
1

Monadic Parser Combinators

Graham Hutton
University of Nottingham

Erik Meijer
University of Utrecht

Appears as technical report NOTTCS-TR-96-4,
Department of Computer Science, University of Nottingham, 1996

Abstract

In functional programming, a popular approach to building recursive descent parsers is
to model parsers as functions, and to define higher-order functions (or combinators) that
implement grammar constructions such as sequencing, choice, and repetition. Such parsers
form an instance of a monad , an algebraic structure from mathematics that has proved
useful for addressing a number of computational problems. The purpose of this article is
to provide a step-by-step tutorial on the monadic approach to building functional parsers,
and to explain some of the benefits that result from exploiting monads. No prior knowledge
of parser combinators or of monads is assumed. Indeed, this article can also be viewed as
a first introduction to the use of monads in programming.

2 Graham Hutton and Erik Meijer

Contents

1 Introduction 3
2 Combinator parsers 4

2.1 The type of parsers 4
2.2 Primitive parsers 4
2.3 Parser combinators 5

3 Parsers and monads 8
3.1 The parser monad 8
3.2 Monad comprehension syntax 10

4 Combinators for repetition 12
4.1 Simple repetition 13
4.2 Repetition with separators 14
4.3 Repetition with meaningful separators 15

5 Efficiency of parsers 18
5.1 Left factoring 19
5.2 Improving laziness 19
5.3 Limiting the number of results 20

6 Handling lexical issues 22
6.1 White-space, comments, and keywords 22
6.2 A parser for λ-expressions 24

7 Factorising the parser monad 24
7.1 The exception monad 25
7.2 The non-determinism monad 26
7.3 The state-transformer monad 27
7.4 The parameterised state-transformer monad 28
7.5 The parser monad revisited 29

8 Handling the offside rule 30
8.1 The offside rule 30
8.2 Modifying the type of parsers 31
8.3 The parameterised state-reader monad 32
8.4 The new parser combinators 33

9 Acknowledgements 36
10 Appendix: a parser for data definitions 36
References 37

Monadic Parser Combinators 3

1 Introduction

In functional programming, a popular approach to building recursive descent parsers
is to model parsers as functions, and to define higher-order functions (or combina-
tors) that implement grammar constructions such as sequencing, choice, and repe-
tition. The basic idea dates back to at least Burge’s book on recursive programming
techniques (Burge, 1975), and has been popularised in functional programming by
Wadler (1985), Hutton (1992), Fokker (1995), and others. Combinators provide a
quick and easy method of building functional parsers. Moreover, the method has the
advantage over functional parser generators such as Ratatosk (Mogensen, 1993) and
Happy (Gill & Marlow, 1995) that one has the full power of a functional language
available to define new combinators for special applications (Landin, 1966).

It was realised early on (Wadler, 1990) that parsers form an instance of a monad ,
an algebraic structure from mathematics that has proved useful for addressing a
number of computational problems (Moggi, 1989; Wadler, 1990; Wadler, 1992a;
Wadler, 1992b). As well as being interesting from a mathematical point of view,
recognising the monadic nature of parsers also brings practical benefits. For exam-
ple, using a monadic sequencing combinator for parsers avoids the messy manip-
ulation of nested tuples of results present in earlier work. Moreover, using monad
comprehension notation makes parsers more compact and easier to read.

Taking the monadic approach further, the monad of parsers can be expressed in
a modular way in terms of two simpler monads. The immediate benefit is that the
basic parser combinators no longer need to be defined explicitly. Rather, they arise
automatically as a special case of lifting monad operations from a base monad m

to a certain other monad parameterised over m. This also means that, if we change
the nature of parsers by modifying the base monad (for example, limiting parsers
to producing at most one result), then new combinators for the modified monad of
parsers also arise automatically via the lifting construction.

The purpose of this article is to provide a step-by-step tutorial on the monadic
approach to building functional parsers, and to explain some of the benefits that
result from exploiting monads. Much of the material is already known. Our contri-
butions are the organisation of the material into a tutorial article; the introduction
of new combinators for handling lexical issues without a separate lexer; and a new
approach to implementing the offside rule, inspired by the use of monads.

Some prior exposure to functional programming would be helpful in reading this
article, but special features of Gofer (Jones, 1995b) — our implementation language
— are explained as they are used. Any other lazy functional language that supports
(multi-parameter) constructor classes and the use of monad comprehension notation
would do equally well. No prior knowledge of parser combinators or monads is
assumed. Indeed, this article can also be viewed as a first introduction to the use of
monads in programming. A library of monadic parser combinators taken from this
article is available from the authors, via the World-Wide-Web.

4 Graham Hutton and Erik Meijer

2 Combinator parsers

We begin by reviewing the basic ideas of combinator parsing (Wadler, 1985; Hutton,
1992; Fokker, 1995). In particular, we define a type for parsers, three primitive
parsers, and two primitive combinators for building larger parsers.

2.1 The type of parsers

Let us start by thinking of a parser as a function that takes a string of characters as
input and yields some kind of tree as result, with the intention that the tree makes
explicit the grammatical structure of the string:

type Parser = String -> Tree

In general, however, a parser might not consume all of its input string, so rather
than the result of a parser being just a tree, we also return the unconsumed suffix
of the input string. Thus we modify our type of parsers as follows:

type Parser = String -> (Tree,String)

Similarly, a parser might fail on its input string. Rather than just reporting a
run-time error if this happens, we choose to have parsers return a list of pairs
rather than a single pair, with the convention that the empty list denotes failure of
a parser, and a singleton list denotes success:

type Parser = String -> [(Tree,String)]

Having an explicit representation of failure and returning the unconsumed part
of the input string makes it possible to define combinators for building up parsers
piecewise from smaller parsers. Returning a list of results opens up the possibility
of returning more than one result if the input string can be parsed in more than
one way, which may be the case if the underlying grammar is ambiguous.

Finally, different parsers will likely return different kinds of trees, so it is useful
to abstract on the specific type Tree of trees, and make the type of result values
into a parameter of the Parser type:

type Parser a = String -> [(a,String)]

This is the type of parsers we will use in the remainder of this article. One could
go further (as in (Hutton, 1992), for example) and abstract upon the type String

of tokens, but we do not have need for this generalisation here.

2.2 Primitive parsers

The three primitive parsers defined in this section are the building blocks of com-
binator parsing. The first parser is result v, which succeeds without consuming
any of the input string, and returns the single result v:

result :: a -> Parser a

result v = \inp -> [(v,inp)]

Monadic Parser Combinators 5

An expression of the form \x -> e is called a λ-abstraction, and denotes the func-
tion that takes an argument x and returns the value of the expression e. Thus
result v is the function that takes an input string inp and returns the single-
ton list [(v,inp)]. This function could equally well be defined by result v inp

= [(v,inp)], but we prefer the above definition (in which the argument inp is
shunted to the body of the definition) because it corresponds more closely to the
type result :: a -> Parser a, which asserts that result is a function that takes
a single argument and returns a parser.

Dually, the parser zero always fails, regardless of the input string:

zero :: Parser a

zero = \inp -> []

Our final primitive is item, which successfully consumes the first character if the
input string is non-empty, and fails otherwise:

item :: Parser Char

item = \inp -> case inp of

[] -> []

(x:xs) -> [(x,xs)]

2.3 Parser combinators

The primitive parsers defined above are not very useful in themselves. In this section
we consider how they can be glued together to form more useful parsers. We take
our lead from the BNF notation for specifying grammars, in which larger gram-
mars are built up piecewise from smaller grammars using a sequencing operator —
denoted by juxtaposition — and a choice operator — denoted by a vertical bar |.
We define corresponding operators for combining parsers, such that the structure
of our parsers closely follows the structure of the underlying grammars.

In earlier (non-monadic) accounts of combinator parsing (Wadler, 1985; Hutton,
1992; Fokker, 1995), sequencing of parsers was usually captured by a combinator

seq :: Parser a -> Parser b -> Parser (a,b)

p ‘seq‘ q = \inp -> [((v,w),inp’’) | (v,inp’) <- p inp

, (w,inp’’) <- q inp’]

that applies one parser after another, with the results from the two parsers being
combined as pairs. The infix notation p ‘seq‘ q is syntactic sugar for seq p q; any
function of two arguments can used as an infix operator in this way, by enclosing
its name in backquotes. At first sight, the seq combinator might seem a natural
composition primitive. In practice, however, using seq leads to parsers with nested
tuples as results, which are messy to manipulate.

The problem of nested tuples can be avoided by adopting a monadic sequencing
combinator (commonly known as bind) which integrates the sequencing of parsers
with the processing of their result values:

bind :: Parser a -> (a -> Parser b) -> Parser b

p ‘bind‘ f = \inp -> concat [f v inp’ | (v,inp’) <- p inp]

6 Graham Hutton and Erik Meijer

The definition for bind can be interpreted as follows. First of all, the parser p is
applied to the input string, yielding a list of (value,string) pairs. Now since f is a
function that takes a value and returns a parser, it can be applied to each value
(and unconsumed input string) in turn. This results in a list of lists of (value,string)
pairs, that can then be flattened to a single list using concat.

The bind combinator avoids the problem of nested tuples of results because the
results of the first parser are made directly available for processing by the second,
rather than being paired up with the other results to be processed later on. A
typical parser built using bind has the following structure

p1 ‘bind‘ \x1 ->

p2 ‘bind‘ \x2 ->

...

pn ‘bind‘ \xn ->

result (f x1 x2 ... xn)

and can be read operationally as follows: apply parser p1 and call its result value
x1; then apply parser p2 and call its result value x2; . . .; then apply the parser pn

and call its result value xn; and finally, combine all the results into a single value
by applying the function f. For example, the seq combinator can be defined by

p ‘seq‘ q = p ‘bind‘ \x ->

q ‘bind‘ \y ->

result (x,y)

(On the other hand, bind cannot be defined in terms of seq.)
Using the bind combinator, we are now able to define some simple but useful

parsers. Recall that the item parser consumes a single character unconditionally. In
practice, we are normally only interested in consuming certain specific characters.
For this reason, we use item to define a combinator sat that takes a predicate (a
Boolean valued function), and yields a parser that consumes a single character if it
satisfies the predicate, and fails otherwise:

sat :: (Char -> Bool) -> Parser Char

sat p = item ‘bind‘ \x ->

if p x then result x else zero

Note that if item fails (that is, if the input string is empty), then so does sat p,
since it can readily be observed that zero ‘bind‘ f = zero for all functions f of
the appropriate type. Indeed, this equation is not specific to parsers: it holds for
an arbitrary monad with a zero (Wadler, 1992a; Wadler, 1992b). Monads and their
connection to parsers will be discussed in the next section.

Using sat, we can define parsers for specific characters, single digits, lower-case
letters, and upper-case letters:

char :: Char -> Parser Char

char x = sat (\y -> x == y)

Monadic Parser Combinators 7

digit :: Parser Char

digit = sat (\x -> ’0’ <= x && x <= ’9’)

lower :: Parser Char

lower = sat (\x -> ’a’ <= x && x <= ’z’)

upper :: Parser Char

upper = sat (\x -> ’A’ <= x && x <= ’Z’)

For example, applying the parser upper to the input string "Hello" succeeds with
the single successful result [(’H’,"ello")], since the upper parser succeeds with
’H’ as the result value and "ello" as the unconsumed suffix of the input. On the
other hand, applying the parser lower to the string "Hello" fails with [] as the
result, since ’H’ is not a lower-case letter.

As another example of using bind, consider the parser that accepts two lower-case
letters in sequence, returning a string of length two:

lower ‘bind‘ \x ->

lower ‘bind‘ \y ->

result [x,y]

Applying this parser to the string "abcd" succeeds with the result [("ab","cd")].
Applying the same parser to "aBcd" fails with the result [], because even though
the initial letter ’a’ can be consumed by the first lower parser, the following letter
’B’ cannot be consumed by the second lower parser.

Of course, the above parser for two letters in sequence can be generalised to a
parser for arbitrary strings of lower-case letters. Since the length of the string to
be parsed cannot be predicted in advance, such a parser will naturally be defined
recursively, using a choice operator to decide between parsing a single letter and
recursing, or parsing nothing further and terminating. A suitable choice combinator
for parsers, plus, is defined as follows:

plus :: Parser a -> Parser a -> Parser a

p ‘plus‘ q = \inp -> (p inp ++ q inp)

That is, both argument parsers p and q are applied to the same input string, and
their result lists are concatenated to form a single result list. Note that it is not
required that p and q accept disjoint sets of strings: if both parsers succeed on
the input string then more than one result value will be returned, reflecting the
different ways that the input string can be parsed.

As examples of using plus, some of our earlier parsers can now be combined to
give parsers for letters and alpha-numeric characters:

letter :: Parser Char

letter = lower ‘plus‘ upper

alphanum :: Parser Char

alphanum = letter ‘plus‘ digit

8 Graham Hutton and Erik Meijer

More interestingly, a parser for words (strings of letters) is defined by

word :: Parser String

word = neWord ‘plus‘ result ""

where

neWord = letter ‘bind‘ \x ->

word ‘bind‘ \xs ->

result (x:xs)

That is, word either parses a non-empty word (a single letter followed by a word,
using a recursive call to word), in which case the two results are combined to form
a string, or parses nothing and returns the empty string.

For example, applying word to the input "Yes!" gives the result [("Yes","!"),
("Ye","s!"), ("Y","es!"), ("","Yes!")]. The first result, ("Yes","!"), is the
expected result: the string of letters "Yes" has been consumed, and the unconsumed
input is "!". In the subsequent results a decreasing number of letters are consumed.
This behaviour arises because the choice operator plus is non-deterministic: both
alternatives can be explored, even if the first alternative is successful. Thus, at each
application of letter, there is always the option to just finish parsing, even if there
are still letters left to be consumed from the start of the input.

3 Parsers and monads

Later on we will define a number of useful parser combinators in terms of the
primitive parsers and combinators just defined. But first we turn our attention to
the monadic nature of combinator parsers.

3.1 The parser monad

So far, we have defined (among others) the following two operations on parsers:

result :: a -> Parser a

bind :: Parser a -> (a -> Parser b) -> Parser b

Generalising from the specific case of Parser to some arbitrary type constructor
M gives the notion of a monad: a monad is a type constructor M (a function from
types to types), together with operations result and bind of the following types:

result :: a -> M a

bind :: M a -> (a -> M b) -> M b

Thus, parsers form a monad for which M is the Parser type constructor, and result

and bind are defined as previously. Technically, the two operations of a monad must
also satisfy a few algebraic properties, but we do not concern ourselves with such
properties here; see (Wadler, 1992a; Wadler, 1992b) for more details.

Readers familiar with the categorical definition of a monad may have expected
two operations map :: (a -> b) -> (M a -> M b) and join :: M (M a) -> M

a in place of the single operation bind. However, our definition is equivalent to the

Monadic Parser Combinators 9

categorical one (Wadler, 1992a; Wadler, 1992b), and has the advantage that bind

generally proves more convenient for monadic programming than map and join.
Parsers are not the only example of a monad. Indeed, we will see later on how

the parser monad can be re-formulated in terms of two simpler monads. This raises
the question of what to do about the naming of the monadic combinators result

and bind. In functional languages based upon the Hindley-Milner typing system
(for example, Miranda1 and Standard ML) it is not possible to use the same names
for the combinators of different monads. Rather, one would have to use different
names, such as resultM and bindM, for the combinators of each monad M.

Gofer, however, extends the Hindley-Milner typing system with an overloading
mechanism that permits the use of the same names for the combinators of different
monads. Under this overloading mechanism, the appropriate monad for each use of
a name is calculated automatically during type inference.

Overloading in Gofer is accomplished by the use of classes (Jones, 1995c). A class
for monads can be declared in Gofer by:

class Monad m where

result :: a -> m a

bind :: m a -> (a -> m b) -> m b

This declaration can be read as follows: a type constructor m is a member of the
class Monad if it is equipped with result and bind operations of the specified types.
The fact that m must be a type constructor (rather than just a type) is inferred
from its use in the types for the operations.

Now the type constructor Parser can be made into an instance of the class Monad
using the result and bind from the previous section:

instance Monad Parser where

-- result :: a -> Parser a

result v = \inp -> [(v,inp)]

-- bind :: Parser a -> (a -> Parser b) -> Parser b

p ‘bind‘ f = \inp -> concat [f v out | (v,out) <- p inp]

We pause briefly here to address a couple of technical points concerning Gofer.
First of all, type synonyms such as Parser must be supplied with all their argu-
ments. Hence the instance declaration above is not actually valid Gofer code, since
Parser is used in the first line without an argument. The problem is easy to solve
(redefine Parser using data rather than type, or as a restricted type synonym),
but for simplicity we prefer in this article just to assume that type synonyms can be
partially applied. The second point is that the syntax of Gofer does not currently
allow the types of the defined functions in instance declarations to be explicitly
specified. But for clarity, as above, we include such types in comments.

Let us turn now to the following operations on parsers:

1 Miranda is a trademark of Research Software Ltd.

10 Graham Hutton and Erik Meijer

zero :: Parser a

plus :: Parser a -> Parser a -> Parser a

Generalising once again from the specific case of the Parser type constructor, we
arrive at the notion of a monad with a zero and a plus, which can be encapsulated
using the Gofer class system in the following manner:

class Monad m => Monad0Plus m where

zero :: m a

(++) :: m a -> m a -> m a

That is, a type constructor m is a member of the class Monad0Plus if it is a member
of the class Monad (that is, it is equipped with a result and bind), and if it is also
equipped with zero and (++) operators of the specified types. Of course, the two
extra operations must also satisfy some algebraic properties; these are discussed
in (Wadler, 1992a; Wadler, 1992b). Note also that (++) is used above rather than
plus, following the example of lists: we will see later on that lists form a monad
for which the plus operation is just the familiar append operation (++).

Now since Parser is already a monad, it can be made into a monad with a zero
and a plus using the following definitions:

instance Monad0Plus Parser where

-- zero :: Parser a

zero = \inp -> []

-- (++) :: Parser a -> Parser a -> Parser a

p ++ q = \inp -> (p inp ++ q inp)

3.2 Monad comprehension syntax

So far we have seen one advantage of recognising the monadic nature of parsers: the
monadic sequencing combinator bind handles result values better than the conven-
tional sequencing combinator seq. In this section we consider another advantage of
the monadic approach, namely that monad comprehension syntax can be used to
make parsers more compact and easier to read.

As mentioned earlier, many parsers will have a structure as a sequence of binds
followed by single call to result:

p1 ‘bind‘ \x1 ->

p2 ‘bind‘ \x2 ->

...

pn ‘bind‘ \xn ->

result (f x1 x2 ... xn)

Gofer provides a special notation for defining parsers of this shape, allowing them
to be expressed in the following, more appealing form:

[f x1 x2 ... xn | x1 <- p1

Monadic Parser Combinators 11

, x2 <- p2

, ...

, xn <- pn]

In fact, this notation is not specific to parsers, but can be used with any monad
(Jones, 1995c). The reader might notice the similarity to the list comprehension
notation supported by many functional languages. It was Wadler (1990) who first
observed that the comprehension notation is not particular to lists, but makes sense
for an arbitrary monad. Indeed, the algebraic properties required of the monad op-
erations turn out to be precisely those required for the notation to make sense. To
our knowledge, Gofer is the first language to implement Wadler’s monad compre-
hension notation. Using this notation can make parsers much easier to read, and
we will use the notation in the remainder of this article.

As our first example of using comprehension notation, we define a parser for
recognising specific strings, with the string itself returned as the result:

string :: String -> Parser String

string "" = [""]

string (x:xs) = [x:xs | _ <- char x, _ <- string xs]

That is, if the string to be parsed is empty we just return the empty string as
the result; [""] is just monad comprehension syntax for result "". Otherwise,
we parse the first character of the string using char, and then parse the remaining
characters using a recursive call to string. Without the aid of comprehension
notation, the above definition would read as follows:

string :: String -> Parser String

string "" = result ""

string (x:xs) = char x ‘bind‘ _ ->

string xs ‘bind‘ _ ->

result (x:xs)

Note that the parser string xs fails if only a prefix of the given string xs is
recognised in the input. For example, applying the parser string "hello" to the
input "hello there" gives the successful result [("hello"," there")]. On the
other hand, applying the same parser to "helicopter" fails with the result [],
even though the prefix "hel" of the input can be recognised.

In list comprehension notation, we are not just restricted to generators that bind
variables to values, but can also use Boolean-valued guards that restrict the values
of the bound variables. For example, a function negs that selects all the negative
numbers from a list of integers can be expressed as follows:

negs :: [Int] -> [Int]

negs xs = [x | x <- xs, x < 0]

In this case, the expression x < 0 is a guard that restricts the variable x (bound
by the generator x <- xs) to only take on values less than zero.

Wadler (1990) observed that the use of guards makes sense for an arbitrary

12 Graham Hutton and Erik Meijer

monad with a zero. The monad comprehension notation in Gofer supports this use
of guards. For example, the sat combinator

sat :: (Char -> Bool) -> Parser Char

sat p = item ‘bind‘ \x ->

if p x then result x else zero

can be defined more succinctly using a comprehension with a guard:

sat :: (Char -> Bool) -> Parser Char

sat p = [x | x <- item, p x]

We conclude this section by noting that there is another notation that can be
used to make monadic programs easier to read: the so-called “do” notation (Jones,
1994; Jones & Launchbury, 1994). For example, using this notation the combinators
string and sat can be defined as follows:

string :: String -> Parser String

string "" = do { result "" }

string (x:xs) = do { char x ; string xs ; result (x:xs) }

sat :: (Char -> Bool) -> Parser Char

sat p = do { x <- item ; if (p x) ; result x }

The do notation has a couple of advantages over monad comprehension notation:
we are not restricted to monad expressions that end with a use of result; and
generators of the form <- e that do not bind variables can be abbreviated by e.
The do notation is supported by Gofer, but monad expressions involving parsers
typically end with a use of result (to compute the result value from the parser),
so the extra generality is not really necessary in this case. For this reason, and for
simplicity, in this article we only use the comprehension notation. It would be an
easy task, however, to translate our definitions into the do notation.

4 Combinators for repetition

Parser generators such as Lex and Yacc (Aho et al., 1986) for producing parsers
written in C, and Ratatosk (Mogensen, 1993) and Happy (Gill & Marlow, 1995) for
producing parsers written in Haskell, typically offer a fixed set of combinators for
describing grammars. In contrast, with the method of building parsers as presented
in this article the set of combinators is completely extensible: parsers are first-class
values, and we have the full power of a functional language at our disposal to define
special combinators for special applications.

In this section we define combinators for a number of common patterns of rep-
etition. These combinators are not specific to parsers, but can be used with an
arbitrary monad with a zero and plus. For clarity, however, we specialise the types
of the combinators to the case of parsers.

In subsequent sections we will introduce combinators for other purposes, includ-
ing handling lexical issues and Gofer’s offside rule.

Monadic Parser Combinators 13

4.1 Simple repetition

Earlier we defined a parser word for consuming zero or more letters from the input
string. Using monad comprehension notation, the definition is:

word :: Parser String

word = [x:xs | x <- letter, xs <- word] ++ [""]

We can easily imagine a number of other parsers that exhibit a similar structure to
word. For example, parsers for strings of digits or strings of spaces could be defined
in precisely the same way, the only difference being be that the component parser
letter would be replaced by either digit or char ’ ’. To avoid defining a number
of different parsers with a similar structure, we abstract on the pattern of recursion
in word and define a general combinator, many, that parses sequences of items.

The combinator many applies a parser p zero or more times to an input string.
The results from each application of p are returned in a list:

many :: Parser a -> Parser [a]

many p = [x:xs | x <- p, xs <- many p] ++ [[]]

Different parsers can be made by supplying different arguments parsers p. For
example, word can be defined just as many letter, and the other parsers mentioned
above by many digit and many (char ’ ’).

Just as the original word parser returns many results in general (decreasing in
the number of letters consumed from the input), so does many p. Of course, in
most cases we will only be interested in the first parse from many p, in which p is
successfully applied as many times as possible. We will return to this point in the
next section, when we address the efficiency of parsers.

As another application of many, we can define a parser for identifiers. For sim-
plicity, we regard an identifier as a lower-case letter followed by zero or more alpha-
numeric characters. It would be easy to extend the definition to handle extra char-
acters, such as underlines or backquotes.

ident :: Parser String

ident = [x:xs | x <- lower, xs <- many alphanum]

Sometimes we will only be interested in non-empty sequences of items. For this
reason we define a special combinator, many1, in terms of many:

many1 :: Parser a -> Parser [a]

many1 p = [x:xs | x <- p, xs <- many p]

For example, applying many1 (char ’a’) to the input "aaab" gives the result
[("aaa","b"), ("aa","ab"), ("a","aab")], which is the same as for many (char

’a’), except that the final pair ("", "aaab") is no longer present. Note also that
many1 p may fail, whereas many p always succeeds.

Using many1 we can define a parser for natural numbers:

nat :: Parser Int

nat = [eval xs | xs <- many1 digit]

14 Graham Hutton and Erik Meijer

where

eval xs = foldl1 op [ord x - ord ’0’ | x <- xs]

m ‘op‘ n = 10*m + n

In turn, nat can be used to define a parser for integers:

int :: Parser Int

int = [-n | _ <- char ’-’, n <- nat] ++ nat

A more sophisticated way to define int is as follows. First try and parse the negation
character ’-’. If this is successful then return the negation function as the result
of the parse; otherwise return the identity function. The final step is then to parse
a natural number, and use the function returned by attempting to parse the ’-’
character to modify the resulting number:

int :: Parser Int

int = [f n | f <- op, n <- nat]

where

op = [negate | _ <- char ’-’] ++ [id]

4.2 Repetition with separators

The many combinators parse sequences of items. Now we consider a slightly more
general pattern of repetition, in which separators between the items are involved.
Consider the problem of parsing a non-empty list of integers, such as [1,-42,17].
Such a parser can be defined in terms of the many combinator as follows:

ints :: Parser [Int]

ints = [n:ns | _ <- char ’[’

, n <- int

, ns <- many [x | _ <- char ’,’, x <- int]

, _ <- char ’]’]

As was the case in the previous section for the word parser, we can imagine a
number of other parsers with a similar structure to ints, so it is useful to abstract
on the pattern of repetition and define a general purpose combinator, which we
call sepby1. The combinator sepby1 is like many1 in that it recognises non-empty
sequences of a given parser p, but different in that the instances of p are separated
by a parser sep whose result values are ignored:

sepby1 :: Parser a -> Parser b -> Parser [a]

p ‘sepby1‘ sep = [x:xs | x <- p

, xs <- many [y | _ <- sep, y <- p]]

Note that the fact that the results of the sep parser are ignored is reflected in the
type of the sepby1 combinator: the sep parser gives results of type b, but this type
does not occur in the type [a] of the results of the combinator.

Now ints can be defined in a more compact form:

Monadic Parser Combinators 15

ints = [ns | _ <- char ’[’

, ns <- int ‘sepby1‘ char ’,’

, _ <- char ’]’]

In fact we can go a little further. The bracketing of parsers by other parsers whose
results are ignored — in the case above, the bracketing parsers are char ’[’ and
char ’]’ — is common enough to also merit its own combinator:

bracket :: Parser a -> Parser b -> Parser c -> Parser b

bracket open p close = [x | _ <- open, x <- p, _ <- close]

Now ints can be defined just as

ints = bracket (char ’[’)

(int ‘sepby1‘ char ’,’)

(char ’]’)

Finally, while many1 was defined in terms of many, the combinator sepby (for
possibly-empty sequences) is naturally defined in terms of sepby1:

sepby :: Parser a -> Parser b -> Parser [a]

p ‘sepby‘ sep = (p ‘sepby1‘ sep) ++ [[]]

4.3 Repetition with meaningful separators

The sepby combinators handle the case of parsing sequences of items separated by
text that can be ignored. In this final section on repetition, we address the more
general case in which the separators themselves carry meaning. The combinators
defined in this section are due to Fokker (1995).

Consider the problem of parsing simple arithmetic expressions such as 1+2-(3+4),
built up from natural numbers using addition, subtraction, and parentheses. The
two arithmetic operators are assumed to associate to the left (thus, for example,
1-2-3 should be parsed as (1-2)-3), and have the same precedence. The standard
BNF grammar for such expressions is written as follows:

expr ::= expr addop factor | factor
addop ::= + | -

factor ::= nat | (expr)

This grammar can be translated directly into a combinator parser:

expr :: Parser Int

addop :: Parser (Int -> Int -> Int)

factor :: Parser Int

expr = [f x y | x <- expr, f <- addop, y <- factor] ++ factor

addop = [(+) | _ <- char ’+’] ++ [(-) | _ <- char ’-’]

factor = nat ++ bracket (char ’(’) expr (char ’)’)

16 Graham Hutton and Erik Meijer

In fact, rather than just returning some kind of parse tree, the expr parser above
actually evaluates arithmetic expressions to their integer value: the addop parser
returns a function as its result value, which is used to combine the result values
produced by parsing the arguments to the operator.

Of course, however, there is a problem with the expr parser as defined above.
The fact that the operators associate to the left is taken account of by expr being
left-recursive (the first thing it does is make a recursive call to itself). Thus expr

never makes any progress, and hence does not terminate.
As is well-known, this kind of non-termination for parsers can be solved by re-

placing left-recursion by iteration. Looking at the expr grammar, we see that an
expression is a sequence of factors, separated by addops. Thus the parser for ex-
pressions can be re-defined using many as follows:

expr = [... | x <- factor

, fys <- many [(f,y) | f <- addop, y <- factor]]

This takes care of the non-termination, but it still remains to fill in the “...” part
of the new definition, which computes the value of an expression.

Suppose now that the input string is "1-2+3-4". Then after parsing using expr,
the variable x will be 1 and fys will be the list [((-),2), ((+),3), ((-),4)].
These can be reduced to a single value 1-2+3-4 = ((1-2)+3)-4 = -2 by folding:
the built-in function foldl is such that, for example, foldl g a [b,c,d,e] =

((a ‘g‘ b) ‘g‘ c) ‘g‘ d) ‘g‘ e. In the present case, we need to take g as the
function \x (f,y) -> f x y, and a as the integer x:

expr = [foldl (\x (f,y) -> f x y) x fys

| x <- factor

, fys <- many [(f,y) | f <- addop, y <- factor]]

Now, for example, applying expr to the input string "1+2-(3+4)" gives the result
[(-4,""), (3,"-(3+4)", (1,"+2-(3+4)")], as expected.

Playing the generalisation game once again, we can abstract on the pattern of
repetition in expr and define a new combinator. The combinator, chainl1, parses
non-empty sequences of items separated by operators that associate to the left:

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainl1‘ op = [foldl (\x (f,y) -> f x y) x fys

| x <- p

, fys <- many [(f,y) | f <- op, y <- p]]

Thus our parser for expressions can now be written as follows:

expr = factor ‘chainl1‘ addop

addop = [(+) | _ <- char ’+’] ++ [(-) | _ <- char ’-’]

factor = nat ++ bracket (char ’(’) expr (char ’)’)

Most operator parsers will have a similar structure to addop above, so it is useful
to abstract a combinator for building such parsers:

Monadic Parser Combinators 17

ops :: [(Parser a, b)] -> Parser b

ops xs = foldr1 (++) [[op | _ <- p] | (p,op) <- xs]

The built-in function foldr1 is such that, for example, foldr1 g [a,b,c,d] = a

‘g‘ (b ‘g‘ (c ‘g‘ d)). It is defined for any non-empty list. In the above case
then, foldr1 places the choice operator (++) between each parser in the list. Using
ops, our addop parser can now be defined by

addop = ops [(char ’+’, (+)), (char ’-’, (-))]

A possible inefficiency in the definition of the chainl1 combinator is the con-
struction of the intermediate list fys. This can be avoided by giving a direct re-
cursive definition of chainl1 that does not make use of foldl and many, using an
accumulating parameter to construct the final result:

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainl1‘ op = p ‘bind‘ rest

where

rest x = (op ‘bind‘ \f ->

p ‘bind‘ \y ->

rest (f x y)) ++ [x]

This definition has a natural operational reading. The parser p ‘chainl1‘ op first
parses a single p, whose result value becomes the initial accumulator for the rest

function. Then it attempts to parse an operator and a single p. If successful, the
accumulator and the result from p are combined using the function f returned from
parsing the operator, and the resulting value becomes the new accumulator when
parsing the remainder of the sequence (using a recursive call to rest). Otherwise,
the sequence is finished, and the accumulator is returned.

As another interesting application of chainl1, we can redefine our earlier parser
nat for natural numbers such that it does not construct an intermediate list of
digits. In this case, the op parser does not do any parsing, but returns the function
that combines a natural and a digit:

nat :: Parser Int

nat = [ord x - ord ’0’ | x <- digit] ‘chainl1‘ [op]

where

m ‘op‘ n = 10*m + n

Naturally, we can also define a combinator chainr1 that parses non-empty se-
quences of items separated by operators that associate to the right, rather than to
the left. For simplicity, we only give the direct recursive definition:

chainr1 :: Parser a -> Parser (a -> a -> a) -> Parser a

p ‘chainr1‘ op =

p ‘bind‘ \x ->

[f x y | f <- op, y <- p ‘chainr1‘ op] ++ [x]

That is, p ‘chainr1‘ op first parses a single p. Then it attempts to parse an oper-
ator and the rest of the sequence (using a recursive call to chainr1). If successful,

18 Graham Hutton and Erik Meijer

the pair of results from the first p and the rest of the sequence are combined us-
ing the function f returned from parsing the operator. Otherwise, the sequence is
finished, and the result from p is returned.

As an example of using chainr1, we extend our parser for arithmetic expressions
to handle exponentiation; this operator has higher precedence than the previous
two operators, and associates to the right:

expr = term ‘chainl1‘ addop

term = factor ‘chainr1‘ expop

factor = nat ++ bracket (char ’(’) expr (char ’)’)

addop = ops [(char ’+’, (+)), (char ’-’, (-))]

expop = ops [(char ’^’, (^))]

For completeness, we also define combinators chainl and chainr that have the
same behaviour as chainl1 and chainr1, except that they can also consume no
input, in which case a given value v is returned as the result:

chainl :: Parser a -> Parser (a -> a -> a) -> a -> Parser a

chainl p op v = (p ‘chainl1‘ op) ++ [v]

chainr :: Parser a -> Parser (a -> a -> a) -> a -> Parser a

chainr p op v = (p ‘chainr1‘ op) ++ [v]

In summary then, chainl and chainr provide a simple way to build parsers for
expression-like grammars. Using these combinators avoids the need for transfor-
mations to remove left-recursion in the grammar, that would otherwise result in
non-termination of the parser. They also avoid the need for left-factorisation of the
grammar, that would otherwise result in unnecessary backtracking; we will return
to this point in the next section.

5 Efficiency of parsers

Using combinators is a simple and flexible method of building parsers. However,
the power of the combinators — in particular, their ability to backtrack and return
multiple results — can lead to parsers with unexpected space and time performance
if one does not take care. In this section we outline some simple techniques that can
be used to improve the efficiency of parsers. Readers interested in further techniques
are referred to Röjemo’s thesis (1995), which contains a chapter on the use of heap
profiling tools in the optimisation of parser combinators.

Monadic Parser Combinators 19

5.1 Left factoring

Consider the simple problem of parsing and evaluating two natural numbers sepa-
rated by the addition symbol ‘+’, or by the subtraction symbol ‘-’. This specification
can be translated directly into the following parser:

eval :: Parser Int

eval = add ++ sub

where

add = [x+y | x <- nat, _ <- char ’+’, y <- nat]

sub = [x-y | x <- nat, _ <- char ’-’, y <- nat]

This parser gives the correct results, but is inefficient. For example, when parsing
the string "123-456" the number 123 will first be parsed by the add parser, that
will then fail because there is no ‘+’ symbol following the number. The correct parse
will only be found by backtracking in the input string, and parsing the number 123
again, this time from within the sub parser.

Of course, the way to avoid the possibility of backtracking and repeated parsing
is to left factorise the eval parser. That is, the initial use of nat in the component
parsers add and sub should be factorised out:

eval = [v | x <- nat, v <- add x ++ sub x]

where

add x = [x+y | _ <- char ’+’, y <- nat]

sub x = [x+y | _ <- char ’-’, y <- nat]

This new version of eval gives the same results as the original version, but requires
no backtracking. Using the new eval, the string "123-456" can now be parsed in
linear time. In fact we can go a little further, and right factorise the remaining
use of nat in both add and sub. This does not improve the efficiency of eval, but
arguably gives a cleaner parser:

eval = [f x y | x <- nat

, f <- ops [(char ’+’, (+)), (char ’-’, (-))]

, y <- nat]

In practice, most cases where left factorisation of a parser is necessary to improve
efficiency will concern parsers for some kind of expression. In such cases, manually
factorising the parser will not be required, since expression-like parsers can be built
using the chain combinators from the previous section, which already encapsulate
the necessary left factorisation.

The motto of this section is the following: backtracking is a powerful tool, but it
should not be used as a substitute for care in designing parsers.

5.2 Improving laziness

Recall the definition of the repetition combinator many:

many :: Parser a -> Parser [a]

many p = [x:xs | x <- p, xs <- many p] ++ [[]]

20 Graham Hutton and Erik Meijer

For example, applying many (char ’a’) to the input "aaab" gives the result
[("aaa","b"), ("aa","ab"), ("a","aab"),("","aaab")]. Since Gofer is lazy,
we would expect the a’s in the first result "aaa" to become available one at a time,
as they are consumed from the input. This is not in fact what happens. In practice
no part of the result "aaa" will be produced until all the a’s have been consumed.
In other words, many is not as lazy as we would expect.

But does this really matter? Yes, because it is common in functional programming
to rely on laziness to avoid the creation of large intermediate structures (Hughes,
1989). As noted by Wadler (1985; 1992b), what is needed to solve the problem with
many is a means to make explicit that the parser many p always succeeds. (Even
if p itself always fails, many p will still succeed, with the empty list as the result
value.) This is the purpose of the force combinator:

force :: Parser a -> Parser a

force p = \inp -> let x = p inp in

(fst (head x), snd (head x)) : tail x

Given a parser p that always succeeds, the parser force p has the same behaviour
as p, except that before any parsing of the input string is attempted the result of
the parser is immediately forced to take on the form (⊥,⊥):⊥, where ⊥ represents
a presently undefined value.

Using force, the many combinator can be re-defined as follows:

many :: Parser a -> Parser [a]

many p = force ([x:xs | x <- p, xs <- many p] ++ [[]])

The use of force ensures that many p and all of its recursive calls return at least
one result. The new definition of many now has the expected behaviour under lazy
evaluation. For example, applying many (char ’a’) to the partially-defined string
’a’:⊥ gives the partially-defined result (’a’:⊥,⊥):⊥. In contrast, with the old
version of many, the result for this example is the completely undefined value ⊥.

Some readers might wonder why force is defined using the following selection
functions, rather than by pattern matching?

fst :: (a,b) -> a head :: [a] -> a

snd :: (a,b) -> b tail :: [a] -> [a]

The answer is that, depending on the semantics of patterns in the particular im-
plementation language, a definition of force using patterns might not have the
expected behaviour under lazy evaluation.

5.3 Limiting the number of results

Consider the simple problem of parsing a natural number, or if no such number is
present just returning the number 0 as the default result. A first approximation to
such a parser might be as follows:

number :: Parser Int

number = nat ++ [0]

Monadic Parser Combinators 21

However, this does not quite have the required behaviour. For example, applying
number to the input "hello" gives the correct result [(0,"hello")]. On the other
hand, applying number to "123" gives the result [(123,""), (0,"123")], whereas
we only really want the single result [(123,"")].

One solution to the above problem is to make use of deterministic parser com-
binators (see section 7.5) — all parsers built using such combinators are restricted
by construction to producing at most one result. A more general solution, however,
is to retain the flexibility of the non-deterministic combinators, but to provide a
means to make explicit that we are only interested in the first result produced by
certain parsers, such as number. This is the purpose of the first combinator:

first :: Parser a -> Parser a

first p = \inp -> case p inp of

[] -> []

(x:xs) -> [x]

Given a parser p, the parser first p has the same behaviour as p, except that
only the first result (if any) is returned. Using first we can define a deterministic
version (+++) of the standard choice combinator (++) for parsers:

(+++) :: Parser a -> Parser a -> Parser a

p +++ q = first (p ++ q)

Replacing (++) by (+++) in number gives the desired behaviour.
As well as being used to ensure the correct behaviour of parsers, using (+++) can

also improve their efficiency. As an example, consider a parser that accepts either
of the strings "yellow" or "orange":

colour :: Parser String

colour = p1 ++ p2

where

p1 = string "yellow"

p2 = string "orange"

Recall now the behaviour of the choice combinator (++): it takes a string, applies
both argument parsers to this string, and concatenates the resulting lists. Thus in
the colour example, if p1 is successfully applied then p2 will still be applied to the
same string, even though it is guaranteed to fail. This inefficiency can be avoided
using (+++), which ensures that if p1 succeeds then p2 is never applied:

colour = p1 +++ p2

where

p1 = string "yellow"

p2 = string "orange"

More generally, if we know that a parser of the form p ++ q is deterministic (only
ever returns at most one result value), then p +++ q has the same behaviour, but is
more efficient: if p succeeds then q is never applied. In the remainder of this article
it will mostly be the (+++) choice combinator that is used. For reasons of efficiency,

22 Graham Hutton and Erik Meijer

in the combinator libraries that accompany this article, the repetition combinators
from the previous section are defined using (+++) rather than (++).

We conclude this section by asking why first is defined by pattern matching,
rather than by using the selection function take :: Int -> [a] -> [a] (where,
for example, take 3 "parsing" = "par"):

first p = \inp -> take 1 (p inp)

The answer concerns the behaviour under lazy evaluation. To see the problem, let
us unfold the use of take in the above definition:

first p = \inp -> case p inp of

[] -> []

(x:xs) -> x : take 0 xs

When the sub-expression take 0 xs is evaluated, it will yield []. However, under
lazy evaluation this computation will be suspended until its value is required. The
effect is that the list xs may be retained in memory for some time, when in fact
it can safely be discarded immediately. This is an example of a space leak . The
definition of first using pattern matching does not suffer from this problem.

6 Handling lexical issues

Traditionally, a string to be parsed is not supplied directly to a parser, but is
first passed through a lexical analysis phase (or lexer) that breaks the string into
a sequence of tokens (Aho et al., 1986). Lexical analysis is a convenient place to
remove white-space (spaces, newlines, and tabs) and comments from the input
string, and to distinguish between identifiers and keywords.

Since lexers are just simple parsers, they can be built using parser combinators,
as discussed by Hutton (1992). However, as we shall see in this section, the need
for a separate lexer can often be avoided (even for substantial grammars such as
that for Gofer), with lexical issues being handled within the main parser by using
some special purpose combinators.

6.1 White-space, comments, and keywords

We begin by defining a parser that consumes white-space from the beginning of a
string, with a dummy value () returned as result:

spaces :: Parser ()

spaces = [() | _ <- many1 (sat isSpace)]

where

isSpace x =

(x == ’ ’) || (x == ’\n’) || (x == ’\t’)

Similarly, a single-line Gofer comment can be consumed as follows:

comment :: Parser ()

comment = [() | _ <- string "--"

, _ <- many (sat (\x -> x /= ’\n’))]

Monadic Parser Combinators 23

We leave it as an exercise for the reader to define a parser for consuming multi-line
Gofer comments {- ... -}, which can be nested.

After consuming white-space, there may still be a comment left to consume from
the input string. Dually, after a comment there may still be white-space. Thus we
are motivated to defined a special parser that repeatedly consumes white-space and
comments until no more remain:

junk :: Parser ()

junk = [() | _ <- many (spaces +++ comment)]

Note that while spaces and comment can fail, the junk parser always succeeds. We
define two combinators in terms of junk: parse removes junk before applying a
given parser, and token removes junk after applying a parser:

parse :: Parser a -> Parser a

parse p = [v | _ <- junk, v <- p]

token :: Parser a -> Parser a

token p = [v | v <- p, _ <- junk]

With the aid of these two combinators, parsers can be modified to ignore white-
space and comments. Firstly, parse is applied once to the parser as a whole, ensur-
ing that input to the parser begins at a significant character. And secondly, token
is applied once to all sub-parsers that consume complete tokens, thus ensuring that
the input always remains at a significant character.

Examples of parsers for complete tokens are nat and int (for natural numbers
and integers), parsers of the form string xs (for symbols and keywords), and
ident (for identifiers). It is useful to define special versions of these parsers — and
more generally, special versions of any user-defined parsers for complete tokens —
that encapsulate the necessary application of token:

natural :: Parser Int

natural = token nat

integer :: Parser Int

integer = token int

symbol :: String -> Parser String

symbol xs = token (string xs)

identifier :: [String] -> Parser String

identifier ks = token [x | x <- ident, not (elem x ks)]

Note that identifier takes a list of keywords as an argument, where a keyword
is a string that is not permitted as an identifier. For example, in Gofer the strings
“data” and “where” (among others) are keywords. Without the keyword check,
parsers defined in terms of identifier could produce unexpected results, or involve
unnecessary backtracking to construct the correct parse of the input string.

24 Graham Hutton and Erik Meijer

6.2 A parser for λ-expressions

To illustrate the use of the new combinators given above, let us define a parser for
simple λ-expressions extended with a “let” construct for local definitions. Parsed
expressions will be represented in Gofer as follows:

data Expr = App Expr Expr -- application

| Lam String Expr -- lambda abstraction

| Let String Expr Expr -- local definition

| Var String -- variable

Now a parser expr :: Parser Expr can be defined by:

expr = atom ‘chainl1‘ [App]

atom = lam +++ local +++ var +++ paren

lam = [Lam x e | _ <- symbol "\\"

, x <- variable

, _ <- symbol "->"

, e <- expr]

local = [Let x e e’ | _ <- symbol "let"

, x <- variable

, _ <- symbol "="

, e <- expr

, _ <- symbol "in"

, e’ <- expr]

var = [Var x | x <- variable]

paren = bracket (symbol "(") expr (symbol ")")

variable = identifier ["let","in"]

Note how the expr parser handles white-space and comments by using the symbol

parser in place of string and char. Similarly, the keywords “let” and “in” are
handled by using identifier to define the parser for variables. Finally, note how
applications (f e1 e2 ... en) are parsed in the form (((f e1) e2) ...) by
using the chainl1 combinator.

7 Factorising the parser monad

Up to this point in the article, combinator parsers have been our only example of
the notion of a monad. In this section we define a number of other monads related
to the parser monad, leading up to a modular reformulation of the parser monad
in terms of two simpler monads (Jones, 1995a). The immediate benefit is that, as

Monadic Parser Combinators 25

we shall see, the basic parser combinators no longer need to be defined explicitly.
Rather, they arise automatically as a special case of lifting monad operations from
a base monad m to a certain other monad parameterised over m. This also means
that, if we change the nature of parsers by modifying the base monad (for example,
limiting parsers to producing at most one result), new combinators for the modified
monad of parsers are also defined automatically.

7.1 The exception monad

Before starting to define other monads, it is useful to first focus briefly on the
intuition behind the use of monads in functional programming (Wadler, 1992a).

The basic idea behind monads is to distinguish the values that a computation
can produce from the computation itself. More specifically, given a monad m and
a type a, we can think of m a as the type of computations that yield results of
type a, with the nature of the computation captured by the type constructor m.
The combinators result and bind (with zero and (++) if appropriate) provide a
means to structure the building of such computations:

result :: m a

bind :: m a -> (a -> m b) -> m b

zero :: m a

(++) :: m a -> m a -> m a

From a computational point of view, result converts values into computations
that yield those values; bind chains two computations together in sequence, with
results of the first computation being made available for use in the second; zero is
the trivial computation that does nothing; and finally, (++) is some kind of choice
operation for computations.

Consider, for example, the type constructor Maybe:

data Maybe a = Just a | Nothing

We can think of a value of type Maybe a as a computation that either succeeds with
a value of type a, or fails, producing no value. Thus, the type constructor Maybe

captures computations that have the possibility to fail.
Defining the monad combinators for a given type constructor is usually just a

matter of making the “obvious definitions” suggested by the types of the combina-
tors. For example, the type constructor Maybe can be made into a monad with a
zero and plus using the following definitions:

instance Monad Maybe where

-- result :: a -> Maybe a

result x = Just x

-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b

(Just x) ‘bind‘ f = f x

Nothing ‘bind‘ f = Nothing

26 Graham Hutton and Erik Meijer

instance Monad0Plus Maybe where

-- zero :: Maybe a

zero = Nothing

-- (++) :: Maybe a -> Maybe a -> Maybe a

Just x ++ y = Just x

Nothing ++ y = y

That is, result converts a value into a computation that succeeds with this value;
bind is a sequencing operator, with a successful result from the first computation
being available for use in the second computation; zero is the computation that
fails; and finally, (++) is a (deterministic) choice operator that returns the first
computation if it succeeds, and the second otherwise.

Since failure can be viewed as a simple kind of exception, Maybe is sometimes
called the exception monad in the literature (Spivey, 1990).

7.2 The non-determinism monad

A natural generalisation of Maybe is the list type constructor []. While a value of
type Maybe a can be thought of as a computation that either succeeds with a single
result of type a or fails, a value of type [a] can be thought of as a computation
that has the possibility to succeed with any number of results of type a, including
zero (which represents failure). Thus the list type constructor [] can be used to
capture non-deterministic computations.

Now [] can be made into a monad with a zero and plus:

instance Monad [] where

-- result :: a -> [a]

result x = [x]

-- bind :: [a] -> (a -> [b]) -> [b]

[] ‘bind‘ f = []

(x:xs) ‘bind‘ f = f x ++ (xs ‘bind‘ f)

instance Monad0Plus [] where

-- zero :: [a]

zero = []

-- (++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

That is, result converts a value into a computation that succeeds with this single
value; bind is a sequencing operator for non-deterministic computations; zero al-
ways fails; and finally, (++) is a (non-deterministic) choice operator that appends
the results of the two argument computations.

Monadic Parser Combinators 27

7.3 The state-transformer monad

Consider the (binary) type constructor State:

type State s a = s -> (a,s)

Values of type State s a can be interpreted as follows: they are computations that
take an initial state of type s, and yield a value of type a together with a new state
of type s. Thus, the type constructor State s obtained by applying State to a
single type s captures computations that involve state of type s. We will refer to
values of type State s a as stateful computations.

Now State s can be made into a monad:

instance Monad (State s) where

-- result :: a -> State s a

result v = \s -> (v,s)

-- bind :: State s a -> (a -> State s b) -> State s b

st ‘bind‘ f = \s -> let (v,s’) = st s in f v s’

That is, result converts a value into a stateful computation that returns that value
without modifying the internal state, and bind composes two stateful computations
in sequence, with the result value from the first being supplied as input to the
second. Thinking pictorially in terms of boxes and wires is a useful aid to becoming
familiar with these two operations (Jones & Launchbury, 1994).

The state-transformer monad State s does not have a zero and a plus. However,
as we shall see in the next section, the parameterised state-transformer monad over
a given based monad m does have a zero and a plus, provided that m does.

To allow us to access and modify the internal state, a few extra operations on
the monad State s are introduced. The first operation, update, modifies the state
by applying a given function, and returns the old state as the result value of the
computation. The remaining two operations are defined in terms of update: set
replaces the state with a new state, and returns the old state as the result; fetch
returns the state without modifying it.

update :: (s -> s) -> State s s

set :: s -> State s s

fetch :: State s s

update f = \s -> (s, f s)

set s = update (_ -> s)

fetch = update id

In fact State s is not the only monad for which it makes sense to define these
operations. For this reason we encapsulate the extra operations in a class, so that
the same names can be used for the operations of different monads:

class Monad m => StateMonad m s where

update :: (s -> s) -> m s

28 Graham Hutton and Erik Meijer

set :: s -> m s

fetch :: m s

set s = update (_ -> s)

fetch = update id

This declaration can be read as follows: a type constructor m and a type s are
together a member of the class StateMonad if m is a member of the class Monad,
and if m is also equipped with update, set, and fetch operations of the specified
types. Moreover, the fact that set and fetch can be defined in terms of update is
also reflected in the declaration, by means of default definitions.

Now because State s is already a monad, it can be made into a state monad
using the update operation as defined earlier:

instance StateMonad (State s) s where

-- update :: (s -> s) -> State s s

update f = \s -> (s, f s)

7.4 The parameterised state-transformer monad

Recall now our type of combinator parsers:

type Parser a = String -> [(a,String)]

We see now that parsers combine two kinds of computation: non-deterministic com-
putations (the result of a parser is a list), and stateful computations (the state is the
string being parsed). Abstracting from the specific case of returning a list of results,
the Parser type gives rise to a generalised version of the State type constructor
that applies a given type constructor m to the result of the computation:

type StateM m s a = s -> m (a,s)

Now StateM m s can be made into a monad with a zero and a plus, by inheriting
the monad operations from the base monad m:

instance Monad m => Monad (StateM m s) where

-- result :: a -> StateM m s a

result v = \s -> result (v,s)

-- bind :: StateM m s a ->

-- (a -> StateM m s b) -> StateM m s b

stm ‘bind‘ f = \s -> stm s ‘bind‘ \(v,s’) -> f v s’

instance Monad0Plus m => Monad0Plus (StateM m s) where

-- zero :: StateM m s a

zero = \s -> zero

-- (++) :: StateM m s a -> StateM m s a -> StateM m s a

stm ++ stm’ = \s -> stm s ++ stm’ s

Monadic Parser Combinators 29

That is, result converts a value into a computation that returns this value without
modifying the internal state; bind chains two computations together; zero is the
computation that fails regardless of the input state; and finally, (++) is a choice
operation that passes the same input state through to both of the argument com-
putations, and combines their results.

In the previous section we defined the extra operations update, set and fetch

for the monad State s. Of course, these operations can also be defined for the
parameterised state-transformer monad StateM m s. As previously, we only need
to define update, the remaining two operations being defined automatically via
default definitions:

instance Monad m => StateMonad (StateM m s) s where

-- update :: Monad m => (s -> s) -> StateM m s s

update f = \s -> result (s, f s)

7.5 The parser monad revisited

Recall once again our type of combinator parsers:

type Parser a = String -> [(a,String)]

This type can now be re-expressed using the parameterised state-transformer monad
StateM m s by taking [] for m, and String for s:

type Parser a = StateM [] String a

But why view the Parser type in this way? The answer is that all the basic parser
combinators no longer need to be defined explicitly (except one, the parser item for
single characters), but rather arise as an instance of the general case of extending
monad operations from a type constructor m to the type constructor StateM m s.
More specifically, since [] forms a monad with a zero and a plus, so does State []

String, and hence Gofer automatically provides the following combinators:

result :: a -> Parser a

bind :: Parser a -> (a -> Parser b) -> Parser b

zero :: Parser a

(++) :: Parser a -> Parser a -> Parser a

Moreover, defining the parser monad in this modular way in terms of StateM

means that, if we change the type of parsers, then new combinators for the modified
type are also defined automatically. For example, consider replacing

type Parser a = StateM [] String a

by a new definition in which the list type constructor [] (which captures non-
deterministic computations that can return many results) is replaced by the Maybe

type constructor (which captures deterministic computations that either fail, re-
turning no result, or succeed with a single result):

30 Graham Hutton and Erik Meijer

data Maybe a = Just a | Nothing

type Parser a = StateM Maybe String a

Since Maybe forms a monad with a zero and a plus, so does the re-defined Parser

type constructor, and hence Gofer automatically provides result, bind, zero, and
(++) combinators for deterministic parsers. In earlier approaches that do not exploit
the monadic nature of parsers (Wadler, 1985; Hutton, 1992; Fokker, 1995), the basic
combinators would have to be re-defined by hand.

The only basic parsing primitive that does not arise from the monadic structure
of the Parser type is the parser item for consuming single characters:

item :: Parser Char

item = \inp -> case inp of

[] -> []

(x:xs) -> [(x,xs)]

However, item can now be re-defined in monadic style. We first fetch the current
state (the input string); if the string is empty then the item parser fails, otherwise
the first character is consumed (by applying the tail function to the state), and
returned as the result value of the parser:

item = [x | (x:_) <- update tail]

The advantage of the monadic definition of item is that it does not depend upon
the internal details of the Parser type. Thus, for example, it works equally well for
both the non-deterministic and deterministic versions of Parser.

8 Handling the offside rule

Earlier (section 6) we showed that the need for a lexer to handle white-space,
comments, and keywords can be avoided by using special combinators within the
main parser. Another task usually performed by a lexer is handling the Gofer offside
rule. This rule allows the grouping of definitions in a program to be indicated
using indentation, and is usually implemented by the lexer inserting extra tokens
(concerning indentation) into its output stream.

In this section we show that Gofer’s offside rule can be handled in a simple and
natural manner without a separate lexer, by once again using special combinators.
Our approach was inspired by the monadic view of parsers, and is a development
of an idea described earlier by Hutton (1992).

8.1 The offside rule

Consider the following simple Gofer program:

a = b + c

where

b = 10

Monadic Parser Combinators 31

c = 15 - 5

d = a * 2

It is clear from the use of indentation that a and d are intended to be global
definitions, with b and c local definitions to a. Indeed, the above program can be
viewed as a shorthand for the following program, in which the grouping of definitions
is made explicit using special brackets and separators:

{ a = b + c

where

{ b = 10

; c = 15 - 5 }

; d = a * 2 }

How the grouping of Gofer definitions follows from their indentation is formally
specified by the offside rule. The essence of the rule is as follows: consecutive defi-
nitions that begin in the same column c are deemed to be part of the same group.
To make parsing easier, it is further required that the remainder of the text of each
definition (excluding white-space and comments, of course) in a group must occur
in a column strictly greater than c. In terms of the offside rule then, definitions a

and d in the example program above are formally grouped together (and similarly
for b and c) because they start in the same column as one another.

8.2 Modifying the type of parsers

To implement the offside rule, we will have to maintain some extra information
during parsing. First of all, since column numbers play a crucial role in the offside
rule, parsers will need to know the column number of the first character in their
input string. In fact, it turns out that parsers will also require the current line
number. Thus our present type of combinator parsers,

type Parser a = StateM [] String a

is revised to the following type, in which the internal state of a parser now contains
a (line,column) position in addition to a string:

type Parser a = StateM [] Pstring a

type Pstring = (Pos,String)

type Pos = (Int,Int)

In addition, parsers will need to know the starting position of the current defini-
tion being parsed — if the offside rule is not in effect, this definition position can
be set with a negative column number. Thus our type of parsers is revised once
more, to take the current definition position as an extra argument:

type Parser a = Pos -> StateM [] Pstring a

32 Graham Hutton and Erik Meijer

Another option would have been to maintain the definition position in the parser
state, along with the current position and the string to be parsed. However, defini-
tion positions can be nested, and supplying the position as an extra argument to
parsers — as opposed to within the parser state — is more natural from the point
of view of implementing nesting of positions.

Is the revised Parser type still a monad? Abstracting from the details, the body
of the Parser type definition is of the form s -> m a (in our case s is Pos, m is the
monad StateM [] Pstring, and a is the parameter type a.) We recognise this as
being similar to the type s -> m (a,s) of parameterised state-transformers, the
difference being that the type s of states no longer occurs in the type of the result:
in other words, the state can be read, but not modified. Thus we can think of s ->

m a as the type of parameterised state-readers. The monadic nature of this type is
the topic of the next section.

8.3 The parameterised state-reader monad

Consider the type constructor ReaderM, defined as follows:

type ReaderM m s a = s -> m a

In a similar way to StateM m s, ReaderM m s can be made into a monad with a
zero and a plus, by inheriting the monad operations from the base monad m:

instance Monad m => Monad (ReaderM m s) where

-- result :: a -> ReaderM m s a

result v = \s -> result v

-- bind :: ReaderM m s a ->

-- (a -> ReaderM m s b) -> ReaderM m s b

srm ‘bind‘ f = \s -> srm s ‘bind‘ \v -> f v s

instance Monad0Plus m => Monad0Plus (ReaderM m s) where

-- zero :: ReaderM m s a

zero = \s -> zero

-- (++) :: ReaderM m s a ->

-- ReaderM m s a -> ReaderM m s a

srm ++ srm’ = \s -> srm s ++ srm’ s

That is, result converts a value into a computation that returns this value without
consulting the state; bind chains two computations together, with the same state
being passed to both computations (contrast with the bind operation for StateM,
in which the second computation receives the new state produced by the first com-
putation); zero is the computation that fails; and finally, (++) is a choice operation
that passes the same state to both of the argument computations.

To allow us to access and set the state, a couple of extra operations on the
parameterised state-reader monad ReaderM m s are introduced. As for StateM, we

Monadic Parser Combinators 33

encapsulate the extra operations in a class. The operation env returns the state as
the result of the computation, while setenv replaces the current state for a given
computation with a new state:

class Monad m => ReaderMonad m s where

env :: m s

setenv :: s -> m a -> m a

instance Monad m => ReaderMonad (ReaderM m s) s where

-- env :: Monad m => ReaderM m s s

env = \s -> result s

-- setenv :: Monad m => s ->

-- ReaderM m s a -> ReaderM m s a

setenv s srm = _ -> srm s

The name env comes from the fact that one can think of the state supplied to a
state-reader as being a kind of env ironment. Indeed, in the literature state-reader
monads are sometimes called environment monads.

8.4 The new parser combinators

Using the ReaderM type constructor, our revised type of parsers

type Parser a = Pos -> StateM [] Pstring a

can now be expressed as follows:

type Parser a = ReaderM (StateM [] Pstring) Pos a

Now since [] forms a monad with a zero and a plus, so does StateM [] Pstring,
and hence so does ReaderM (StateM [] Pstring) Pos. Thus Gofer automatically
provides result, bind, zero, and (++) operations for parsers that can handle the
offside rule. Since the type of parsers is now defined in terms of ReaderM at the top
level, the extra operations env and setenv are also provided for parsers. Moreover,
the extra operation update (and the derived operations set and fetch) from the
underlying state monad can be lifted to the new type of parsers — or more generally,
to any parameterised state-reader monad — by ignoring the environment:

instance StateMonad m a => StateMonad (ReaderM m s) a where

-- update :: StateMonad m a => (a -> a) -> ReaderM m s a

update f = _ -> update f

Now that the internal state of parsers has been modified (from String to Pstring),
the parser item for consuming single characters from the input must also be mod-
ified. The new definition for item is similar to the old,

item :: Parser Char

item = [x | (x:_) <- update tail]

34 Graham Hutton and Erik Meijer

except that the item parser now fails if the position of the character to be consumed
is not onside with respect to current definition position:

item :: Parser Char

item = [x | (pos,x:_) <- update newstate

, defpos <- env

, onside pos defpos]

A position is onside if its column number is strictly greater than the current defi-
nition column. However, the first character of a new definition begins in the same
column as the definition column, so this is handled as a special case:

onside :: Pos -> Pos -> Bool

onside (l,c) (dl,dc) = (c > dc) || (l == dl)

The remaining auxiliary function, newstate, consumes the first character from the
input string, and updates the current position accordingly (for example, if a newline
character was consumed, the current line number is incremented, and the current
column number is set back to zero):

newstate :: Pstring -> Pstring

newstate ((l,c),x:xs)

= (newpos,xs)

where

newpos = case x of

’\n’ -> (l+1,0)

’\t’ -> (l,((c ‘div‘ 8)+1)*8)

_ -> (l,c+1)

One aspect of the offside rule still remains to be addressed: for the purposes
of this rule, white-space and comments are not significant, and should always be
successfully consumed even if they contain characters that are not onside. This can
be handled by temporarily setting the definition position to (0,−1) within the junk
parser for white-space and comments:

junk :: Parser ()

junk = [() | _ <- setenv (0,-1) (many (spaces +++ comment))]

All that remains now is to define a combinator that parses a sequence of defini-
tions subject to the Gofer offside rule:

many1_offside :: Parser a -> Parser [a]

many1_offside p = [vs | (pos,_) <- fetch

, vs <- setenv pos (many1 (off p))]

That is, many1 offside p behaves just as many1 (off p), except that within this
parser the definition position is set to the current position. (There is no need to
skip white-space and comments before setting the position, since this will already
have been effected by proper use of the lexical combinators token and parse.) The
auxiliary combinator off takes care of setting the definition position locally for

Monadic Parser Combinators 35

each new definition in the sequence, where a new definition begins if the column
position equals the definition column position:

off :: Parser a -> Parser a

off p = [v | (dl,dc) <- env

, ((l,c),_) <- fetch

, c == dc

, v <- setenv (l,dc) p]

For completeness, we also define a combinator many offside that has the same
behaviour as the combinator many1 offside, except that it can also parse an empty
sequence of definitions:

many_offside :: Parser a -> Parser [a]

many_offside p = many1_offside p +++ [[]]

To illustrate the use of the new combinators defined above, let us modify our
parser for λ-expressions (section 6.2) so that the “let” construct permits non-
empty sequences of local definitions subject to the offside rule. The datatype Expr of
expressions is first modified so that the Let constructor has type [(String,Expr)]
-> Expr instead of String -> Expr -> Expr:

data Expr = ...

| Let [(String,Expr)] Expr

| ...

The only part of the parser that needs to be modified is the parser local for local
definitions, which now accepts sequences:

local = [Let ds e | _ <- symbol "let"

, ds <- many1_offside defn

, _ <- symbol "in"

, e <- expr]

defn = [(x,e) | x <- identifier

, _ <- symbol "="

, e <- expr]

We conclude this section by noting that the use of the offside rule when laying out
sequences of Gofer definitions is not mandatory. As shown in our initial example, one
also has the option to include explicit layout information in the form of parentheses
“{” and “}” around the sequence, with definitions separated by semi-colons “;”.
We leave it as an exercise to the reader to use many offside to define a combinator
that implements this convention.

In summary then, to permit combinator parsers to handle the Gofer offside rule,
we changed the type of parsers to include some positional information, modified
the item and junk combinators accordingly, and defined two new combinators:
many1 offside and many offside. All other necessary redefining of combinators
is done automatically by the Gofer type system.

36 Graham Hutton and Erik Meijer

9 Acknowledgements

The first author was employed by the University of Utrecht during part of the
writing of this article, for which funding is gratefully acknowledged.

Special thanks are due to Luc Duponcheel for many improvements to the im-
plementation of the combinator libraries in Gofer (particularly concerning the use
of type classes and restricted type synonyms), and to Mark P. Jones for detailed
comments on the final draft of this article.

10 Appendix: a parser for data definitions

To illustrate the monadic parser combinators developed in this article in a real-life
setting, we consider the problem of parsing a sequence of Gofer datatype definitions.
An example of such a sequence is as follows:

data List a = Nil | Cons a (List a)

data Tree a b = Leaf a

| Node (Tree a b, b, Tree a b)

Within the parser, datatypes will be represented as follows:

type Data = (String, -- type name

[String], -- parameters

[(String,[Type])]) -- constructors and arguments

The representation Type for types will be treated shortly. A parser datadecls ::

Parser [Data] for a sequence of datatypes can now be defined by

datadecls = many_offside datadecl

datadecl = [(x,xs,b) | _ <- symbol "data"

, x <- constructor

, xs <- many variable

, _ <- symbol "="

, b <- condecl ‘sepby1‘ symbol "|"]

constructor = token [(x:xs) | x <- upper

, xs <- many alphanum]

variable = identifier ["data"]

condecl = [(x,ts) | x <- constructor

, ts <- many type2]

There are a couple of points worth noting about this parser. Firstly, all lexical
issues (white-space and comments, the offside rule, and keywords) are handled by
combinators. And secondly, since constructor is a parser for a complete token, the
token combinator is applied within its definition.

Monadic Parser Combinators 37

Within the parser, types will be represented as follows:

data Type = Arrow Type Type -- function

| Apply Type Type -- application

| Var String -- variable

| Con String -- constructor

| Tuple [Type] -- tuple

| List Type -- list

A parser type0 :: Parser Type for types can now be defined by

type0 = type1 ‘chainr1‘ [Arrow | _ <- symbol "->"]

type1 = type2 ‘chainl1‘ [Apply]

type2 = var +++ con +++ list +++ tuple

var = [Var x | x <- variable]

con = [Con x | x <- constructor]

list = [List x | x <- bracket

(symbol "[")

type0

(symbol "]")]

tuple = [f ts | ts <- bracket

(symbol "(")

(type0 ‘sepby‘ symbol ",")

(symbol ")")]

where f [t] = t

f ts = Tuple ts

Note how chainr1 and chainl1 are used to handle parsing of function-types and
application. Note also that (as in Gofer) building a singleton tuple (t) of a type t

is not possible, since (t) is treated as a parenthesised expression.

References

Aho, A., Sethi, R., & Ullman, J. (1986). Compilers — principles, techniques and tools.
Addison-Wesley.

Burge, W.H. (1975). Recursive programming techniques. Addison-Wesley.

Fokker, Jeroen. 1995 (May). Functional parsers. Lecture notes of the Baastad Spring
school on functional programming.

Gill, Andy, & Marlow, Simon. 1995 (Jan.). Happy: the parser generator for Haskell.
University of Glasgow.

Hughes, John. (1989). Why functional programming matters. The computer journal,
32(2), 98–107.

Hutton, Graham. (1992). Higher-order functions for parsing. Journal of functional pro-
gramming, 2(3), 323–343.

38 Graham Hutton and Erik Meijer

Jones, Mark P. (1994). Gofer 2.30a release notes. Unpublished manuscript.

Jones, Mark P. (1995a). Functional programming beyond the Hindley/Milner type system.
Proc. lecture notes of the Baastad spring school on functional programming.

Jones, Mark P. (1995b). The Gofer distribution. Available from the University of Not-
tingham: http://www.cs.nott.ac.uk/Department/Staff/mpj/.

Jones, Mark P. (1995c). A system of constructor classes: overloading and implicit higher-
order polymorphism. Journal of functional programming, 5(1), 1–35.

Jones, Simon Peyton, & Launchbury, John. (1994). State in Haskell. University of Glasgow.

Landin, Peter. (1966). The next 700 programming languages. Communications of the
ACM, 9(3).

Mogensen, Torben. (1993). Ratatosk: a parser generator and scanner generator for Gofer.
University of Copenhagen (DIKU).

Moggi, Eugenio. (1989). Computation lambda-calculus and monads. Proc. IEEE sympo-
sium on logic in computer science. A extended version of the paper is available as a
technical report from the University of Edinburgh.

Röjemo, Niklas. (1995). Garbage collection and memory efficiency in lazy functional lan-
guages. Ph.D. thesis, Chalmers University of Technology.

Spivey, Mike. (1990). A functional theory of exceptions. Science of computer programming,
14, 25–42.

Wadler, Philip. (1985). How to replace failure by a list of successes. Proc. conference on
functional programming and computer architecture. Springer–Verlag.

Wadler, Philip. (1990). Comprehending monads. Proc. ACM conference on Lisp and
functional programming.

Wadler, Philip. (1992a). The essence of functional programming. Proc. principles of
programming languages.

Wadler, Philip. (1992b). Monads for functional programming. Broy, Manfred (ed), Proc.
Marktoberdorf Summer school on program design calculi. Springer–Verlag.

