
Under consideration for the Journal of Functional Programming 1

What is the Meaning of
These Constant Interruptions?

(Extended Version)

GRAHAM HUTTON and JOEL WRIGHT
School of Computer Science and IT

University of Nottingham, UK

Abstract

Asynchronous exceptions, or interrupts, are important for writing robust, modular pro-
grams, but are traditionally viewed as being difficult from a semantic perspective. In this
article we present a simple, formally justified, semantics for interrupts. Our approach is to
show how a high-level semantics for interrupts can be justified with respect to a low-level
implementation, by means of a compiler and its correctness theorem. In this manner we
obtain two different perspectives on the problem, formally shown to be equivalent, which
gives greater confidence in the correctness of our semantics.

1 Introduction

Exceptions are an important feature of modern programming languages, support-
ing the development of modular programs that are robust to various kinds of unex-
pected events. There are two basic kinds of exceptions: those that arise from within
a program itself, such as a division by zero, and those that arise from its external
environment, such as a timeout. The former are termed synchronous exceptions, be-
cause they can only arise at specific points, while the latter are termed asynchronous
exceptions, because they can potentially arise at any point. For simplicity, however,
in this article we follow the common practice of referring to synchronous exceptions
as exceptions , and to asynchronous exceptions as interrupts1.

To allow programs to recover from exceptions and interrupts, some form of lan-
guage support for these features is required. For exceptions, this is usually based
upon a primitive that abandons the current computation and throws an exception,
together with a primitive that catches an exception thrown in one computation and
handles it using another computation. In turn, support for interrupts is typically
based upon the view of interrupts as special kinds of exceptions, together with a
primitive that allows one computation to throw an interrupt exception in another
(concurrently executing) computation, which can then be handled as any other kind

1 Not to be confused with the hardware notion of an interrupt, which is more akin to an asyn-
chronous subroutine call. Our concern is with asynchronous exceptions.

2 G. Hutton and J. Wright

of exception. To allow some control over when interrupts are received, additional
primitives are usually provided for blocking and unblocking interrupts.

Exceptions are well studied and understood from a semantic point of view,
whereas interrupts are still viewed as being difficult. Indeed, Haskell is currently the
only language to provide both full support for interrupts and a formal semantics for
this feature (Marlow et al., 2001; Peyton Jones, 2001). But this semantics is subtle,
and relies on considerable technical machinery, including the π-calculus, two-level
semantics, two-level evaluation contexts, and various forms of annotations. How do
we know that the semantics for interrupts is correct?

In order to focus on the essence of this problem, we abstract from the details
of a real language such as Haskell, and consider a minimal language in which to
understand, clarify and verify the basic semantics of interrupts. In particular, we
consider a simple expression language comprising integers, addition, a single excep-
tional value called throw, a catch operator for this value, and operators for blocking
and unblocking interrupts. This language does not provide features that are nec-
essary for actual programming, but it does provide just what we need to consider
the basic semantics of exceptions and interrupts. In particular, integers and addi-
tion constitute a minimal language in which to consider normal (non-exceptional)
computation, throw and catch constitute a minimal extension in which computa-
tions can involve exceptions, and finally, block and unblock allow us to consider
interrupts. In this context, the article makes the following contributions:

• We show how a high-level semantics for interrupts (section 5) can be justified
with respect to a low-level implementation (section 7), by means of a compiler
(section 8) and its correctness theorem (section 10).

• We show how the notion of a bar operator for transition paths (section 9) can
be used to formulate and prove the compiler correctness theorem.

• We identify an error in the semantics for interrupts in Haskell (section 6),
concerning the notion of when interrupts can be received.

• As a motivating example, we define and verify a finally operator (sections 3
and 6), a useful construct for programming with interrupts.

To the best of our knowledge, this article is the first to give a formally justified
semantics for interrupts, and to verify a compiler for a language with interrupts.
A summary of related work, and a discussion of the limitations of our present
work and how it may be further developed, is provided in the concluding sections.
Throughout the article Haskell is used as meta-language for defining types and
functions. The associated code is available from the authors’ web pages.

2 An exceptional language

We begin by considering a simple language with exceptions, comprising integer
values, throw, addition, sequencing, and catch. The sequencing operator is provided
for the purposes of our running example. In Haskell, the language of such expressions

What is the Meaning of These Constant Interruptions? 3

can be represented by the following recursive type:

data Expr = Val Int | Throw | Add Expr Expr |
Seqn Expr Expr | Catch Expr Expr

We specify the meaning of expressions in this language using a big-step operational
semantics (or natural semantics), writing e ⇓ v to mean that the expression e can
evaluate to the value v . Formally, the evaluation relation ⇓ ⊆ Expr ×Value, where
Value is the subtype of Expr comprising expressions of the form Val n or Throw ,
is defined by the following set of inference rules:

Val n ⇓ Val n
Val

Throw ⇓ Throw
Throw

x ⇓ Val n y ⇓ Val m

Add x y ⇓ Val (n + m)
Add1

x ⇓ Throw

Add x y ⇓ Throw
Add2

x ⇓ Val n y ⇓ Throw

Add x y ⇓ Throw
Add3

x ⇓ Val n y ⇓ v

Seqn x y ⇓ v
Seqn1

x ⇓ Throw

Seqn x y ⇓ Throw
Seqn2

x ⇓ Val n

Catch x y ⇓ Val n
Catch1

x ⇓ Throw y ⇓ v

Catch x y ⇓ v
Catch2

These rules specify that addition propagates an exception thrown in either argu-
ment, that sequencing propagates an exception thrown in its first argument, and
otherwise discards the resulting integer value and behaves as its second argument,
and that catch behaves as its first argument unless it throws an exception, in which
case the exception is handled by behaving as its second argument.

Our evaluation relation ⇓ can readily be shown to be a total function from expres-
sions to values. Hence, we could have defined our semantics directly as a function,
rather than as a relation. However, when we extend our language with interrupts
later on, evaluation becomes non-deterministic, at which point the relational ap-
proach to semantics used above is more natural.

3 Finally, an example

Many programming languages with exceptions provide some form of finally opera-
tor that ensures that whatever happens during the execution of one computation,
in particular, whether it terminates normally or with an exception, another com-
putation will always be executed afterwards. For example, both Java and Haskell
provide such an operator, which is typically used to “clean up” after a computation
to ensure that important invariants are maintained.

4 G. Hutton and J. Wright

We will use finally as a running example in the next few sections, as it can
be defined in terms of the basic exception primitives, and illustrates a number of
important issues about programming with exceptions. To define a finally operator
within our language, a first attempt might be to simply use sequencing:

finally x y = Seqn x y

This definition works fine if x produces an integer, but not if it produces an excep-
tion, in which case the semantics of sequencing means that y is not evaluated. To
address this problem, we refine the definition by introducing a catch:

finally x y = Seqn (Catch x y) y

Now if x produces an exception then y is evaluated, but if this evaluation terminates
normally then the semantics of sequencing means that the second y in the definition
will also be evaluated, and hence y is evaluated twice. To solve this problem, we
propagate the exception within the catch by using throw:

finally x y = Seqn (Catch x (Seqn y Throw)) y

This definition now has the correct behaviour: if x produces an integer then y is
evaluated, and if x produces an exception then y is evaluated and the exception
is propagated. The fact that finally x y ensures that evaluation of x is always
succeeded by evaluation of y can be captured as follows:

Proposition 1 (behaviour of finally)
Every proof tree for an evaluation of finally x y contains a single tree for the
evaluation of x to the left of a single tree for the evaluation of y.

Proof : by simply enumerating all the proof trees that are possible for evaluations
of the form finally x y ⇓ v , and then observing that each tree has the required
property. For example, the following tree arises from the case when x produces an
exception and y produces an integer, and as required contains a single tree for the
evaluation of x to the left of a single tree for the evaluation of y:

...

x ⇓ Throw

...

y ⇓ Val n Throw ⇓ Throw
Throw

Seqn y Throw ⇓ Throw
Seqn1

Catch x (Seqn y Throw) ⇓ Throw
Catch2

Seqn (Catch x (Seqn y Throw)) y ⇓ Throw
Seqn2

��

4 Adding interrupts

We now consider how to extend our language with interrupts. Rather than first
extending our language with concurrency, which would be a significant undertaking
in itself, we continue with our minimalist approach. In particular, we avoid the need

What is the Meaning of These Constant Interruptions? 5

for concurrency by considering the evaluation of a single expression within a worst-
case scenario in which evaluation can be interrupted at any point. This behaviour
is achieved by adding the following interrupt rule to our semantics:

x ⇓ Throw
Int

This rule specifies that evaluation may be interrupted at any time by simply replac-
ing the current expression by an exception. Many readers may, quite reasonably,
have concerns about this rule. For example, is it appropriate that it can be applied
without any preconditions, and that any form of expression can be interrupted?
We will return to such concerns shortly. Prior to this, however, we consider two
immediate consequences of the above interrupt rule.

First of all, evaluation is no longer deterministic, because an expression may
now produce more than one possible value. For example, the expression Val 1 can
evaluate to either Val 1 or Throw , depending upon whether we apply the Val rule
or the Int rule. More generally, an expression may now produce any number of
possible values. For example, Catch (Val 1) (Val 2) can evaluate to either Val 1,
Val 2, or Throw , depending upon the rules applied.

Secondly, our finally operator is no longer correct, because an interrupt may
interfere with its operation. For example, the following modification of our example
tree from the previous section arises from the case when the expression x produces
an exception and the handler expression Seqn y Throw is interrupted, thereby
failing to ensure that the expression y is evaluated:

...

x ⇓ Throw Seqn y Throw ⇓ Throw
Int

Catch x (Seqn y Throw) ⇓ Throw
Catch2

Seqn (Catch x (Seqn y Throw)) y ⇓ Throw
Seqn2

5 Controlling interrupts

What is needed to address the problem with finally is a means to control when
interrupts can be received. For this purpose, we extend our language with two new
primitives, which block and unblock interrupts within an expression:

data Expr = . . . | Block Expr | Unblock Expr

For example, assuming that interrupts are initially unblocked, the intention is that
the expression Block (Add (Unblock x) y) can only be interrupted at the very
start prior to entering the scope of the block, and during the evaluation of x . In
particular, the addition itself cannot be interrupted, nor can the expression y, unless
this expression itself explicitly unblocks interrupts.

Note that there is no intended counting of scopes with the new primitives. Rather,
a single use of block or unblock immediately subsumes any number of previous uses

6 G. Hutton and J. Wright

of these primitives. For example, two nested blocks only require a single unblock to
admit interrupts, rather than two nested unblocks.

To formalise the meaning of the new primitives, we first define a status type that
specifies whether interrupts are currently blocked or unblocked:

data Status = B | U
We now refine our semantics to take account of this notion, writing e ⇓i v to
mean that the expression e in interrupt status i can evaluate to the value v . That
is, we define a new evaluation relation ⇓ ⊆ Expr × Status ×Value. The semantics
for block and unblock are given by new rules that change the current status,

x ⇓B v

Block x ⇓i v
Block

x ⇓U v

Unblock x ⇓i v
Unblock

while our previous rule for interrupts is modified to ensure that it can only be
applied when interrupts are unblocked:

x ⇓U Throw
Int

In turn, the inference rules for the other primitives are simply modified to propagate
the current interrupt status to their argument expressions:

Val n ⇓i Val n
Val

Throw ⇓i Throw
Throw

x ⇓i Val n y ⇓i Val m

Add x y ⇓i Val (n + m)
Add1

x ⇓i Throw

Add x y ⇓i Throw
Add2

x ⇓i Val n y ⇓i Throw

Add x y ⇓i Throw
Add3

x ⇓i Val n y ⇓i v

Seqn x y ⇓i v
Seqn1

x ⇓i Throw

Seqn x y ⇓i Throw
Seqn2

x ⇓i Val n

Catch x y ⇓i Val n
Catch1

x ⇓i Throw y ⇓i v

Catch x y ⇓i v
Catch2

6 Finally revisited

Using the new primitives, we now refine our definition for finally x y by first
blocking interrupts, which are then unblocked prior to evaluating x :

finally x y = Block (Seqn (Catch (Unblock x) (Seqn y Throw)) y)

Modulo differences in syntax, the finally operator in Haskell is defined in precisely
the same way (Marlow et al., 2001). Prior to specifying the behaviour of this new
definition, we consider a number of semantic issues:

What is the Meaning of These Constant Interruptions? 7

(1) The new definition ensures that evaluation of x is started with interrupts un-
blocked, but other options are possible, such as removing the use of unblock,
or replacing it by some means of restoring the previous status.

(2) The new definition ensures that evaluation of y is started with interrupts
blocked, but this does not guarantee that y cannot be interrupted, in partic-
ular because y itself may contain an explicit use of unblock.

(3) If interrupts are initially unblocked, the new definition can be interrupted at
the very start prior to entering the scope of the block. In this case, y is not
evaluated, and hence finally does not behave as originally expected.

The first issue concerns a design choice, but for our purposes the above definition
for finally as used in Haskell will suffice, so we do not explore this further here. In
turn, the second issue is addressed simply by taking account of the fact that y may
be interruptible when modifying our behavioural proposition.

The third issue requires more careful thought. One solution to (3) would be to
modify the interrupt rule to prevent an interrupt being received if the expression
being evaluated is just about to block interrupts, in the following manner:

x �= Block y

x ⇓U Throw

This rule would fix the problem with finally , but there are other situations in which
the same problem occurs. For example, in the expression Seqn (Block x) y, the top-
level primitive is not a block and hence the interrupt rule above could be applied.
However, when this expression is compiled to low-level code, the first operation that
will actually be performed is to block interrupts. Hence, the notion of “just about
to block interrupts” is more subtle than might first be expected.

A second solution for issue (3) above is to retain our existing interrupt rule,
but modify our proposition for finally x y. In particular, we could specify that
evaluation of y is only required if evaluation of x actually starts, which won’t be
the case if an interrupt is received prior to entering the scope of the block. For
simplicity, and for consistency with the intended semantics of interrupts in Haskell
upon which our definition for finally is based, we adopt this solution here.

The use of the word intended above refers to the fact that our work on this
article identified an error in the semantics for interrupts in Haskell. In particular,
the semantics (Marlow et al., 2001) defines a rule for interrupts that corresponds
to our first solution for (3), whereas in the actual implementation (Peyton Jones
& Marlow, 2004), which the semantics is intended to formalise, there is no such
restriction on an interrupt being received if interrupts are just about to be blocked,
which corresponds to our second solution.

In conclusion, our behavioral proposition for the finally operator can now be
revised to take account of the possibility of interrupts as follows:

Proposition 2 (revised behaviour of finally)

8 G. Hutton and J. Wright

Every proof tree for an evaluation of finally x y contains at most one tree for the
evaluation of x (with interrupts unblocked), which if it exists occurs to the left of
a single tree for the evaluation of y (with interrupts blocked.)

Proof : by enumerating all the possible proof trees, as previously. ��

7 Virtual machine

How do we know that our semantics for interrupts is correct? In particular, how
does our high-level semantics reflect our low-level intuition about interrupts? As a
first step towards addressing this issue, in this section we present a simple virtual
machine that can be used to implement our language of expressions. The machine
operates by means of a stack represented as a list of items, where each item is either
an integer value, a piece of handler code, or an interrupt status:

type Stack = [Item]

data Item = VAL Int | HAN Code | INT Status

In turn, code for the machine comprises a list of operations on the stack:

type Code = [Op]

data Op = PUSH Int | THROW | ADD | POP |
MARK Code | UNMARK |
SET Status | RESET

We specify the meaning of such code using a machine with two modes of operation.
During normal execution, the machine operates on a state that comprises a piece
of code, an interrupt status and a stack. Formally, the transition relation −→ ⊆
State ×State for normal execution, where State = Code ×Status ×Stack , is defined
by the following set of rewrite rules:

〈PUSH n : ops , i , s〉 −→ 〈ops , i , VAL n : s〉
〈THROW : ops , i , s〉 −→ 〈〈i , s〉〉
〈ADD : ops , i , VAL m : VAL n : s〉 −→ 〈ops , i , VAL (n + m) : s〉
〈POP : ops , i , VAL : s〉 −→ 〈ops , i , s〉
〈MARK ops ′ : ops , i , s〉 −→ 〈ops , i , HAN ops ′ : s〉
〈UNMARK : ops , i , x : HAN : s〉 −→ 〈ops , i , x : s〉
〈SET i ′ : ops , i , s〉 −→ 〈ops , i ′, INT i : s〉
〈RESET : ops , , x : INT i ′ : s〉 −→ 〈ops , i ′, x : s〉

These rules specify that PUSH places an integer value onto the stack, THROW
changes the machine into exceptional execution mode (indicated by the use of dou-
ble parentheses, and to be defined shortly), ADD replaces two integer values on the
stack with their sum, and POP simply removes an integer value from the stack.
In turn, the MARK operation places handler code onto the stack, and dually,
UNMARK removes such code from the stack. Finally, SET changes the interrupt
status to a given value and saves the previous status on the stack, while RESET

What is the Meaning of These Constant Interruptions? 9

removes such a status and restores the interrupt status to this value. We will con-
sider the behaviour of these operations in more detail in the next section, when we
present a compiler that produces code for this machine.

Our transition relation −→ is currently deterministic, but as with our evalua-
tion relation ⇓ it becomes non-deterministic when we consider interrupts, which is
achieved by adding the following rewrite rule:

〈 : , U , s〉 −→ 〈〈U , s〉〉
This rule specifies that, provided interrupts are unblocked, normal execution of any
operation may be interrupted by simply changing the machine into exceptional exe-
cution mode. Note that the empty list of code is not interruptible, as this represents
a state in which the machine has terminated.

In the other mode of operation, exceptional execution, the machine operates
on a reduced state comprising just an interrupt status and a stack. Formally, the
transition relation −→ ⊆ State ′ ×State ′ for exceptional execution, where State ′ =
Status × Stack , is defined by the following set of rewrite rules:

〈〈i , VAL : s〉〉 −→ 〈〈i , s〉〉
〈〈 , INT i ′ : s〉〉 −→ 〈〈i ′, s〉〉
〈〈i , HAN ops : s〉〉 −→ 〈ops , i , s〉

That is, if the top of the stack is an integer value it is removed, if the top is a
saved interrupt status it is removed and restored as the current status, and finally,
if the top of the stack is handler code it is used to change the machine back to
normal execution mode. These rules formalise the basic method of implementing
exceptions known as stack unwinding, in which an exception being thrown results
in items being popped from the stack seeking a handler.

8 Compiler

We now define a function comp that compiles an expression into code for our
virtual machine. In fact, we define a more general function that takes an additional
argument, in the form of a piece of code to be appended to the compiled code. Using
such an accumulator simplifies the process of proving the compiler correct (Hutton,
2007, section 13.7), and also admits a simpler implementation of exceptions than
in our previous work (Hutton & Wright, 2004).

comp :: Expr → Code → Code
comp (Val n) ops = PUSH n : ops
comp (Throw) ops = THROW : ops
comp (Add x y) ops = comp x (comp y (ADD : ops))
comp (Seqn x y) ops = comp x (POP : comp y ops)
comp (Catch x y) ops = MARK (comp y ops) : comp x (UNMARK : ops)
comp (Block x) ops = SET B : comp x (RESET : ops)
comp (Unblock x) ops = SET U : comp x (RESET : ops)

These equations specify that Val and Throw are compiled directly to the corre-
sponding machine operations; in turn, Add is compiled by producing code for the

10 G. Hutton and J. Wright

two argument expressions in turn, and then adding the resulting two integers on
the stack; Seqn is compiled by producing code for the first argument, removing
the resulting integer from the stack, and producing code for the second argument;
Catch is compiled in the manner explained below; and finally, Block and Unblock
are compiled by changing the interrupt status, producing code for the argument
expression, and then restoring the previous interrupt status.

Returning to the case for Catch, this primitive is compiled by marking the stack
with the compiled code for the handler, compiling the expression to be evaluated,
and then unmarking the stack by removing the handler code. In this way, the
MARK and UNMARK operations delimit the extent of the handler to the particu-
lar expression being evaluated, in the sense that the handler is only present on the
stack during evaluation of this expression. Note that the stack is marked with actual
code, rather than the address of the code as would be used in a real implementa-
tion. Moreover, two copies of the additional code ops are used in the compilation
of catch, rather than a single copy and two jumps. However, our concern in this
article is with basic semantic issues, rather than practicality or efficiency.

9 Reachability

In order to specify what it means for our compiler to be correct, we will exploit
two notions of reachability for a transition relation −→ on states. First of all, we
formalise the notion that one state can reach another state, by defining a relation
∗−→ on states by the following two inference rules:

x ∗−→ x

∃x′. x −→ x′ ∧ x ′ ∗−→ y

x ∗−→ y

That is, x ∗−→ y if from the state x we can reach the state y by making zero or
more transitions. More generally, we write x ∗−→ Y to mean that x can reach
everything in the set Y , defined by ∀y ∈ Y. x ∗−→ y.

Secondly, we formalise the notion that one state will reach another state:

x � x

∀x′. x −→ x′ ⇒ x ′ � y

x � y

That is, x � y if from the state x we will reach the state y by making making zero
or more transitions. More generally, we write x � Y to mean that x will reach
something in Y , or equivalently, x is barred by Y (Troelstra & van Dalen, 1988,
section 8.18), defined by the following two inference rules:

x ∈ Y

x � Y

∀x′. x −→ x′ ⇒ x ′ � Y

x � Y

Note that x � Y cannot be defined simply by ∃y ∈ Y. x � y, because this expresses
the stronger statement that x will reach a specific element of Y . For example, if
a −→ b and a −→ c are the only possible transitions from a, then a � {b, c} holds
using the above definition for �, but not using the stronger definition; in particular,

What is the Meaning of These Constant Interruptions? 11

a will reach either b or c, but we cannot guarantee a specific choice. Finally, we
generalise one step further, by writing X � Y to mean that everything in X will
reach something in Y , defined by ∀x ∈ X. x � Y .

10 Compiler correctness

Writing x �∗ Y to mean that both x ∗−→ Y and x � Y , the correctness of our
compiler can now be captured as follows: for all expressions e and integers n,

〈comp e [], U , []〉
�∗

{〈[], U , [VAL n]〉 | e ⇓U Val n} ∪ {〈〈U , []〉〉 | e ⇓U Throw}
This property specifies that if the compiled code for an expression is executed with
interrupts unblocked and an empty initial stack, this process can terminate with
any number on the stack that is permitted by the semantics of expressions, can
terminate with an uncaught exception if this is permitted by the semantics, and
moreover, will terminate with one of these possible outcomes.

Note that both parts of the compiler correctness property are necessary. Just
using ∗−→ would not be strong enough, as this would only specify that from the
start state we can reach everything in the set of expected results, but does not
preclude execution paths that do not reach this set; that is, the set of expected
results could be too small. Conversely, just using � would only specify that from
the start state we will reach something in the resulting set, but does not ensure
that we can reach everything; that is, the set could be too big.

For the purposes of proof, however, we generalise the above property to arbitrary
additional code, interrupt statuses and initial stacks.

Theorem 1 (compiler correctness)

For all expressions e, code ops , statuses i , stacks s and integers n:

〈comp e ops , i , s〉
�∗

{〈ops , i , VAL n : s〉 | e ⇓i Val n} ∪ {〈〈i , s〉〉 | e ⇓i Throw}

10.1 Completeness

We prove the ∗−→ and � parts of theorem 1 as two separate propositions, the first
of which expresses the completeness property that compiled code can produce every
result that is permitted by the semantics for the language.

Proposition 3 (completeness)

For all expressions e, code ops , statuses i , stacks s and integers n:

〈comp e ops , i , s〉
∗−→

{〈ops , i , VAL n : s〉 | e ⇓i Val n} ∪ {〈〈i , s〉〉 | e ⇓i Throw}

12 G. Hutton and J. Wright

Proof : using a number of lemmas, which are contained in the appendix. First of
all, we exploit the union property of ∗−→ (lemma 1)

x
∗−→ Y ∪ Z ⇔ x

∗−→ Y ∧ x
∗−→ Z

to split the proposition into two parts

〈comp e ops , i , s〉 ∗−→ {〈ops , i , VAL n : s〉 | e ⇓i Val n}
∧

〈comp e ops , i , s〉 ∗−→ {〈〈i , s〉〉 | e ⇓i Throw}
and secondly, we use the definition of ∗−→ and logic to simplify these:

e ⇓i Val n ⇒ 〈comp e ops , i , s〉 ∗−→ 〈ops , i , VAL n : s〉
∧

e ⇓i Throw ⇒ 〈comp e ops , i , s〉 ∗−→ 〈〈i , s〉〉
We might now expect to be able to verify the two conjuncts separately, but this
approach does not work, because the proof of the first part requires the second part,
and vice versa, and hence there would be a circularity. The solution is to prove both
conjuncts simultaneously, using rule induction.

To show that some property P (e, i , v) holds for all e ⇓i v , the principle of rule
induction states that it is sufficient to consider each rule that defines ⇓, and show
that if P holds for each premise of the rule, then it also holds of the conclusion. For
example, the Val rule has no premises and hence we are simply required to show
that P (Val n, i ,Val n), while for the Add2 rule we must show that if x ⇓i Throw
and P (x , i ,Throw) then P (Add x y, i ,Throw). In our case, the property P (e, i , v)
is defined as follows: for all integers n, code ops and stacks s ,

v = Val n ⇒ 〈comp e ops , i , s〉 ∗−→ 〈ops , i , VAL n : s〉
∧

v = Throw ⇒ 〈comp e ops , i , s〉 ∗−→ 〈〈i , s〉〉
We now verify that P (e, i , v) holds for all e ⇓i v , by rule induction. Within
this proof we implicitly exploit two properties of the relation ∗−→, namely that it
is implied by −→ (lemma 2), and that it is transitive (lemma 3).

Case: Val rule

〈comp (Val n) ops , i , s〉
= { definition of comp }

〈PUSH n : ops , i , s〉
−→ { definition of −→ }

〈ops , i , VAL n : s〉
Case: Throw rule

〈comp Throw ops , i , s〉
= { definition of comp }

What is the Meaning of These Constant Interruptions? 13

〈THROW : ops , i , s〉
−→ { definition of −→ }

〈〈i , s〉〉
Case: Add1 rule

〈comp (Add x y) ops , i , s〉
= { definition of comp }

〈comp x (comp y (ADD : ops)), i , s〉
∗−→ { induction hypothesis for x }

〈comp y (ADD : ops), i , VAL n : s〉
∗−→ { induction hypothesis for y }

〈ADD : ops , i , VAL m : VAL n : s〉
−→ { definition of −→ }

〈ops , i , VAL (n + m) : s〉
Case: Add2 rule

〈comp (Add x y) ops , i , s〉
= { definition of comp }

〈comp x (comp y (ADD : ops)), i , s〉
∗−→ { induction hypothesis for x }

〈〈i , s〉〉
Case: Add3 rule

〈comp (Add x y) ops , i , s〉
= { definition of comp }

〈comp x (comp y (ADD : ops)), i , s〉
∗−→ { induction hypothesis for x }

〈comp y (ADD : ops), i , VAL n : s〉
∗−→ { induction hypothesis for y }

〈〈i , VAL n : s〉〉
−→ { definition of −→ }

〈〈i , s〉〉
Case: Seqn1 rule

〈comp (Seqn x y) ops , i , s〉
= { definition of comp }

〈comp x (POP : comp y ops), i , s〉
∗−→ { induction hypothesis for x }

〈POP : comp y ops , i , VAL n : s〉
−→ { definition of −→ }

〈comp y ops , i , s〉
We now proceed by case analysis on the value v .

v = Val m:

14 G. Hutton and J. Wright

∗−→ { induction hypothesis for y }
〈ops , i , VAL m : s〉

v = Throw :
∗−→ { induction hypothesis for y }

〈〈i , s〉〉
Case: Seqn2 rule

〈comp (Seqn x y) ops , i , s〉
= { definition of comp }

〈comp x (POP : comp y ops), i , s〉
∗−→ { induction hypothesis for x }

〈〈i , s〉〉
Case: Catch1 rule

〈comp (Catch x y) ops , i , s〉
= { definition of comp }

〈MARK (comp y ops) : comp x (UNMARK : ops), i , s〉
−→ { definition of −→ }

〈comp x (UNMARK : ops), i , HAN (comp y ops) : s〉
∗−→ { induction hypothesis for x }

〈UNMARK : ops , i , VAL n : HAN (comp y ops) : s〉
−→ { definition of −→ }

〈ops , i , VAL n : s〉
Case: Catch2 rule

〈comp (Catch x y) ops , i , s〉
= { definition of comp }

〈MARK (comp y ops) : comp x (UNMARK : ops), i , s〉
−→ { definition of −→ }

〈comp x (UNMARK : ops), i , HAN (comp y ops) : s〉
∗−→ { induction hypothesis for x }

〈〈i , HAN (comp y ops) : s〉〉
−→ { definition of −→ }

〈comp y ops , i , s〉
We now proceed by case analysis on v .

v = Val n:
∗−→ { induction hypothesis for y }

〈ops , i , VAL n : s〉
v = Throw :

∗−→ { induction hypothesis for y }
〈〈i , s〉〉

What is the Meaning of These Constant Interruptions? 15

Case: Block rule

〈comp (Block x) ops , i , s〉
= { definition of comp }

〈SET B : comp x (RESET : ops), i , s〉
−→ { definition of −→ }

〈comp x (RESET : ops), B , INT i : s〉
We now proceed by case analysis on v .

v = Val n:
∗−→ { induction hypothesis for x }

〈RESET : ops , B , VAL n : INT i : s〉
−→ { definition of −→ }

〈ops , i , VAL n : s〉
v = Throw :

∗−→ { induction hypothesis for x }
〈〈B , INT i : s〉〉

−→ { definition of −→ }
〈〈i , s〉〉

Case: Unblock rule

〈comp (Unblock x) ops , i , s〉
= { definition of comp }

〈SET U : comp x (RESET : ops), i , s〉
−→ { definition of −→ }

〈comp x (RESET : ops), U , INT i : s〉
We now proceed by case analysis on v .

v = Val n:
∗−→ { induction hypothesis for x }

〈RESET : ops , U , VAL n : INT i : s〉
−→ { definition of −→ }

〈ops , i , VAL n : s〉
v = Throw :

∗−→ { induction hypothesis for x }
〈〈U , INT i : s〉〉

−→ { definition of −→ }
〈〈i , s〉〉

Case: Int rule

〈comp x ops , U , s〉
−→ { definition of −→, comp produces non-empty code (lemma 4) }

〈〈U , s〉〉
��

16 G. Hutton and J. Wright

10.2 Soundness

The second part of Theorem 1 expresses the soundness property that compiled code
will always produce a result that is permitted by the semantics.

Proposition 4 (soundness)

For all expressions e, code ops , statuses i , stacks s and integers n:

〈comp e ops , i , s〉
�

{〈ops , i , VAL n : s〉 | e ⇓i Val n} ∪ {〈〈i , s〉〉 | e ⇓i Throw}

Proof : by structural induction on e. Within this proof we implicitly exploit three
properties of the relation �, namely that it is transitive (lemma 5), preserved by ∪
(lemma 7), and that it is implied by ⊆ (lemma 8).

Case: e = Val n

〈comp (Val n) ops , i , s〉
= { definition of comp }

〈PUSH n : ops , i , s〉
� { definition of −→ }

{〈ops , i , VAL n : s〉} ∪ {〈〈i , s〉〉 | i = U }
= { definition of ⇓i }

{〈ops , i , VAL n : s〉 | Val n ⇓i Val n} ∪ {〈〈i , s〉〉 | Val n ⇓i Throw}
Note that in the second step, there are two possible outcomes permitted by the

machine: either the PUSH is performed, or an exception is raised if interrupts are
permitted. Moreover, in the last step, the predicate Val n ⇓i Val n is true by the
Val rule, and Val n ⇓i Throw is equivalent to i = U by the Int rule.

Case: e = Throw

〈comp Throw ops , i , s〉
= { definition of comp }

〈THROW : ops , i , s〉
� { definition of −→ }

{〈〈i , s〉〉}
= { definition of ⇓i }

{〈〈i , s〉〉 | Throw ⇓i Throw}
= { definition of ⇓i }

{〈ops , i , VAL n : s〉 | Throw ⇓i Val n} ∪ {〈〈i , s〉〉 | Throw ⇓i Throw}
Note that in the last step, the predicate Throw ⇓i Val n is false because there

is no rule for such an evaluation, and hence the corresponding set is empty.

Case: e = Add x y

What is the Meaning of These Constant Interruptions? 17

〈comp (Add x y), i , s〉
= { definition of comp }

〈comp x (comp y (ADD : ops)), i , s〉
� { induction hypothesis for x }

{〈comp y (ADD : ops), i , VAL n : s〉 | x ⇓i Val n} ∪
{〈〈i , s〉〉 | x ⇓i Throw}

� { induction hypothesis for y }
{〈ADD : ops , i , VAL m : VAL n : s〉 | x ⇓i Val n ∧ y ⇓i Val m} ∪
{〈〈i , VAL n : s〉〉 | x ⇓i Val n ∧ y ⇓i Throw} ∪
{〈〈i , s〉〉 | x ⇓i Throw}

� { definition of −→ }
{〈ops , i , VAL (n + m) : s〉 | x ⇓i Val n ∧ y ⇓i Val m} ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ y ⇓i Val m ∧ i = U } ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ y ⇓i Throw} ∪
{〈〈i , s〉〉 | x ⇓i Throw}

⊆ { definition of ⇓i }
{〈ops , i , VAL (n + m) : s〉 | Add x y ⇓i Val (n + m)} ∪
{〈〈i , s〉〉 | Add x y ⇓i Throw} ∪
{〈〈i , s〉〉 | Add x y ⇓i Throw} ∪
{〈〈i , s〉〉 | Add x y ⇓i Throw}

= { idempotence of ∪ }
{〈ops , i , VAL (n + m) : s〉 | Add x y ⇓i Val (n + m)} ∪
{〈〈i , s〉〉 | Add x y ⇓i Throw}

Case: e = Seqn x y

〈comp (Add x y), i , s〉
= { definition of comp }

〈comp x (POP : comp y ops), i , s〉
� { induction hypothesis for x }

{〈POP : comp y ops , i , VAL n : s〉 | x ⇓i Val n} ∪
{〈〈i , s〉〉 | x ⇓i Throw}

� { definition of −→ }
{〈comp y ops , i , s〉 | x ⇓i Val n} ∪
{〈〈i , VAL n : s〉〉 | x ⇓i Val n ∧ i = U } ∪
{〈〈i , s〉〉 | x ⇓i Throw}

� { induction hypothesis for y }
{〈ops , i , VAL m : s〉 | x ⇓i Val n ∧ y ⇓i Val m} ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ y ⇓i Throw} ∪
{〈〈i , VAL n : s〉〉 | x ⇓i Val n ∧ i = U } ∪
{〈〈i , s〉〉 | x ⇓i Throw}

� { definition of −→ }
{〈ops , i , VAL m : s〉 | x ⇓i Val n ∧ y ⇓i Val m} ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ y ⇓i Throw} ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ i = U } ∪
{〈〈i , s〉〉 | x ⇓i Throw}

18 G. Hutton and J. Wright

⊆ { definition of ⇓i }
{〈ops , i , VAL m : s〉 | Seqn x y ⇓i Val m} ∪
{〈〈i , s〉〉 | Seqn x y ⇓i Throw} ∪
{〈〈i , s〉〉 | Seqn x y ⇓i Throw} ∪
{〈〈i , s〉〉 | Seqn x y ⇓i Throw}

= { idempotence of ∪ }
{〈ops , i , VAL m : s〉 | Seqn x y ⇓i Val m} ∪
{〈〈i , s〉〉 | Seqn x y ⇓i Throw}

Case: e = Catch x y

〈comp (Catch x y), i , s〉
= { definition of comp }

〈MARK (comp y ops) : comp x (UNMARK : ops), i , s〉
� { definition of −→ }

{〈comp x (UNMARK : ops), i , HAN (comp y ops) : s〉} ∪
{〈〈i , s〉〉 | i = U }

� { induction hypothesis for x }
{〈UNMARK : ops , i , VAL n : HAN (comp y ops) : s〉 | x ⇓i Val n} ∪
{〈〈i , HAN (comp y ops) : s〉〉 | x ⇓i Throw} ∪
{〈〈i , s〉〉 | i = U }

� { definition of −→ }
{〈ops , i , VAL n : s〉 | x ⇓i Val n} ∪
{〈comp y ops , i , s〉 | x ⇓i Val n ∧ i = U } ∪
{〈comp y ops , i , s〉 | x ⇓i Throw} ∪
{〈〈i , s〉〉 | i = U }

� { induction hypothesis for y }
{〈ops , i , VAL n : s〉 | x ⇓i Val n} ∪
{〈ops , i , VAL m : s〉 | x ⇓i Val n ∧ i = U ∧ y ⇓i Val m} ∪
{〈〈i , s〉〉 | x ⇓i Val n ∧ i = U ∧ y ⇓i Throw} ∪
{〈ops , i , VAL m : s〉 | x ⇓i Throw ∧ y ⇓i Val m} ∪
{〈〈i , s〉〉 | x ⇓i Throw ∧ y ⇓i Throw} ∪
{〈〈i , s〉〉 | i = U }

⊆ { definition of ⇓i }
{〈ops , i , VAL n : s〉 | Catch x y ⇓i Val n} ∪
{〈ops , i , VAL m : s〉 | Catch x y ⇓i Val m} ∪
{〈〈i , s〉〉 | Catch x y ⇓i Throw} ∪
{〈ops , i , VAL m : s〉 | Catch x y ⇓i Val m} ∪
{〈〈i , s〉〉 | Catch x y ⇓i Throw} ∪
{〈〈i , s〉〉 | Catch x y ⇓i Throw}

= { idempotence of ∪ }
{〈ops , i , VAL n : s〉 | Catch x y ⇓i Val n} ∪
{〈〈i , s〉〉 | Catch x y ⇓i Throw}

Note in the second last step that x ⇓i Val n ∧ i = U ∧ y ⇓i Val m implies
Catch x y ⇓i Val m by first using the Int rule (and i = U) to conclude that

What is the Meaning of These Constant Interruptions? 19

x ⇓i Throw , and then applying the Catch2 rule (and y ⇓i Val m) to conclude
that Catch x y ⇓i Val m. The assumption x ⇓i Val n isn’t required.

Case: e = Block x

〈comp (Block x), i , s〉
= { definition of comp }

〈SET B : comp x (RESET : ops), i , s〉
� { definition of −→ }

{〈comp x (RESET : ops), B , INT i : s〉} ∪
{〈〈i , s〉〉 | i = U }

� { induction hypothesis for x }
{〈RESET : ops , B , VAL n : INT i : s〉 | x ⇓B Val n} ∪
{〈〈B , INT i : s〉〉 | x ⇓B Throw} ∪
{〈〈i , s〉〉 | i = U }

� { definition of −→ }
{〈ops , i , VAL n : s〉 | x ⇓B Val n} ∪
{〈〈i , s〉〉 | x ⇓B Throw} ∪
{〈〈i , s〉〉 | i = U }

⊆ { definition of ⇓i }
{〈ops , i , VAL n : s〉 | Block x ⇓i Val n} ∪
{〈〈i , s〉〉 | Block x ⇓i Throw} ∪
{〈〈i , s〉〉 | Block x ⇓i Throw}

= { idempotence of ∪ }
{〈ops , i , VAL n : s〉 | Block x ⇓i Val n} ∪
{〈〈i , s〉〉 | Block x ⇓i Throw} ∪

Case: e = Unblock x

〈comp (Unblock x), i , s〉
= { definition of comp }

〈SET U : comp x (RESET : ops), i , s〉
� { definition of −→ }

{〈comp x (RESET : ops), U , INT i : s〉} ∪
{〈〈i , s〉〉 | i = U }

� { induction hypothesis for x }
{〈RESET : ops , U , VAL n : INT i : s〉 | x ⇓U Val n} ∪
{〈〈U , INT i : s〉〉 | x ⇓U Throw} ∪
{〈〈i , s〉〉 | i = U }

� { definition of −→ }
{〈ops , i , VAL n : s〉 | x ⇓U Val n} ∪
{〈〈i , s〉〉 | x ⇓U Val n} ∪
{〈〈i , s〉〉 | x ⇓U Throw} ∪
{〈〈i , s〉〉 | i = U }

⊆ { definition of ⇓i }
{〈ops , i , VAL n : s〉 | Unblock x ⇓i Val n} ∪

20 G. Hutton and J. Wright

{〈〈i , s〉〉 | Unblock x ⇓i Throw} ∪
{〈〈i , s〉〉 | Unblock x ⇓i Throw} ∪
{〈〈i , s〉〉 | Unblock x ⇓i Throw}

= { idempotence of ∪ }
{〈ops , i , VAL n : s〉 | Unblock x ⇓i Val n} ∪
{〈〈i , s〉〉 | Unblock x ⇓i Throw}

Note in the second last step that x ⇓U Val n implies Unblock x ⇓i Throw using
the Unblock and Int rules. The assumption x ⇓U Val n isn’t required. ��

11 Related work

Exceptions in various forms have been the subject of research for more than three
decades, so not surprisingly there is a large body of related work. In this section we
survey a selection of this work, under the general headings of design, implementa-
tion, semantics, reasoning and expressiveness.

Design. Exceptions because a subject of research in their own right with the
publication of Goodenough’s seminal article (1975), which lead to the first proper
language support for exceptions, in PL/I (Auwaerter, 1976). A summary of early
developments is given in (Cristian, 1989), while the design space for exception
handling mechanisms is explored in (Drew & Gough, 1994). A modern account of
the fundamental concepts, design issues, and the exception handling mechanisms
provided in a number of languages, is given by (Sebesta, 2006).

Implementation. The basic technique of stack unwinding can be optimised in
a number of ways, such as using a separate stack of handler addresses to make
the process more efficient (Ramsey & Jones, 2000), or using a separate table of
handler extents to avoid a run-time cost for installing a handler (Drew et al., 1995).
Exceptions can also readily be implemented in a compiler that is based upon the
use of continuations (Appel, 1992). A detailed survey of the techniques used to
implement exceptions and interrupts is given in (Chase, 1994a; Chase, 1994b).

Semantics. A range of approaches to the semantics of exceptions have been ex-
plored, including the use of weakest preconditions (Leino & van de Snepscheut,
1994), continuations (Reynolds, 1972), special return values (Spivey, 1990), and
games (Laird, 2001). Modern languages in which the semantics of exceptions have
been studied include Java (Jacobs, 2001; Ancona et al., 2001; Klein & Nipkow, 2005;
Drossopoulou & Valkevych, 2000; Borger & Schulte, 2000), ML (Milner et al., 1997),
and Haskell (Peyton Jones, 2001; Peyton Jones et al., 1999; Moran et al., 1999).

In the case of interrupts, most previous work on semantics has been within process
calculi such as CSP (Hoare, 1985), CCS (Milner, 1989) and the π-calculus (Milner,
1999), often within the more general setting of prioritized processes (Cleaveland
et al., 2001). The notion of engines explored in Scheme provides an implementation-
oriented semantics for the special case of timeouts (Haynes & Friedman, 1984;
Dybvig & Hieb, 1989). As noted earlier on, Haskell is currently the only language
with both full support for asynchronous interrupts and a formal semantics for this
feature (Marlow et al., 2001; Peyton Jones, 2001).

What is the Meaning of These Constant Interruptions? 21

Reasoning. Early work on reasoning about exceptions focused on their impact on
program transformation (Aiken et al., 1990), and the verification of basic properties
of exception primitives (Spivey, 1990; Leino & van de Snepscheut, 1994). In the con-
text of exceptions in Java, researchers have considered the verification of a compiler
(Klein & Nipkow, 2005; Borger & Schulte, 2000), verification of simple programs
(Jacobs & Poll, 2003), and soundness for a type system that covers both normal
and exceptional behaviour (Drossopoulou & Valkevych, 2000). Research in ML has
focused on the use of static analysis to detect potentially uncaught exceptions (Yi
& Ryu, 2002; Pessaux & Leroy, 2000) and on type soundness in the presense of
exceptions (Wright & Felleisen, 1994), while in Haskell a number of basic program
equivalences and transformations have been verified (Moran et al., 1999).

As a consequence of the lack of languages with formally-based support for inter-
rupts, reasoning about the correctness of programs that use interrupts is largely
unexplored, although the use of types to detect potentially unbounded stack usage
in interrupt systems has been considered (Palsberg & Ma, 2002).

Expressiveness. Exceptions and continuations are both powerful mechanisms for
altering control flow, so it is natural to ask how they compare. Early work showed
how exceptions could be used as an alternative to continuations for defining the
semantics of jumps (Allison, 1989). More recently, a range of results have been
established concerning the relative expressiveness of exceptions and continuations
in the context of other features such as recursion and state (Lillibridge, 1999; Riecke
& Thielecke, 1999; Thielecke, 2000; Laird, 2002).

12 Further work

In this final section we discuss the limitations of our present work on the semantics
of interrupts, and how it may be further developed in the future.

Generalisation. Our key weapon in this article has been simplicity, by abstracting
from the details of a real language to focus on a minimal language with interrupts.
This approach has allowed us to establish two important milestones: a formally
justified semantics for interrupts, and the verification of a compiler for interrupts.
The most important step now is to consider how our work can be scaled-up to more
realistic languages, both to investigate how interrupts interact with other language
features, and to study more advanced programming examples.

In this regard, we are particularly interested in generalising our work to the core
language of Concurrent Haskell, an extension of the λ-calculus that supports re-
cursion (and hence non-termination), input/output, concurrency, communication,
exceptions and interrupts. The introduction of non-termination and concurrency
add considerably to the complexity of the compiler correctness problem, in particu-
lar by requiring a shift from an inductive to a co-inductive notion of equality, based
upon bisimilarity (Gordon, 1995). Current approaches to compiler correctness for
concurrent languages utilise a process calculus as an intermediate language (Wand,
1995), but we are in the process of developing a simpler approach that avoids the
need for an intermediate language, by establishing a bisimulation directly between
a high-level semantics and its low-level implementation.

22 G. Hutton and J. Wright

Mechanisation. Even for such a simple language, our compiler correctness proof
was non-trivial, and required great attention to detail. In our previous work on
the correctness of a compiler for exceptions (Hutton & Wright, 2004), our proof
was mechanically verified using Isabelle (Nipkow, 2004). It would be interesting to
attempt a similar verification of our proof for interrupts, for which purposes we are
exploring the use of Epigram (McBride et al. , 2006). Preliminary work has shown
how the use of dependent types in Epigram can be used to simplify the process of
proving a compiler correct, by shifting some of the burden of proof from the user to
the type checker (McKinna & Wright, 2006). Once our work is generalised to more
realistic languages, we anticipate that mechanical support is no longer just useful,
but becomes an essential part of the verification task.

Strength. An important question about compiler correctness in the presense of
interrupts concerns the strength of the theorem. In this article, we have established
that compiled code can produce every result that is permitted by the semantics for
the language (completeness), and dually, that compiled code will always produce a
result that is permitted by the semantics (soundness.) However, weaker or stronger
notions of correctness may sometimes be appropriate.

First of all, some language implementations are by design not complete with re-
spect to the semantics for the language, because implementing every behaviour that
is permitted by the semantics may not be practical. For example, an implementa-
tion may only deliver interrupts at safe points , and not insert safe points as often
as the semantics requires, because doing so would be prohibitively expensive. In
such circumstances, a weaker notion of completeness would be appropriate, which
would thereby result in a weaker compiler correctness theorem.

Secondly, a language with observable effects, such as input/output, will require
a stronger notion of correctness. In particular, our present theorem is based upon
the extensional notion of comparing final results, whereas the presense of effects
demands the intentional notion of comparing intermediate actions. For example,
for an interactive program we are not just interested in its final result, but any
input/output that takes place in the process of producing this result. Interrupts
themselves can also be viewed as a form of effect, and one can consider strengthening
our correctness theorem to say that if an expression and its compiled code receive an
interrupt “at the same time”, they should behave “in the same way”. Formalising
these ideas will require the development of a suitable notion of bisimulation between
a semantics and its implementation, as noted above.

Reasoning. Dealing with interrupts is an important, and increasingly inevitable,
aspect of modern software production. Despite their importance, however, the issue
of provable correctness for programs in the presense of interrupts has received little
attention, due to the lack of languages with a formal semantics for interrupts. In
this article, we verified a simple finally operator in the presense of interrupts, but
this is only a first step. For example, one can consider a number of useful operators
that can be defined within Concurrent Haskell, such as timeout , either and both,
together with programs written using them. As with scaling our present work up
to more realistic languages, we anticipate the mechanical support will be required
for the purposes of reasoning about more realistic programs.

What is the Meaning of These Constant Interruptions? 23

Calculation. In formal reasoning, we often seek to replace verification by con-
struction (Backhouse, 2003). For example, rather than first writing a compiler and
then proving its correctness, it would be preferable to calculate the compiler directly
from a semantics for the language, with the aim of giving a systematic discovery of
the basic implementation techniques, as opposed to a post-hoc verification.

In our previous work, we have taken a step towards this goal in the context of
exceptions, by showing how to calculate an abstract machine in which the key ideas
of marking, unmarking, and unwinding the stack arise directly from the calculation
itself, without requiring any prior knowledge of these concepts (Hutton & Wright,
2006). It would, however, be preferable to calculate a compiler, which differs from an
abstract machine in that it generates code for execution using a lower-level virtual
machine, rather than executing programs directly. Building upon recent work on
compiler construction (Ager et al., 2003), it would be interesting to try and calculate
a compiler for exceptions (and interrupts if this feasible) by factorising our abstract
machine into a compiler and a virtual machine.

Acknowledgements

We would like to thank Kathleen Fisher and the referees for comments that greatly
improved the paper, Simon Peyton Jones and Simon Marlow for useful feedback,
Thorsten Altenkirch for suggesting the use of �, Conor McBride for showing how
to prove its transitivity, and Microsoft Research Ltd in Cambridge for providing
funding. The Haskell code was typeset using lhs2TeX (Hinze & Löh, 2006), and
QuickCheck (Claessen & Hughes, 2000) was used for testing purposes.

Appendix

For completeness, this appendix presents the lemmas used in section 10 to verify
the correctness of our compiler, together with an additional result (lemma 6) that
is used to verify the transitivity of � (lemma 5).

Lemma 1 (union property of ∗−→)

For all states x , and sets of states Y and Z :

x
∗−→ Y ∪ Z ⇔ x

∗−→ Y ∧ x
∗−→ Z

Proof :

x
∗−→ Y ∪ Z ⇔ x

∗−→ Y ∧ x
∗−→ Z

⇔ { definition of ∗−→ }
(∀w ∈ Y ∪ Z. x

∗−→ w) ⇔ (∀y ∈ Y. x
∗−→ y) ∧ (∀z ∈ Z. x

∗−→ z)
⇐ { generalise x ∗−→ to a predicate P }

(∀w ∈ Y ∪ Z. P w) ⇔ (∀y ∈ Y. P y) ∧ (∀z ∈ Z. P z)
⇔ { view the predicate as a set }

Y ∪ Z ⊆ P ⇔ Y ⊆ P ∧ Z ⊆ P

⇔ { set theory }
True

24 G. Hutton and J. Wright

��
Lemma 2 (−→ implies ∗−→)

For all states x and y:

x −→ y ⇒ x
∗−→ y

Proof :

x ∗−→ y
⇐ { second rule for ∗−→ }

∃x′. x −→ x′ ∧ x′ ∗−→ y

⇐ { logic }
x −→ y ∧ y

∗−→ y

⇔ { first rule for ∗−→ }
x −→ y ∧ True

⇔ { logic }
x −→ y

��
Lemma 3 (transitivity of ∗−→)

For all states x , y and z :

x
∗−→ y ∧ y

∗−→ z ⇒ x
∗−→ z

Proof :

x
∗−→ y ∧ y

∗−→ z ⇒ x
∗−→ z

⇔ { currying }
x

∗−→ y ⇒ (y ∗−→ z ⇒ x
∗−→ z)

⇔ { logic }
x

∗−→ y ⇒ ∀z. (y ∗−→ z ⇒ x
∗−→ z)

⇔ { define P (x, y) ⇔ ∀z. (y ∗−→ z ⇒ x
∗−→ z) }

x
∗−→ y ⇒ P (x, y)

⇐ { rule induction for ∗−→ }
(1) P (x, x)
(2) x −→ x′ ∧ x′ ∗−→ y ∧ P (x′, y) ⇒ P (x, y)

Condition (1) expands to ∀z. x
∗−→ z ⇒ x

∗−→ z, which is trivially true because
⇒ is reflexive. In turn, condition (2) expands to:

x −→ x′ x′ ∗−→ y ∀z. (y ∗−→ z ⇒ x′ ∗−→ z)

∀z′. (y ∗−→ z′ ⇒ x
∗−→ z′)

This rule is now verified as follows. Given the three premises and y ∗−→ z ′, we
must show that x ∗−→ z ′. Using the third premise and the assumption y ∗−→ z ′

gives x ′ ∗−→ z ′, which can then be used in conjunction with the first premise and
the second rule in the definition of ∗−→ to give x ∗−→ z ′, as required. ��

What is the Meaning of These Constant Interruptions? 25

Lemma 4 (comp produces non-empty code)

For all expressions e and code ops :

comp e ops �= []

Proof : by structural induction on e.

The cases for the Val , Throw , Catch, Block and Unblock constructors are imme-
diate from the definition of comp, while the cases for Add and Seqn also require the
use of the induction hypothesis for their first argument. ��
Lemma 5 (transitivity of �)

For all sets of states X , Y and Z :

X � Y ∧ Y � Z ⇒ X � Z

Proof :

X � Y ∧ Y � Z

⇔ { definition of � }
(∀x ∈ X. x � Y) ∧ Y � Z

⇔ { logic }
∀x ∈ X. (x � Y ∧ Y � Z)

⇒ { lemma 6 below }
∀x ∈ X. x � Z

⇔ { definition of � }
X � Z

��
Lemma 6 (restricted transitivity of �)

For all states x , and sets of states Y and Z :

x � Y ∧ Y � Z ⇒ x � Z

Proof :

x � Y ∧ Y � Z ⇒ x � Z

⇔ { currying }
x � Y ⇒ (Y � Z ⇒ x � Z)

⇔ { logic }
x � Y ⇒ ∀Z. (Y � Z ⇒ x � Z)

⇔ { define P (x, Y) ⇔ ∀Z. (Y � Z ⇒ x � Z) }
x � Y ⇒ P (x, Y)

⇐ { rule induction for � }
(1) x ∈ Y ⇒ P (x, Y)
(2) (∀x′. x −→ x′ ⇒ x′ � Y) ∧ (∀x′. x −→ x′ ⇒ P (x′, Y)) ⇒ P (x, Y)

26 G. Hutton and J. Wright

Condition (1) is verified by the following calculation:

x ∈ Y ⇒ P (x, Y)
⇔ { definition of P }

x ∈ Y ⇒ (∀Z. Y � Z ⇒ x � Z)
⇔ { logic }

x ∈ Y ⇒ (Y � Z ⇒ x � Z)
⇔ { uncurrying }

x ∈ Y ∧ Y � Z ⇒ x � Z

⇔ { definition of � }
x ∈ Y ∧ (∀y ∈ Y. y � Z) ⇒ x � Z

⇔ { logic }
True

For condition (2), the first premise is not required for the proof, so we actually
show (∀x′. x −→ x′ ⇒ P (x′, Y)) ⇒ P (x, Y), which expands to:

∀x′. x −→ x′ ⇒ (∀Z. Y � Z ⇒ x′ � Z)

∀Z ′. Y � Z ′ ⇒ x � Z ′

This rule is now verified as follows. Given the top line of the rule (assumption A)
and Y � Z ′ (assumption B), we must show that x � Z ′. By the second rule in
the definition for �, it is sufficient to show that ∀x′′. x −→ x′′ ⇒ x′′ �Z ′. That is,
given x −→ x′′ (assumption C), we must show that x ′′ � Z ′. Using assumptions
A and C in conjunction gives ∀Z. Y � Z ⇒ x′′ � Z, which can then be used in
conjunction with assumption B to give x ′′ � Z ′, as required. ��
Lemma 7 (∪ preserves �)

For all sets of states A, B , C and D :

A � B ∧ C � D ⇒ A ∪ C � B ∪ D

Proof :

(A ∪ C) � (B ∪ D)
⇔ { definition of � }

∀x ∈ A ∪ C. x � B ∪ D

⇔ { set theory }
(∀a ∈ A. a � B ∪ D) ∧ (∀c ∈ C. c � B ∪ D)

⇔ { definition of � }
A � B ∪ D ∧ C � B ∪ D

⇐ { transitivity of � (lemma 5) }
A � B ∧ B � B ∪ D ∧ C � D ∧ D � B ∪ D

⇐ { ⊆ implies � (lemma 8) }
A � B ∧ B ⊆ B ∪ D ∧ C � D ∧ D ⊆ B ∪ D

⇔ { set theory }
A � B ∧ C � D

What is the Meaning of These Constant Interruptions? 27

��
Lemma 8 (⊆ implies �)

For all sets of states X and Y :

X ⊆ Y ⇒ X � Y

Proof :

X � Y

⇔ { definition of � }
∀x ∈ X. x � Y

⇐ { definition of � }
∀x ∈ X. x ∈ Y

⇔ { definition of ⊆ }
X ⊆ Y

��

References

Ager, Mads Sig, Biernacki, Dariusz, Danvy, Olivier, & Midtgaard, Jan. (2003). From In-
terpreter to Compiler and Virtual Machine: a Functional Derivation. Technical Report
RS-03-14. BRICS, Aarhus, Denmark.

Aiken, Alexander, Wimmers, Edward L., & Williams, John H. (1990). Program Trans-
formation in the Presence of Errors. Pages 210–217 of: Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press.

Allison, Lloyd. (1989). Direct Semantics and Exceptions Define Jumps and Coroutines.
Information Processing Letters, 31, 327–330.

Ancona, D., Lagorio, G., & Zucca, E. (2001). A Core Calculus for Java Exceptions.
SIGPLAN Notices, 36(11), 16–30.

Appel, Andrew. (1992). Compiling With Continuations. Cambridge University Press.

Auwaerter, J. F. (1976). American National Standard – Programming Language PL/I.
ANSI X3.53-l976. American National Standards Institute, New York.

Backhouse, Roland. (2003). Program Construction: Calculating Implementations from
Specifications. John Wiley.

Borger, Egon, & Schulte, Wolfram. (2000). A Practical Method for Specification and
Analysis of Exception Handling: A Java/JVM Case Study. IEEE Transactions on
Software Engineering, 26(9), 872–887.

Chase, David. (1994a). Implemention of Exception Handling, Part I. The Journal of C
Language Translation, 5(4), 229–240.

Chase, David. (1994b). Implemention of Exception Handling, Part II. The Journal of C
Language Translation, 6(1), 20–32.

Claessen, Koen, & Hughes, John. (2000). QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs. Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming.

Cleaveland, Rance, Luttgen, Gerald, & Natarajan, V. (2001). Priority in Process Algebra.
Pages 711–765 of: Bergstra, J.A., Ponse, A., & Smolka, S.A. (eds), Handbook of Process
Algebra. Elsevier.

28 G. Hutton and J. Wright

Cristian, Flaviu. (1989). Exception Handling. Pages 68–97 of: Anderson, T. (ed), De-
pendability of Resilient Computers. Blackwell Scientific Publications.

Drew, S., Gouph, K. J., & Ledermann, J. (1995). Implementing Zero Overhead Exception
Handling. Tech. rept. 95-12. Faculty of Information Technology, Queensland University
of Technology.

Drew, Steven J., & Gough, K. John. (1994). Exception Handling: Expecting The Unex-
pected. Computer languages, 20(2), 69–87.

Drossopoulou, Sophia, & Valkevych, Tanya. (2000). Java Exceptions Throw No Surprises.
Technical report. Department of Computing, Imperial College of Science, Technology
and Medicine.

Dybvig, R. Kent, & Hieb, Robert. (1989). Engines from Continuations. Journal of com-
puter languages, 14(2), 109–123.

Goodenough, John B. (1975). Exception Handling: Issues and a Proposed Notation. Com-
munications of the ACM, 18(12), 683–696.

Gordon, Andrew. (1995). Bisimilarity as a Theory of Functional Programming. BRICS
Notes Series NS-95-3. Aarhus University.

Haynes, Christopher T., & Friedman, Daniel P. (1984). Engines Build Process Abstrac-
tions. Pages 18–24 of: Proceedings of the 1984 ACM Symposium on Lisp and Functional
Programming. ACM Press.

Hinze, Ralf, & Löh, Andres. (2006). The lhs2TeX System for Typesetting Haskell. Available
from: http://www.cs.uu.nl/~andres/lhs2tex/.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice Hall.

Hutton, Graham. (2007). Programming in Haskell. Cambridge University Press.

Hutton, Graham, & Wright, Joel. (2004). Compiling Exceptions Correctly. Proceedings
of the 7th International Conference on Mathematics of Program Construction. Lecture
Notes in Computer Science, vol. 3125. Stirling, Scotland: Springer.

Hutton, Graham, & Wright, Joel. (2006). Calculating an Exceptional Machine. Loidl,
Hans-Wolfgang (ed), Trends in Functional Programming volume 5. Intellect. Selected
papers from the Fifth Symposium on Trends in Functional Programming, Munich,
November 2004.

Jacobs, B., & Poll, E. (2003). Java Program Verification at Nijmegen: Developments
and Perspective. Technical Report NIII-R0318. Nijmegen Institute for Computing and
Information Sciences.

Jacobs, Bart. (2001). A Formalisation of Java’s Exception Mechanism. Pages 284–301 of:
ESOP 2001: Proceedings of the 10th European Symposium on Programming Languages
and Systems. Springer-Verlag.

Klein, Gerwin, & Nipkow, Tobias. (2005). A Machine-Checked Model for a Java-Like Lan-
guage, Virtual Machine and Compiler. ACM Transactions on Programming Languages
and Systems. To appear.

Laird, Jim. (2001). A Fully Abstract Game Semantics of Local Exceptions. Proceedings
of the 16th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society.

Laird, Jim. (2002). Exceptions, Continuations and Macro-expressiveness. Proceedings
of the 11th European Symposium on Programming Languages and Systems. Springer
Verlag.

Leino, K. Rustan M., & van de Snepscheut, Jan L. A. (1994). Semantics of Exceptions.
Pages 447–466 of: Proceedings of the IFIP Working Conference on Programming Con-
cepts, Methods and Calculi. North-Holland.

What is the Meaning of These Constant Interruptions? 29

Lillibridge, Mark. (1999). Unchecked Exceptions Can Be Strictly More Powerful Than
Call/CC. Higher-Order and Symbolic Computation, 12(1), 75–104.

Marlow, Simon, Peyton Jones, Simon, Moran, Andrew, & Reppy, John. (2001). Asyn-
chronous Exceptions In Haskell. Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.

McBride, Conor, et al. . (2006). The Epigram System. Available on the web from:
http://www.e-pig.org/.

McKinna, James, & Wright, Joel. 2006 (July). Towards Type-Correct, Provably Correct,
Compilers: A Case Study in Epigram. Accepted for publication in the Journal of Func-
tional Programming.

Milner, Robin. (1989). Communication and Concurrency. Prentice Hall.

Milner, Robin. (1999). Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, Dave. (1997). The Definition
of Standard ML (Revised). MIT Press.

Moran, Andrew, Lassen, Søren B., & Jones, Simon L. Peyton. (1999). Imprecise Excep-
tions, Co-Inductively. Electronic Notes in Theoretical Computer Science, 26.

Nipkow, Tobias. (2004). Compiling Exceptions Correctly. Archive of Formal Proofs.
Available from http://afp.sourceforge.net/.

Palsberg, Jens, & Ma, Di. (2002). A Typed Interrupt Calculus. Pages 291–310 of: Pro-
ceedings of the 7th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems. Springer-Verlag.

Pessaux, François, & Leroy, Xavier. (2000). Type-Based Analysis of Uncaught Exceptions.
ACM Transactions on Programming Languages and Systems, 22(2), 340–377.

Peyton Jones, Simon. (2001). Tackling the Awkward Squad: Monadic Input/Output, Con-
currency, Exceptions, and Foreign-Language Calls in Haskell. Pages 47–96 of: Hoare,
Tony, Broy, Manfred, & Steinbruggen, Ralf (eds), Engineering Theories of Software
Construction. IOS Press. Presented at the 2000 Marktoberdorf Summer School.

Peyton Jones, Simon, & Marlow, Simon. (2004). Personal communication.

Peyton Jones, Simon, Reid, Alastair, Hoare, Tony, Marlow, Simon, & Henderson, Fergus.
(1999). A Semantics For Imprecise Exceptions. Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation.

Ramsey, Norman, & Jones, Simon Peyton. (2000). A Single Intermediate Language That
Supports Multiple Implementations Of Exceptions. Pages 285–298 of: Proceedings of
the ACM SIGPLAN 2000 Conference on Programming Language Design and Imple-
mentation. ACM Press.

Reynolds, John C. (1972). Definitional Interpreters for Higher-Order Programming Lan-
guages. Pages 717–740 of: Proceedings of the ACM Annual Conference. ACM Press.

Riecke, Jon G., & Thielecke, Hayo. (1999). Typed Exeptions and Continuations Can-
not Macro-Express Each Other. Proceedings of the 26th International Colloquium on
Automata, Languages and Programming. Springer Verlag.

Sebesta, Robert W. (2006). Concepts of Programming Languages (7th edition). Pearson
Addison Wesley.

Spivey, Mike. (1990). A Functional Theory of Exceptions. Science of Computer Program-
ming, 14(1), 25–43.

Thielecke, Hayo. (2000). On Exceptions Versus Continuations in the Presence of State.
Proceedings of the 9th European Symposium on Programming Languages and Systems.
Springer Verlag.

30 G. Hutton and J. Wright

Troelstra, A. S., & van Dalen, D. (1988). Constructivism in Mathematics: An Introduction.
Vol. 1. Elsevier.

Wand, Mitchell. (1995). Compiler Correctness for Parallel Languages. Proceedings of the
7th International Conference on Functional Programming and Computer Architecture.
ACM Press, La Jolla, California.

Wright, Andrew K., & Felleisen, Matthias. (1994). A Syntactic Approach to Type Sound-
ness. Information and Computation, 115(1), 38–94.

Yi, Kwangkeun, & Ryu, Sukyoung. (2002). A Cost-Effective Estimation of Uncaught
Exceptions in Standard ML Programs. Theoretical Computer Science, 277(1-2), 185–
217.

