraphs is clearly NP-Hard, as the HPP [9] is a special case. The corresponding deci-

sion problem in directed acyclic graphs is, however, equivalent to finding the shortest

path in undirected graph, and hence in NL ⊆ P. In order to make the answer more

precise, we need to present the corresponding data structures.

3 The Fully-Dynamic Data Structure

In Algorithms 1–7, we present a dynamic data structure for maintaining both the length

of the longest in-coming path (“depth) in each node of a directed acyclic graph and

and the length of the longest out-going path (“level”) in each vertex with no in-coming

edges. Unlike in Section 1, where the distinction between the storage of the graph

and additional details has been obscured, this section makes the distinction clear: The

graph is stored as an adjacency list denoted G, while the additional details are pointers

to unweighted level in array GUL, the weighted level GWL, and a priority queue R

keeping track of the ready jobs, with respect to the criterion chosen.

The approach for maintaining the data is based on the “contraption under gravity”

view developed by Dijkstra in the 1960s [7,5,11]: First, we traverse the out-going

Algorithm 1 insertEdge(G, GUL, GWL, R, u→ v)

1: Input: Digraph G, weighted and unweighted auxiliary structures GUL, GWL, priority
queue R, edge u→ v to be added

2: Effect: Updated G,GUL, GWL, R

3: G = G ∪ {u→ v}
4: if has(R, v) then
5: remove(R, v)
6: end if
7: U = insertEdgeUpdateDownstream(GUL, u, v)
8: U = U∪ insertEdgeUpdateUpstream(GUL, u, v)
9: U = U∪ insertEdgeUpdateDownstream(GWL, u, v)

10: U = U∪ insertEdgeUpdateUpstream(GWL, u, v)
11: while U 6= ∅ do
12: u =top(U) // u for updated
13: update(R, u)
14: end while

Algorithm 2 merge(G, GUL, GWL, R1, H, HUL, HWL, R2, C)

1: Input: Digraphs G,H, weighted and unweighted auxiliary structures
GUL, GWL, HUL, HWL, priority queues R1, R2 related to graphs G,H, respectively, set
C of edges g → h from vertex-set of G to vertex-set of H

2: Effect: Structures G,GUL, GWL, R1 are updated

3: G = G ∪H, GUL = GUL ∪HUL, GWL = GWL ∪HWL

4: R1 = R1 ∪ (R2 \ {h | (g → h) ∈ C})
5: Q = queue〈 SumWeightedLongestFirst 〉(C)
6: while Q 6= ∅ do
7: (g → h) =dequeue(Q)
8: insertEdge(G, GUL, GWL, R, g → h)
9: end while

subgraph (“down”) from the affected vertex along a topological order of vertices, in

order to update the depth. Next, we traverse the in-coming subgraph in the reverse

direction (“up”) along a topological order of vertices, updating the level as long as it

is necessary. This can be visualised as a “contraption” of strings and knots held at

the knot corresponding to the affected vertex, updating the depth, holding the bottom

most knot, and updating the level. The non-trivial part is the maintenance of the

topological order of vertices [10], so as to guarantee that no edge is visited twice.

Katriel et al. [11] have analysed the use of a priority queue with the priority being

the depth of the vertex in order to obtain the topological order, and applications in

maintaining the longest in-coming paths (depth) in directed acyclic graphs subject to

edge insertion and deletion. The analysis has been subsequently improved [13,1]. In

Algorithms 1–7, we adapt the approach of Katriel et al. [11] to the maintenance of

both the length of the longest in-coming path (depth) and the length of the longest

out-going path (level) in each node of a vertex-weighted directed acyclic graphs under

the operations required in the out-of-order static scheduling policies. Alternatively, one

could maintain only the lengths of the longest out-going path (level). This would allow

for faster run-times of arbitrary edge insertion, which we do not require, but which

would slow down the run-time of merge by the all-pairs shortest paths computation.

Let us now analyse the algorithms in the input and output model of Ramaling and

Reps [24], using melding priority queues [17]. In order to implement the merge operation

(Algorihtm 2), one needs to implement the traversal up and down the directed graph.

Algorithm 3 popVertex(G, GUL, GWL, R)

1: Input: Digraph G, weighted and unweighted auxiliary structures GUL, GWL, priority
queue R

2: Effect: Structures G,GUL, GWL, and R are updated

3: v = top(R)
4: U = popVertexUpdateDownstream(GUL, v)
5: U = U∪ popVertexUpdateDownstream(GWL, v)
6: S = succ(GUL, v)
7: while S 6= ∅ do
8: s =top(S) // s for successor
9: R.push(s)

10: end while
11: while U 6= ∅ do
12: u =top(U) // u for updated
13: R.update(u)
14: end while
15: G = G \ {u→ v}

This is rather straightforward, with pseudocode exhibited in Appendix A. When one

denotes |δ| the number of vertices whose depth or level has changed and ||δ|| is the

cardinality of the union of neighbourhoods of vertices whose depth or level has changed,

one can see:

Claim insertEdgeUpdateDownstream runs in time O(||δ||+ |δ|Q(|δ|)),
insertEdgeUpdateUpstream runs in time O(||δ|| + |δ|Q(|δ|)), and insertEdge runs in

time O(||δ|| + |δ|Q(|δ|)), where Q(n) is the complexity of insertion and extraction of

an element in a priority queue with n elements.

Proof sketch: The run-time complexity of insertEdge is dominated by the complexity

of insertEdgeUpdateDownstream. There, each vertex is inserted and extracted from the

queue at most once, and all ||δ|| neighbouring vertices need to be checked.

Consequently:

Lemma 1 merge(A,B) runs in time O(c log c+ |δ|Q(|δ|)+ ||δ||), where c is the number

of “cross” edges from B to A, δ corresponds to changes in both A and B, and Q(n)

is the complexity of insertion and extraction of an element in a priority queue with n

elements.

Proof The complexity of ordering c edges by the sum of the longest paths to the edge

in both A and B is c log c. This gives us the order of updates, where there is no vertex

updated twice.

In order to implement the deletion of the sink maximising a criterion maintained

(Algorihtm 3), one needs to implement another procedure traversing down the directed

graph. This, again, is rather straightforward, with pseudocode exhibited in Appendix A.

With some care, one can see:

Claim popVertexUpdateDownstream runs in time O(|δ|Q(|δ|) + ||δ||).

Proof sketch: No vertex is updated twice, but there are |δ| vertices to be updated and

||δ|| neighbouring vertices to be checked.

Lemma 2 topVertex runs in time O(1). popVertex runs in time O(|δ|Q(|δ|) + ||δ||).

Proof The complexity of topVertex is given by the “top” operation of a priority

queue [17]. The run-time complexity of popVertex is dominated by the complexity

of popVertexUpdateDownstream, which is O(|δ|Q(|δ|) + ||δ||).

Notice that for melding priority queues [17], the amortised complexity of insertion

and extraction is Q(n) :=
√

log logn. Both |δ| and ||δ|| can be large in the worst-case,

notably linear in the number of vertices and edges in merge. This is, however, perhaps

inevitable. In the closely related problem of prioritising vertices of a DAG, where

each vertex is assigned a priority such that, for each oriented edge (v, w), priority(v)

< priority(w), Ramalingam and Reps [23] have shown a lower bound of Ω(n logn)

operations on the insertion of m edges in a graph on n vertices. There are good reasons

[1] to believe that the performance is considerably better in expectation. Also, notice

that the topVertex runs in constant time, so that the execution of the scheduler need

not hinder the execution of the jobs on the accelerator.

4 Conclusions and Open Problems

As far as we are aware, we have presented the first fully-dynamic data structures for

implementing certain out-of-order taskgraph scheduling policies, with an application in

the design of drivers for OpenCL accelerators. Unlike the present best data structures

for similar operations on (undirected) trees, such as top trees [2], we do not perform

updates lazily, which may well leave space for improvement:

– Can top trees be extended to directed acyclic graphs? Top trees are, in turn, based

on data structures proposed by Tarjan et al. [8,26] earlier. Could those be extended?

– Are there lower bounds on the complexity of popVertex and merge?

There are also great many questions related to the scheduling policies left open:

– What is the broadest class of graphs for which the studied static scheduling policies

are asymptotically optimal? This seems to be one of the most important open

questions in scheduling.

– What are the limits of stability in realistic models of queuing networks with de-

pedencies? Consider jobs partitioned into groups. How does the stability threshold

change, when there are no intra-group dependencies and jobs within each share

the dependencies? How does the stability threshold change, when the probability

of dependence of group a on a group b is inversely proportional to the difference in

their release dates ra − rb?
– How much could one be benefit from pilot runs improving the run-time estimates?

Could we decide how many pilot runs to perform, based on some measures of quality

of the estimates obtained so far?

– What are the benefits of dynamic scheduling policies, such as the multi-mode multi-

armed bandits [28,18]? Notably, could they be used to integrate power management

considerations? Could the data structure be extended to accommodate such “in-

dices”?

– What are the benefits of “taskgraph prediction”? In a rather different setting,

Chekuri et al [6] have shown that the longest path scheduling based on the known

dependency graph is not optimal, when we expect changes of the dependency tree

in the future and can make educated guesses about their nature.

There are also several questions specific to accelerators developed by ARM. Considering

the results on stability referenced in Section 2.3, however, whatever improved policies

there might be, it seems highly likely that they will be require the maintenance of

weighted long paths. The research into the dynamic data structures implementing

them will hence remain highly relevant.

Acknowledgments The work has been supported by the Industrial Mathematics In-

ternships Programme, and funded by EPSRC and ARM Ltd. OpenCL is a trademark

of Apple Inc. used by Khronos by permission.

References

1. Ajwani, D., Friedrich, T.: Average-case analysis of online topological ordering. In: Algo-
rithms and computation, Lecture Notes in Comput. Sci., vol. 4835, pp. 464–475. Springer,
Berlin (2007). DOI 10.1007/978-3-540-77120-3 41. URL http://dx.doi.org/10.1007/
978-3-540-77120-3_41

2. Alstrup, S., Holm, J., Thorup, M., de Lichtenberg, K.: Maintaining information in fully
dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005). DOI 10.
1145/1103963.1103966

3. Benini, L., Lombardi, M., Milano, M., Ruggiero, M.: Optimal resource allocation and
scheduling forthecell be platform. Ann. Oper. Res. 184, 51–77 (2011). 10.1007/s10479-
010-0718-x

4. Bruno, J.: On scheduling tasks with exponential service times and in-tree precedence
constraints. Acta Inform. 22(2), 139–148 (1985). DOI 10.1007/BF00264227

5. Bulterman, R.W., van der Sommen, F.W., Zwaan, G., Verhoeff, T., van Gasteren, A.J.M.,
Feijen, W.H.J.: On computing a longest path in a tree. Inform. Process. Lett. 81(2), 93–96
(2002). DOI 10.1016/S0020-0190(01)00198-3

6. Chekuri, C., Johnson, R., Motwani, R., Natarajan, B., Rau, B.R., Schlansker, M.S.: Profile-
driven instruction level parallel scheduling with application to super blocks. In: MICRO,
pp. 58–67 (1996)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms. Second
edn. MIT Press, Cambridge, MA (2001)

8. Goldberg, A.V., Grigoriadis, M.D., Tarjan, R.E.: Use of dynamic trees in a network simplex
algorithm for the maximum flow problem. Math. Programming 50(3, (Ser. A)), 277–290
(1991). DOI 10.1007/BF01594940

9. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer
computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), pp. 85–103. Plenum, New York (1972)

10. Katriel, I., Bodlaender, H.L.: Online topological ordering. ACM Trans. Algorithms 2(3),
364–379 (2006). DOI 10.1145/1159892.1159896

11. Katriel, I., Michel, L., Van Hentenryck, P.: Maintaining longest paths incrementally. Con-
straints 10(2), 159–183 (2005). DOI 10.1007/s10601-005-0554-9

12. Kelley Jr., J.E.: Critical-path planning and scheduling: mathematical basis. Operations
Res. 9, 296–320 (1961)

13. Liu, H.F., Chao, K.M.: A tight analysis of the Katriel-Bodlaender algorithm for online
topological ordering. Theoret. Comput. Sci. 389(1-2), 182–189 (2007). DOI 10.1016/j.tcs.
2007.08.009

14. Liu, Z., Sanlaville, E.: Preemptive scheduling with variable profile, precedence constraints
and due dates. Discrete Appl. Math. 58(3), 253–280 (1995). DOI 10.1016/0166-218X(93)
E0151-N

15. Liu, Z., Sanlaville, E.: Stochastic scheduling with variable profile and precedence con-
straints. SIAM J. Comput. 26(1), 173–187 (1997). DOI 10.1137/S0097539791218949

16. Mareček, J., friends: The complexity of scheduling in OpenCL accelerators. Submitted
17. Mendelson, R., Tarjan, R.E., Thorup, M., Zwick, U.: Melding priority queues. ACM Trans.

Algorithms 2(4), 535–556 (2006). DOI 10.1145/1198513.1198517

http://dx.doi.org/10.1007/978-3-540-77120-3_41
http://dx.doi.org/10.1007/978-3-540-77120-3_41

18. Niño-Mora, J.: An index policy for multiarmed multimode restless bandits. In: ValueTools
’08: Proceedings of the 3rd International Conference on Performance Evaluation Method-
ologies and Tools, pp. 1–6. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008). DOI
http://dx.doi.org/10.4108/ICST.VALUETOOLS2008.4410

19. Papadimitriou, C.H., Tsitsiklis, J.: Intractable problems in control theory. SIAM J. Control
Optim. 24(4), 639–654 (1986). DOI 10.1137/0324038

20. Papadimitriou, C.H., Tsitsiklis, J.N.: On stochastic scheduling with in-tree precedence
constraints. SIAM J. Comput. 16(1), 1–6 (1987). DOI 10.1137/0216001

21. Papadimitriou, C.H., Tsitsiklis, J.N.: The complexity of optimal queuing network control.
Math. Oper. Res. 24(2), 293–305 (1999). DOI 10.1287/moor.24.2.293

22. Pinedo, M., Weiss, G.: Scheduling jobs with exponentially distributed processing times
and intree precedence constraints on two parallel machines. Oper. Res. 33(6), 1381–1388
(1985). DOI 10.1287/opre.33.6.1381

23. Ramalingam, G., Reps, T.: On competitive on-line algorithms for the dynamic priority-
ordering problem. Inform. Process. Lett. 51(3), 155–161 (1994). DOI 10.1016/
0020-0190(94)00080-8

24. Ramalingam, G., Reps, T.: On the computational complexity of dynamic graph problems.
Theoret. Comput. Sci. 158(1-2), 233–277 (1996). DOI 10.1016/0304-3975(95)00079-8

25. Stolyar, A., Yudovina, E.: Systems with large flexible server pools: Instability of “natural”
load balancing. ArXiv e-print (2010)

26. Tarjan, R.E.: Dynamic trees as search trees via Euler tours, applied to the network
simplex algorithm. Math. Programming 78(2, Ser. B), 169–177 (1997). DOI 10.1016/
S0025-5610(97)00015-4

27. Tsitsiklis, J.N., Papadimitriou, C.H., Humblet, P.: The performance of a precedence-based
queueing discipline. J. Assoc. Comput. Mach. 33(3), 593–602 (1986). DOI 10.1145/5925.
5936

28. Weber, R.R.: Comments on: Dynamic priority allocation via restless bandit marginal pro-
ductivity indices. TOP 15(2), 211–216 (2007). DOI 10.1007/s11750-007-0029-9

A Additional Material

Algorithm 4 insertEdgeUpdateUpstream(GL, u→ v)

1: Input: Structure GL, edge u→ v to be added
2: Output: List of updated vertices U

3: Effect: Updated structure GL

4: U = ∅
5: Q = queue〈 WeightedLongestFirst 〉(v) // forwards
6: while Q 6= ∅ do
7: v =pop(Q)
8: for u ∈ pred(GL, v) do
9: if level(u) < level(v)+weight(v) then

10: level(u) = level(v)+weight(v)
11: insert(Q,u)
12: insert(U, u)
13: end if
14: end for
15: end while
16: return U

Algorithm 5 insertEdgeUpdateDownstream(GL, u→ v)

1: Input: Structure GL, edge u→ v to be added
2: Output: List of updated vertices U

3: Effect: Updated structure GL

4: U = ∅
5: if l(u) + d(u, v) > l(v) then
6: Q = queue〈 WeightedLongestFirst 〉() // forwards
7: B = queue〈 WeightedLongestFirst 〉() // backwards
8: insert(Q, 〈l(v), v〉)
9: while Q 6= ∅ do

10: a =extractMin(Q) // a for affected
11: l(a) = maxx∈pred(G,a) l(x)+weight(a)
12: GL = GL \ {u→ a | u→ a ∈ GL}
13: GL = GL ∪ {u→ a | x ∈ pred(G, a) ∧ l(u)+weight(a) = l(a)}
14: if |succ(G, a)| = 0 then
15: level(a) = 0
16: insert(B, a)
17: insert(U, u)
18: end if
19: for b ∈ succ(G, a) do
20: if l(a)+weight(b) > l(b) then
21: insert(Q, 〈l(b), b〉)
22: else
23: if l(a)+weight(b) = l(b) then
24: GL = GL ∪ {a→ b}
25: end if
26: end if
27: end for
28: end while
29: while B 6= ∅ do
30: b =extractMin(B) // b for backwards
31: for a ∈ pred(G, b) do
32: if level(b) < level(a)+weight(a) then
33: level(b) = level(a)+weight(a)
34: insert(R, b)
35: insert(U, u)
36: end if
37: end for
38: end while
39: else
40: if l(u)+weight(v) = l(v) then
41: GL = GL ∪ {u→ v}
42: end if
43: end if
44: return U

Algorithm 6 computeAffected(G, GL, w)

1: Input: Digraph G = (V,E), structure GL, vertex w to be removed

2: Output: List A of affected vertices

3: Q = {w}
4: A = ∅
5: while Q 6= ∅ do
6: u =dequeue(Q)
7: A = A ∪ {u}
8: for v ∈ succ(GL, u) do
9: GL = GL \ {u→ v}

10: if pred(GL, v) = ∅ then
11: insert(Q, v)
12: end if
13: end for
14: end while
15: return A

Algorithm 7 popVertexUpdateDownstream(GL, u→ v)

1: Input: Digraph G = (V,E), structure GL, edge u→ v to be removed
2: Output: List of updated vertices U

3: Effect: Structure GUL is updated

4: U = ∅
5: if u→ v ∈ GL then
6: GL = GL \ {u→ v}
7: if pred(GL, v) = ∅ then
8: A =computeAffected(GL, v) // a for affected
9: for a ∈ A do

10: indeg(a) = |pred(G, a) ∩A|
11: end for
12: Q = queue〈 WeightedLongestFirst 〉()
13: Q = {a ∈ A | indeg(a) = 0}
14: while Q 6= ∅ do
15: q =dequeue(Q)
16: l(q) = maxp∈pred(G,q) l(p)+weight(q)
17: GL = GL ∪ {p→ q | p ∈ pred(G, q) ∧ l(p)+weight(q) = l(q)}
18: for a ∈ succ(G, q) ∩A do
19: indeg(a) =indeg(a)− 1
20: if indeg(a) = 0 then
21: insert(Q, a)
22: end if
23: end for
24: end while
25: end if
26: end if
27: return U

	Introduction
	The Motivating Problem
	The Fully-Dynamic Data Structure
	Conclusions and Open Problems
	Additional Material

