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Abstract

While programming in a relational framework has much to o�er over the
functional style in terms of expressiveness, computing with relations is less
e�cient, and more semantically troublesome. In this paper we propose a
novel blend of the functional and relational styles. We identify a class of causal
relations , which inherit some of the bi{directionality properties of relations,
but retain the e�ciency and semantic foundations of the functional style.

1 Introduction

In his ACM Turing Award Lecture, Backus presented a new style of programming,
in which programs are built piecewise by combining smaller programs [Backus78]. In
[Sheeran83], Sheeran showed how the same approach could be used to good e�ect in
VLSI design. In keeping with the special constraints of hardware, many designs have
a regular structure, with components communicating, often bi{directionally, only
with their immediate neighbours. With function composition as the main combining
form however, circuits with bi{directional data 
ow patterns tend to have rather
contorted descriptions in the functional style. This problem lead Sheeran to use
binary relations rather than functions as the underlying model of circuitry, thereby
removing the distinction between input and output which causes the problem in the
�rst place. An overview of the relational language Ruby is presented in Section 2.

Unfortunately, the many bene�ts of relations do not come for free. While rela-
tions have much to o�er over functions for speci�cation and re�nement of a program
(see Section 2.4), when it comes to execution time, functions are clear winners. In
particular, with no inherent notion of data{
ow, computing with relations is gen-
erally speaking much less e�cient than computing with functions. Furthermore,
relational languages are not so semantically well behaved as their functional counter-
parts. For example, it is known that the standard �xed{point approach to recursion
does not naturally extend to the relational world.

In this paper, we propose a novel blend of the functional and relational styles. In
Section 3, we identify a class of functional or causal relations. Informally speaking,

�Appears as [Hutton90]. Authors e{mail address: graham@dcs.glasgow.ac.uk.



a relation is causal if we can identify an \input" part of the relation, which uniquely
determines the remaining \output" part. Unlike functions however, the input part
of a causal relation is not restricted to its domain, nor output part to the range;
indeed, inputs and outputs may be interleaved throughout the domain and range.
Furthermore, a causal relation may have many such functional interpretations. The
intention is that a causal language brings some of the expressive power of a truly
relational language, without incurring semantic and implementation problems. It is
clear that many hardware style programs fall naturally into the causal class.

When two causal relations are composed, it is reasonable to expect that inputs on
one side join with outputs on the other, and vice{versa. In Section 3.2 we �nd that
this (and one other) restriction is in fact necessary to ensure that causal relations
have the expected properties. Finally, in Section 4 we describe a simple system in
which we may capture the functional ways in which a causal program may be used.

2 Programming in Hardware

In this section, we present an overview of the Ruby style of relational programming.
The language is developed incrementally, beginning with a functional framework in
2.1, introducing streams in 2.2, structural recursion in 2.3, and �nally, moving to
relations in 2.4. Ruby itself is explained more fully in [Jones90b], where it is used
in the stepwise derivation of many interesting hardware style programs.

2.1 Constructive programming

In the Miranda1 style of functional programming, functions are commonly de�ned
using abstraction (e.g. f x = x+1 de�nes a function which increments a number). In
the FP [Backus78] style however, functions are built indirectly by combining other
functions in various ways. Examples of such constructions include composition, de-
�ned by f � g b= �x: f (g x), and product, de�ned by f � g b= �(x;y): (f x; g y).
Later on in this section, concerns with the shape of a program lead us to use back-
ward composition \ ; ", de�ned by f ; g b= g � f , rather than the more usual forward
composition \ � ".

Languages in which larger programs are built piecewise from smaller ones are
sometimes known as constructive or combinatory languages. Similarly, the higher{
order functions from which programs are built are often referred to as combin-

ing forms, or combinators2 for short. Appart from FP itself, perhaps the most
well known example of the constructive paradigm is the Bird{Meertens formalism
[Bird88], also known as the \theory of lists".

It is well known that programming in the constructive style is a great aid to
formal manipulation. In particular, the combining forms from which programs are
built satisfy many useful algebraic laws, which can be used to derive and prove
properties of programs. For example, it is easy to show that (A ; B) � (C ; D) =

1Miranda is a Trademark of Research Software Ltd.
2Our informal use of this term is consistent with the standard �{calculus meaning.
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Figure 1: snd (fst not ; or) ; and

(A�C) ; (B �D). In fact, many such theorems do not actually require an explicit
proof, their validity following from the types of the combining forms, under the
observation that (parametric) polymorphism corresponds precisely to the notion of
naturality in Category Theory. The idea that polymorphic type inference derives
\free theorems" is developed in [Wadler89], and applied in the speci�c context of
Ruby in [Sheeran89].

In the constructive style, it is quite natural to consider the shape of a pro-
gram; the combining forms have both a behavioural and a pictorial interpretation
[Sheeran81]. An example picture is given in Figure 1, with respect to the standard
abbreviations fst F b= F � id and snd F b= id � F . The identity for composition
\id" corresponds to a notional wire in pictorial terms. Because information 
ow is
most often from left to right in pictures, forwards composition \ ; " is used rather
than backwards composition \ � " in Ruby. Generalising from pictures, it is often
useful to view a constructive program as a description of a process network or data

ow graph, with primitive components communicating over channels.

2.2 Recursion and streams

Consider the factorial function. In a language like Miranda, where functions are
most often built using abstraction, it may be de�ned recursively by:

fac 0 = 1
fac (n+ 1) = (n+ 1) � fac n

In the constructive language FP, the corresponding program is:

fac = eq0! 1 ; � � [id; fac � sub1]

where eq0 = eq � [id; 0] and sub1 = � � [id; 1]. There is a however a problem
with this style of recursion in our context. In FP, we may think of a program as
the description of a dynamic network, in the sense that components may be freely
created and destroyed at run{time. More formally (and in terms of pictures), the
factorial program denotes an in�nite network, corresponding to an in�nite unwinding
of the recursion.

While dynamic networks are �ne for general purpose programming, in hardware
we are restricted to entirely static networks. The reason is quite simple, the network
is �xed once and for all when a circuit is fabricated on silicon. Components are not
able to move around, duplicate or destroy themselves; explicit circuitry must be
included for all eventualities which may arise.

In terms of programming style, the restriction to static networks means that
data dependent recursion as used in the factorial example is not acceptable in our



language. This restriction is the primary di�erence between \programming in hard-
ware" and \programming in software".

Although in�nite networks are not acceptable in a static language, there is noth-
ing to stop us using cyclic networks. Consider a simple cyclic network { an and

operator with its upper input driven from its own output. This may be cast as
loop (and ; split) in Ruby notation. Assuming that all primitives are functional,
it is clear that this program will deadlock, since the output is directly dependent
upon itself. More formally, the constructive expression is equivalent to the recursive
function f = �x: (x ^ fx) in �{style, which under least �xed-point semantics (and
assuming strict conjunction) is in turn equivalent to �x:?.

To allow programs involving cyclic networks to terminate, a notation of time
is introduced into the language, through the use of streams. A stream has the
same behaviour as a lazy list (i.e. only a pre�x need be evaluated at any instant
to allow computation to proceed), except that its elements are normally accessed
by subscript, rather than by structural decomposition. A stream may be formally
viewed as a mapping, with the natural numbers (representing time) as the domain.

To avoid deadlock in feedback programs, the �rst step is to lift all the primi-
tives to the stream level, so that they operate pointwise over the components. For
example, an and operator will now take a stream of booleans to a stream of their
conjunctions. Now all we need do is ensure that at any moment, the output of
feedback programs depends only upon their own value at strictly earlier instances
in time. This is achieved by the introduction of a single sequential primitive, a unit
delay, which returns its input value at time t as its output at time t + 1. Rather
than �lling the gap in the output at t = 0 with an unde�ned or �xed value such as
?, we write Ds for a delay element whose �rst output is s. This gives us a direct
form of control over the start{up phase in feedback programs.

Introducing a delay into our feedback example results in little change in the text
of the constructive program, which now takes the form loop (snd DT ; and ; split),
where T denotes boolean true. However, the jump to streams results in a marked
change to the analogous �{style expression:

f x = �t:

(
x0 if t = 0
xt ^ f x (t� 1) otherwise

where x and the result of the function are streams of (i.e. mappings to) booleans.
Note that T was carefully chosen as the starting value for the delay, such that x0 ^ T

simpli�es to x0 in the base case. Assuming strict conjunction again, this function
clearly has least �xed point �x: (�t:

Vt
i=0 xi). Thus, through the introduction of

streams, and hence the delay primitive, the feedback program which previously
denoted a non{terminating function now denotes a well de�ned boolean function
which holds T until its input drops to F, after which it remains F for ever more,
independent of subsequent input values.

From the programmer's point of view, the presence of streams means that com-
binational (time independent) and sequential (clocked) design is cast in a uniform
framework. In particular, we can use the sequential primitive D as a bu�er be-
tween combinational components, thereby introducing pipeline parallelism into our
programs, in addition to the explicit parallelism of the \�" combining form.



2.3 Generic primitives

Many interesting hardware style (i.e. static) algorithms have a regular structure. For
example, correlation (one of the most important signal processing algorithms) may
be cast as a 2{dimensional array of simple binary components [Jones90b]. Since our
language at present is itself entirely static, we would have to choose a particular
size, and build such a grid explicitly using combining forms which stack components
beside and above one another. While this approach would allow us to experiment
with regular programs, it is far from satisfactory. Having multiple occurrences of
the same combining forms and primitive cells would certainly hinder transformation
and proofs. Furthermore, there is a danger in reasoning about �xed sized arrays; a
theorem which holds for a particular instance (e.g. 3�3) may extend to some cases
(e.g. odd{sized arrays), but not to the general case.

If the constructive style is to be practical, we must introduce some means to
capture and manipulate regular structures, without reference to any particular size.
How is this possible if all our programs must denote static networks? The key is
to note that they need only be static at run{time, when the program is actually
executed. It is perfectly acceptable to have dynamic primitives at compile{time, so
long as we ensure that all programs are indeed of a �xed size when they come to be
executed. At present, all our primitives are entirely static at compile{time.

A generic combining form denotes a family of �xed{sized networks, one for
each instance of a regular pattern. For example, map in Ruby is a generalisation
of the product construction \�", such that (map R) denotes the in�nite familily
fRn j n 2 Ng, where Rn stands for the n{way product of R with itself. Generic
plumbing such as zip (which interleaves two lists) are used to route data between
generic components. In fact, inverse plumbing such as unzip is also useful. While
generic plumbing and their inverse would normally have to be de�ned separately, in
a relational language such as Ruby (see next section), one may be de�ned directly
in terms of the other using relational inverse.

To ensure that generic programs are static at run{time, we introduce a new stage
between compilation and execution. At silicon{time, the programmer will choose a
particular size for the program, such that it may then be physically expanded to a
�xed sized network. Thus, while R � R is static at compile{time, (map R) cannot
be guaranteed to be static until run{time.

Since the compiler must now work with generic programs, the analysis phases
during compilation have the opportunity to produce more general information. For
example, we have devised a simple type system in which size information about
generic programs is included in their types. Consider the program (tail ; halve),
which knocks o� the �rst element of a list, and splits the remainder into two equal
length parts. In our system, the derived type �2n+1 ! (�n; �n) captures precisely
that this program only works properly with odd length lists.

Not surprisingly, generic primitives are de�ned recursively, on the structure (i.e.
shape rather than content) of streams. Proofs involving generics naturally proceed
by induction. For example, it is easy to show that (map R ;map S) = map (R ; S),
a generalisation of the example theorem in Section 2.1. Just as for the simple static
primitives, the validity of many theorems involving generics follows directly from
their polymorphic types [Sheeran89].
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Figure 2: Bi{directional communication between R and S

2.4 Relations

In keeping with the special constraints of hardware, many regular circuits make
extensive use of bi{directional communication between components. For example,
the systolic correlator in [Jones90b] has data 
owing both rightwards and leftwards.
While bi{directional communication can be achieved in the manner of Figure 2a,
this breaks with the convention that constructive programs capture both shape
and behaviour. In this sense, it would clearly be preferable to have components
communicating directly, as in Figure 2b. Working in a functional language however,
this is not directly possible, due to the uni{directional 
ow of data inherent in
function composition.

While the data 
ow problem could be worked around by introducing a few special
combining forms to capture bi{directional communication, a much more acceptable
solution is to weaken the normal functional constraint, and allow inputs and out-
puts to be distributed throughout the domain and range of a program. In this
manner, the standard composition operator \ ; " may be used to combine any two
components, regardless of whether they communicate bi{directionally or not. It is
this observation which originally led Sheeran to consider using relations rather than
functions, thereby removing the distinction between input and output entirely.

Not surprisingly, the jump to relations brings much more than bi{directionality
properties. Since they are not biased towards a particular direction of data 
ow,
relational combining forms tend to be more symmetric, and hence a single Ruby law
often replaces a number of �FP laws. Furthermore, unlike in the (total) functional
world, where only bijective functions may be inverted, every relation R has an
inverse R�1, de�ned3 by x R�1 y b= y R x. In terms of pictures, relational inverse
corresponds to re
ection of a program about the vertical axis.

The ability to invert programs means that many constructions which would
normally have to be de�ned inductively may be de�ned quite naturally in terms
of other related primitives. For example, the generic combining forms row and col

tile components beside and above one another respectively; using inverse, one may
be de�ned in terms of the other: col R b= (row R�1)

�1
. De�ning components in

this way also reduces the burden of proof. For example, any row theorem may be
transformed into an analogous col theorem, without repeating the steps of the proof.
It is interesting to note the similarity to the powerful notion of \duality" in Category
Theory [Barr90], under which one proof yields two theorems.

Relational inverse has also proved useful in capturing abstraction and re�nement
steps in program derivation [Jones90a]. For example, given an initial word{level
design, we can formally move down to a bit{level version by pushing the \re�nement

3In relational notation, x R y is simply a shorthand for (x; y) 2 R.
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Figure 3: R�1 b= left ; fst (snd R) ; right

relation" bits (which relates numeric values to bit vectors) in from the left hand side
of the program, and the \abstraction relation" bits�1 in from the right.

While it is clear that many simple combining forms like fst may be de�ned in
terms of others, it is perhaps surprising to �nd that in a relational framework, even
such powerful constructs as loop and relational inverse may be de�ned in terms
of simpler components. For example, Figure 3 shows how inverse may be de�ned
using the plumbing relations4 given by x left ((y; y); x) and ((x; y); y) right x. In
fact, all (non{generic) components can be de�ned in terms of 4 basic constructs |
composition \ ; ", product \�", the delay element D, and a \spread" construction
which allows us to represent combinational primitives and plumbing relations. This
approach is developed in more detail in [Rossen90].

Since a function may be viewed as a restricted kind of relation, Ruby naturally
admits a larger class of programs than �FP. For example, ignoring streams for
simplicity, the program loop (and ; split) which was not acceptable in the functional
framework of Section 2.2, has a perfectly well de�ned meaning as f(x; y) j y � x ^ yg
in Ruby, which simpli�es to the relation f(F;F); (T;F); (T;T)g. Such programs are
sometimes referred to as having non{deterministic behaviour, in the sense that a set
of results may be produced for a given input value. In this case for example, T in
the domain relates to both F and T in the range.

3 Causal Relations

Moving to relations is perhaps the most natural way to allow bi{directional com-
munication over composition, but causes implementation and semantic problems.
In particular, while relations are useful for speci�cation and re�nement of a design,
the end product is normally functional, even though inputs and outputs may be dis-
tributed throughout the domain and range. With no inherent notion of data{
ow,
computing with relations is generally speaking much less e�cient than computing
with functions, even though most programs will in fact be used functionally. Further-
more, relational languages are not so semantically well behaved as their functional
counterparts. For example, it is known that the standard �xed{point approach to
recursion does not naturally extend to the relational world.

In this section, we consider how to get some of the expressive power of relations,
without incurring the implementation and semantic problems. Our solution lies with
what we shall call causal relations, a novel blend of the functional and relational
styles. The intent is that we may use the full power of relations during program
derivation, with the satisfaction of knowing that a �nal causal design has a functional
style semantics, and may be implemented in an e�cient manner.

4As shown in left/right, it is usual to omit \ b= T" from plumbing de�nitions.



3.1 Causality

We de�ne a relation to be causal if we may identify an `input part' of the relation,
which totally and uniquely determines the remaining `output part'. Unlike func-
tions however, the input part is not restricted to the domain (left side) of a causal
relation, nor output part to the range (right side); indeed, inputs and outputs may
be interleaved throughout the domain and range.

For example, not = f(F;T); (T;F)g is a causal relation, since the �rst component
of each pair uniquely determines the second. Moreover, the second component also
determines the �rst. This is perfectly acceptable; a causal relation may have many
such functional interpretations. Conversely, (or�1 ; and) = f(F;F), (T;F), (T;T)g
is not causal, since no part of the relation uniquely determines the remainder. In
particular, T in the domain relates to both F and T in the range; similarly for F in
the reverse direction.

To capture precisely what me mean by causality, we use a slight modi�cation of
the \equivalence of spans" construction of binary relations [deMoor90]. We start by
reviewing the standard construction of relations in terms of binary products.

Given sets A and B, their cartesian product is the set

A�B b= f(a; b) j a 2 A ^ b 2 Bg

together with projection functions �A : A�B! A and �B : A�B! B, de�ned by

�A b= � (a; b) : a
�B b= � (a; b) : b

The construction is universal, in that given any other set W , together with total
functions (we assume from now on that all functions are total) f : W ! A and
g : W ! B, there exists a unique span5 hf; gi :W ! A�B, de�ned by

hf; gi b= �x : (f x; g x)

such that hf; gi ; �A = f and hf; gi ; �B = g, as shown in the diagram below.

W
����

	�
�
�
f �

�
�

hf; gi
����_

@
@
@ g
@
@
@R

A <
�A

A�B
�B

> B

From the universality of the product, we deduce the useful law

h ; hf; gi = hh ; f; h ; gi

which we shall use without comment to simplify expressions involving spans. In this
framework, a binary relation of type A$ B is normally de�ned as a subset of A�B.

5Normally, a span is de�ned as a pair of functions (f; g) with common domain, while hf; gi is
called a product function. In this paper, for reasons of brevity, we prefer to call each hf; gi a span,
citing the one{to{one correspondence between product functions and spans in our defense.



Since we are interested in functional relations however, we take a di�erent route,
modelling relations in terms of spans. The connection between the two is that the
image of a span hf; gi :W ! A�B is a relation of type A$ B, de�ned by

ff; gg b= f(f x; g x) j x 2 Wg

Think of each x 2 W as a witness that f x 2 A is related by ff; gg to g x 2 B.
While spans allow us to model relations in terms of functions, the representation is
clearly not unique. We now proceed to de�ne an equivalence relation \�" on spans,
such that if hf; gi :W ! A�B and hf 0; g0i : W 0 ! A�B, then

hf; gi � hf 0; g0i , ff; gg = ff 0; g0g

Given R b= hf : W ! A; g : W ! Bi and R0 b= hf 0 : W 0 ! A; g0 : W 0 ! Bi, a
span morphism m : R! R0 is a functionm :W ! W 0, such that hf; gi = m;hf 0; g0i.

W

	�
�
�
f �

�
� @

@
@ g
@
@
@R

A m

_

B

I@
@
@
f 0 @@

@ �
�
� g0
�
�
��

W 0

Span morphisms induce a pre{ordering \� " on spans, de�ned by

R �R0 b= 9m : R! R0

It is easy to see that ff; gg� ff 0; g0g follows from hf; gi� hf 0; g0i. Because \� "
is a pre{order, it can be extended to an equivalence relation on spans, de�ned by

R � R0 b= R �R0 ^ R0 �R

It follows immediately that two spans generate the same relation precisely when
they are equivalent under \�". For this reason, we model a relation not by a single
span hf; gi, but by its entire equivalence class, which we shall denote [f; g].

Before considering causal relations in full, let us start with a simple case. Given
a function f : A ! B, the span hidA; fi determines the corresponding relation,
f(a; f a) j a 2 Ag. In this manner, a relation [f; g] : A$ B is functional from A to
B precisely when there exists an h : A! B, such that hf; gi � hidA; hi.

Causal relations are a generalisation of these functional relations, in that inputs
are not restricted to the domain, nor outputs to the range. We start by de�ning
what it means for a relation to be generated by a function.



De�nition: Let hs; ti : I ! A�B and [f; g] : A $ B, such that
hs; ti 2 [f; g]. The span hs; ti is called a functional interpretation of the
relation [f; g] precisely when hs; ti = hidI ; hi ; ��1, where h : I ! O is a
total function, and � : A�B ! I�O is a unique isomorphism.

In diagramatic form, everything �ts as follows.

W
����

	�
�
�
f �

�
�

hf; gi
����_

@
@
@ g
@
@
@R

A <
�A

A�B
�B

> B
�����

�̂����
� ������_

������

��1

I <
�I

I�O
�O

> O
�̂���

I@
@
@

idI @@
@

hidI ; hi
���� �
�
� h
�
�
��

I

While the projections �A and �B decompose the product A�B into domain
and range parts, the functions � ; �I and � ; �O allow us to decompose the relation
into input and output parts, such that the �rst uniquely determines the second, as
witnessed by the function h : I ! O. More precisely, it follows from de�nition of
the span hs; ti and the universality of the product I�O that

hs; ti ; � ; �I ; h = hs; ti ; � ; �O

The restriction to I�O being uniquely isomorphic to A�B ensures that the
decomposition is purely structural. In particular, the familiar isomorphisms

X�Y �= Y �X
X�(Y �Z) �= (X�Y )�Z

con�rm our intuition about how a relation may be permuted such that all the input
parts are in the domain, and output parts in the range. The less well known X �=
X�1, where 1 is any singleton set, tells us that the unique h : A�B ! 1 forms part
of a functional interpretation of the full relation on A�B.

Returning to our original motivation for functional interpretations, each such
hs; ti allows us to generate the relation, just by looking at the input part, in that

hs; ti � � ; �I ; hs; ti (1)

where � ;�I picks out the input part of any pair in A�B. The span morphisms which
verify the equivalence are hidI ; hi ; ��1 in the I ! A�B direction, and � ; �I in the
reverse direction. Naturally, hs; ti preserves the input part we supply, in that

� ; �I = � ; �I ; hs; ti ; � ; �I



which follows immediately from the de�nition of hs; ti. It is a useful exercise at this
point to show that the h : I ! O part of a functional interpretation is uniquely
determined by the isomorphism �. In other words, for each input/output decompo-
sition, there is at most one function which precisely generates the relation.

While general relations may be modelled by an equivalence of spans, we will
model a causal relation by a non{empty equivalence of functional interpretations.
The fact that there may be many such interpretations just means that there may
be many ways to generate the complete relation just by looking at some part of it;
many ways to \drive the relation". Non{causal relations have no such functional
interpretations, and hence do not �t into our model of causality.

To clarify our construction of causal relations, let us consider a simple example.
Suppose we assert that the relation [f; g] : X $ Y�Z is really a function h : X�Z !
Y in disguise. If we take I b= X�Z, O b= Y , and � b= � (x; (y; z)) : ((x; z); y), our
informal statement of the underlying functionality of the relation may be properly
cast as the following equivalence of spans, where hs; ti b= hidI ; hi ; ��1.

hf; gi � hs; ti

Since hs; ti is a functional interpretation, it follows from property (1) that

hf; gi � � ; �I ; hs; ti

Using this equivalence, we can generate elements of the relation using the func-
tion h; given any (x; (?; z)) in X�(Y �Z), where the value of ? is not important,
we may produce an (x; (y; z)) 2 ff; gg as follows, where y b= h (x; z).

(x; (?; z))
�

7�! ((x; z);?)
�I7�! (x; z)

hidI;hi7�! ((x; z); y)
��1

7�! ((x; y); z)

3.2 Causality is not enough

While causality ensures that we only work with \functional relations", it is not
the end of the story in itself. First of all, causal relations are not closed under
composition. For example, both or�1 and and are causal, but (or�1 ; and) is not,
as we saw at the start of Section 3.1. Secondly, there are causal programs which
involve non{functional data 
ow. For example, (and�1 ; and) is equivalent to the
identity relation on booleans (certainly a causal program), but operationally has
non{functional 
ow of information between the two primitives. To ensure that
causal programs are closed under composition, and have a functional semantics,
we must restrict the way in which they are built. In particular, we require that
programs are well{directed , and have no unbroken loops.

The composition (R ; S) is well{directed if all information 
ow is functional, in
the sense that outputs in the range of R match with inputs in the domain of S, and
vice{versa. For example, (and ; not) is well{directed, since the output from the �rst
component matches with the input of the second. Conversely, both (or�1 ; and) and
(and ; and�1) are ill{directed, due to a clash of inputs in the �rst case, and outputs
in the second. In other words, both components in a composition must be used



functionally in their own right, in addition to the functionality of the composition
as a whole. In the next section, we describe a simple system in which it is possible
to capture all the well{directed ways in which a causal program may be used.

While the direction constraint �lters out most non{causal programs, some pro-
grams involving feedback slip through the net. For example, loop (and ; split) is
well{directed, but as mentioned in Section 2.4, corresponds to the non{causal rela-
tion f(F;F), (T;F), (T;T)g. This problem is solved by insisting that all feedback
loops must be broken by a delay element. For example, as we saw in Section 2.2,
loop (snd DT ; and ; split) is a perfectly valid causal program.

4 Directions

A relational program is causal if we can identify input and output parts. If internally,
inputs and outputs match over composition, it is also well{directed. In the func-
tional style, programs are automatically well{directed, since inputs are restricted
to the domain, and outputs to the range. In moving to causal relations, we have
removed the normal contextual distinction between input and output, so we now
have an obligation to check that programs are indeed well{directed. In this section
we describe a system in which it is possible to capture all the functional ways in
which a causal program may be used. Examining directions provides considerable
insight into the expressive power of causal relations.

4.1 Notation

Whereas types tell us what kind of data are expected, directions specify which parts
of the data are inputs, and which are outputs. In general, since a causal relation R

may have many functional interpretations, it has a set of directions, which we shall
denote R�. For example, we write not� = f(in; out); (out; in)g to mean that the not

relation is functional from domain to range, and range to domain.

In this setting, ill{directed programs such as (and ;or�1) correspond to the empty
set of directions ;. Following the terminology for types, a program with more than
one direction will be called polydirectional .

4.2 What are directions?

While the directions for simple cases like and and not are intuitively obvious, it
is important to understand precisely where such sets come from, and what they
actually mean. We use the simple order{theoretic notion of a lattice; a set A,
equipped with a partial{ordering \v ", least/greatest elements ?A and >A, and
binary meet and join operations, denoted by \u" and \t" respectively.

Under the ordering outv in, the primitive directions fout; ing form a 2{point
lattice, which we shall call D. It is easy to see that the lattice structure is closed
under the product construction. For example, D�D is a lattice, with ?D�D =
(out; out) and >D�D = (in; in), under the ordering (a; b)v (c; d) b= av c ^ bv d.



Just as ? and > are often used without subscript to denote the least and greatest
elements in any lattice, so we will sometimes use out and in to denote the least and
greatest elements of any product lattice constructed from D.

Recall from Section 3.1 that a causal relation [f; g] : A $ B is modelled as an
equivalence of functional interpretations hs; ti 2 [f; g], such that each hs; ti has the
form hidI ; hi ; ��1, where h : I ! O is a total function, and � : A�B ! I�O a
unique isomorphism. In this context, it is clear that directions have the same shape
as the type of a causal relation, in that

[f; g]� � [[A�B]]

where [[�]] is a function which converts arbitrary products into direction lattices,
such that for example [[X� (Y �Z)]] = D� (D�D). If we extend each � to an
isomorphism [[�]] : [[A�B]] ! [[I�O]] in the natural manner, it is clear that each
functional interpretation hs; ti corresponds to a single direction, given by

hs; ti� b= [[�]]�1 (>[[I]];?[[O]])

Returning to our example at the end of Section 3.1, where hs; ti is a functional
interpretation of a relation of type X $ Y �Z, with � = � (x; (y; z)) : ((x; z); y), we
obtain a direction corresponding to the span hs; ti as follows.

hs; ti� = [[�]]�1 (>[[I]];?[[O]])

= [[�]]�1 (>[[X�Z]];?[[Y ]])

= [[�]]�1 (>D�D;?D)

= [[�]]�1 ((in; in); out)
= ((in; out); in)

4.3 Composition

In lattice terminology, two elements a and b are said to be complementary if atb = >
and a u b = ?. For example, (in; out) is the complement of (out; in) in D � D. It
is not hard to see that every direction has a unique complement. In Section 3.2 we
said that for the composition (R ;S) to be well{directed , outputs in range of R must
match with inputs in the domain of S, and vice{versa. Clearly then, two directions
are only compatible over composition if they are complementary. Using this insight,
we may now state precisely all the well{directed ways in which (R ;S) may be used:

a (R ; S)� d b= (aR� b) ^ (c S� d) ^ (b t c = in) ^ (b u c = out)

For example, although not has two possible directions in isolation, only the left{
to{right orientation is acceptable in (and ; not)� = f((in; in); out)g. In keeping with
the fact that not is its own inverse, we have (not ; not)� = f(in; out); (out; in)g = not�.

4.4 Plumbing relations

Plumbing relations are (parametrically) polymorphic, in that they may be viewed as
a collection of monomorphic instances which, in some sense, behave in the same way.



Not surprisingly, plumbing relations are also polydirectional. By way of example,
let us consider id, the identity element for composition. We start with the simplest
instance, idA, where A is an atomic type such as the booleans or integers. While it
may appear that idA

� = D �D, this is not in fact the case. Since id is the identity
for composition, we have that (id ; id) = id. Clearly this property should also hold
for directions. However, working with idA

� = D � D, we �nd that (idA ; idA)
� =

f(out; in); (in; out)g 6= idA
�. This situation arises because the rule for (;) insists that

inputs match with outputs. Thus, we conclude that idA
� = f(out; in); (in; out)g.

Consider a more complicated instance, idA�A. A simple calculation shows that
the directions for this expression may be given in terms of those for its components:

idA�A
� = (idA � idA)

� [� is a functor]
= idA

� � id�A [� distributes over �]

Using this equivalence, and recalling the de�nition of product on relations,
(a; b) R�S (c; d) b= aR c ^ b S d, we �nd that there are 4 directions for idA�A. While
(out; out) $ (in; in) and its complement are perfectly intuitive, (in; out) $ (out; in)
and its complement may seem a little strange, since they allow data 
ow in opposite
directions over id at the same time. In a relational setting however, this kind of
behaviour is quite natural. For example, we could imagine (T;?) id (?;F) resolving
to ((T;F), (T;F)). In general then, it is not hard to see that id� is precisely the pairs
of complementary directions:

id� b= f(a; b) j a t b = in ^ a u b = outg

In terms of hardware, the polymorphic identity relation id may be viewed as
an arbitrary bus of wires. Under this interpretation, a t b = in means that each
component wire is driven at least once, a u b = out means that each wire is driven
at most once; together they ensure that each wire has precisely one value.

5 Further Developments

In this paper, we presented causal relations as a new programming paradigm, partic-
ularly well suited to the bi{directionality demands of \programming in hardware".
We have given a model of causality, in terms the equivalence of spans construction
of relations, and presented a simple system in which we may examine various func-
tional interpretations of a causal relation. At the present moment however, it is
not clear how to incorporate the direction and feedback constraints into our model,
and hence give a proof of closure under composition. Although the mathematical
aspects of causality are not yet complete, we have taken some steps towards a causal
implementation of the Ruby language.

In Prolog, bi{directional communication may be achieved using logic variables.
In particular, if two processes A and B wish to communicate in both directions, A
may pass a stream of pairs to B, with one component of each pair being a message
from A, and the other being an uninstantiated variable, in which B may reply.
Just as direction inference is important for causal languages, so mode annotations



(and to a lesser extent mode inference) is important in logic languages. It is clearly
important to investigate the use of bi{directionality in logic programming, and bring
out the di�erences and similarities to our causal relational approach.
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