
The Ruby Interpreter

Graham Hutton
Chalmers University of Technology

Göteborg, Sweden
graham@cs.chalmers.se

November 25, 1994

Abstract

Ruby is a relational language developed by Jones and Sheeran for
describing and designing circuits. This document is a guide to the
Ruby interpreter, which allows Ruby programs to be executed.

Contents

1 Introduction 2

2 Ruby 3

3 Executable terms 10

4 Worked examples 14

5 Reference material 24
5.1 LML syntax for Ruby terms . 24
5.2 Logical and arithmetic primitives 25
5.3 Wiring primitives . 25
5.4 Combining forms . 27

1

Chapter 1

Introduction

Ruby is a relational language developed by Jones and Sheeran for describing
and designing circuits [6, 3, 4]. Ruby programs denote binary relations, and
programs are built-up inductively from primitive relations using a pre-defined
set of relational operators. Ruby programs also have a geometric interpretation
as networks of primitive relations connected by wires, which is important when
layout is considered in circuit design. Ruby has been continually developed since
1986, and has been used to design many different kinds of circuits, including
systolic arrays [7], butterfly networks [8] and arithmetic circuits [5].

The Ruby approach to circuit design is to derive implementations from spec-
ifications in the following way. We first formulate a Ruby program that clearly
expresses the desired relationship between inputs and outputs, but typically has
no direct translation as a circuit. We then transform this program using alge-
braic laws for the relational operators of Ruby, aiming towards a program that
does represent a circuit. There are several reasons why Ruby is based upon re-
lations rather than functions. Relational languages offer a rich set of operators
and laws for combining and transforming programs, and a natural treatment of
non-determinism. Furthermore, many methods for combining circuits (viewed as
networks of functions) are unified if the distinction between input and output is
removed [6].

This document is a guide to the Ruby interpreter, which allows Ruby programs
to be executed. The Ruby interpreter is written in the functional language Lazy
ML (LML), and is used under the interactive LML system. Both the Ruby in-
terpreter and the LML compiler are available by anonymous ftp from Chalmers
University (internet address ftp.cs.chalmers.se or 129.16.226.10) in direc-
tories pub/misc/ruby and pub/haskell/chalmers respectively.

The remainder of this document is structured as follows. Chapter 2 reviews
the Ruby language. Chapter 3 defines the class of Ruby programs that the
interpreter accepts. Chapter 4 introduces the interpreter by means of a number
of worked examples. And finally, chapter 5 gives some reference material.

2

Chapter 2

Ruby

In this chapter we give a short introduction to Ruby. We don’t discuss how Ruby
is used to derive programs, or give algebraic laws for the operators of Ruby.

Recall that a (binary) relation on a universe U is a set of pairs of elements
of U . In Ruby the universe is a fixed set U containing at least the sets B and Z
of booleans and integers, and closed under finite tupling. If R is a relation, then
a R b means 〈a, b〉 ∈ R, and the domain and range of R are the sets defined by
dom(R) = {a | ∃b. a R b} and rng(R) = {b | ∃a. a R b}. We write f : A → B
to mean that f is a total function from set A to set B, and R : A↔ B to mean
that R is a relation between sets A and B, i.e. that R ⊆ A×B.

Given a function f : A → B, the relation G(f) : A ↔ B (called the graph
of f) is defined by G(f) = {〈a, fa〉 | a ∈ A}. In the sequel we mostly leave
occurrences of G implicit. For example, id denotes the identity relation G(id) =
{〈a, a〉 | a ∈ U} (where the function id : U → U is defined by id(a) = a for all
a ∈ U) and + denotes the addition relation G(+) = {〈〈x, y〉, x+ y〉 | x, y ∈ Z}.

The basic operators of Ruby are composition, product (often called par, ab-
breviating parallel composition), and converse, defined as follows:

Definition 1:

a (R ; S) c ⇔ ∃b. a R b ∧ b S c,

〈a, b〉 [R, S] 〈c, d〉 ⇔ a R c ∧ b S d,

b (R−1) a ⇔ a R b.

Par generalises in the obvious way to n-arguments [R1, R2, . . . , Rn]. Two common
uses of par are abbreviated: fst R = [R, id] and snd R = [id, R].

The identity relation id is the simplest example of a restructuring or wiring
relation in Ruby; the other common wiring relations are defined as follows:

Definition 2:

〈a, b〉 swap 〈c, d〉 ⇔ a = d ∧ b = c,

3

〈a, b〉 π1 c ⇔ a = c,

〈a, b〉 π2 c ⇔ b = c,

a fork 〈b, c〉 ⇔ a = b ∧ a = c,

〈〈a, b〉, c〉 lsh 〈d, 〈e, f〉〉 ⇔ a = d ∧ b = e ∧ c = f ,

〈a, 〈b, c〉〉 rsh 〈〈d, e〉, f〉 ⇔ a = d ∧ b = e ∧ c = f .

As well as denoting binary relations, Ruby terms have a pictorial interpre-
tation as networks of primitive relations connected by wires. For example, the
primitive relation + can be pictured as a single node:

+
.

In such pictures, the convention is that domain values flow on the left-hand
wires of a primitive, and range values on the right-hand wires. Corresponding to
reading tuples of values from left to right, we read busses of wires from bottom
to top.

The wiring primitives of Ruby are pictured just as wires. Here are some
examples:

id π1 π2 fork
.

Terms built using operators of Ruby are pictured in terms of pictures of their
arguments. A term R ; S is pictured by placing a picture of R to the left of a
picture of S, and joining the intermediate wires:

R S
.

A term R−1 is pictured by bending wires in a picture of R:

R

.

When R is a wiring relation, this bending of wires is equivalent to flipping a
picture of the primitive about its vertical axis. For example,

4

id−1 π1
−1 π2

−1 fork−1

.

Note that laws such as (R ; S)−1 = S−1 ; R−1 and [R, S]−1 = [R−1, S−1] allow
any Ruby term to be rewritten such that the converse operator is only applied
to primitive relations. In practice when picturing terms we assume that such
rewriting of converses has been done. Moreover, we treat the converse of a prim-
itive relation as itself a primitive relation; for example, +−1 would be pictured as
follows:

+−1

.

A term [R, S] is pictured by placing a picture of R below a picture of S:

R

S

.

Suppose that R is a relation defined by 〈a, 〈b, c〉〉 R d ⇔ P 〈a, b, c, d〉, where
P is some predicate. With what we have said about pictures up till now, the
relation R would be drawn as a node with three wires coming from the left side,
and one wire coming from the right side. In Ruby one is in fact allowed to
draw wires on all four sides of a node, with the convention that the left and top
sides correspond to the domain of the relation, and the bottom and right sides
correspond to the range. For example, here are three ways to draw the domain
wires for this relation R:

R RR R
.

Here is a way that is not acceptable:

R
.

5

This last picture implies thatR was defined in the form 〈〈a, b〉, c〉 R d ⇔ P 〈a, b, c, d〉,
which is not the case; the place at which the domain wires are split between the
left and top sides is significant in a picture, giving some type information about
the corresponding relation. Of course, a similar restriction applies to splitting
the range wires between the bottom and right sides of a picture.

Given two relations R and S on pairs of values, they can be composed R ; S
as any other relations; viewing them as 4-sided components, it is natural to think
also of placing one beside the other, or one below the other:

R S

R

S

.

The beside operator is defined as follows:

Definition 3:

〈a, 〈b, c〉〉 R↔ S 〈〈d, e〉, f〉 ⇔ ∃x. 〈a, b〉 R 〈d, x〉 ∧ 〈x, c〉 S 〈e, f〉.

The below operator can be defined as the dual to beside:

Definition 4: R l S = (R−1 ↔ S−1)
−1

.

Ruby has a number of so-called generic combining forms that are defined
recursively on an argument that ranges over the natural numbersN . The simplest
generic construction is the n-fold composition Rn of a relation R:

Definition 5:

R0 = id,
Rn+1 = Rn ; R.

For example, R4 = R ; R ; R ; R.
To make similar recursive definitions for the other generic constructions, we

first define some generic wiring primitives. In the following definitions,] gives
the arity of a tuple, and ++ is the concatenation operator for tuples. Tuples are
indexed by subscripting, with index 0 giving the left-most component.

Definition 6:

xs revn ys ⇔]xs =]ys = n ∧ ∀i < n. ysi = xsn−(i+1),

〈x, ys〉 apln zs ⇔]ys = n ∧ zs = 〈x〉++ys,
〈xs, y〉 aprn zs ⇔]xs = n ∧ zs = xs++〈y〉,
〈x, ys〉 distln zs ⇔]ys =]zs = n ∧ ∀i < n. zsi = 〈x, ysi〉,

6

〈xs, y〉 distrn zs ⇔]xs =]zs = n ∧ ∀i < n. zsi = 〈xsi, y〉,
〈xs, ys〉 zipn xs ⇔]xs =]ys =]zs = n ∧ ∀i < n. zsi = 〈xsi, ysi〉,
xs halven 〈ys, zs〉 ⇔]ys =]zs = n ∧ xs = ys++zs,

xs pairn ys ⇔]xs = 2n ∧]ys = n ∧ ∀i < n. ysi = 〈xs2i, xs2i+1〉.

Here are some examples:

〈1, 2, 3, 4〉 rev4 〈4, 3, 2, 1〉,
〈1, 〈2, 3, 4〉〉 apl3 〈1, 2, 3, 4〉,
〈〈1, 2, 3〉, 4〉 apr3 〈1, 2, 3, 4〉,
〈1, 〈2, 3, 4〉〉 distl3 〈〈1, 2〉, 〈1, 3〉, 〈1, 4〉〉,
〈〈1, 2, 3〉, 4〉 distr3 〈〈1, 4〉, 〈2, 4〉, 〈3, 4〉〉,
〈〈1, 2, 3〉, 〈4, 5, 6〉〉 zip3 〈〈1, 4〉, 〈2, 5〉, 〈3, 6〉〉,
〈1, 2, 3, 4, 5, 6〉 halve3 〈〈1, 2, 3〉, 〈4, 5, 6〉〉,
〈1, 2, 3, 4, 5, 6〉 pair3 〈〈1, 2〉, 〈3, 4〉, 〈5, 6〉〉.

The n-fold product of R is defined as follows:

Definition 7:

map0 R = [],
mapn+1 R = apln

−1 ; [R,mapn R] ; apln.

(Note that the [] in the map0 R definition is the 0–width par.) For example,
map4 R = [R,R,R,R]. Similar to map is the triangle construction:

Definition 8:

tri0 R = [],
trin+1 R = aprn

−1 ; [trin R,R
n] ; aprn.

For example, tri4 R = [R0, R1, R2, R3], or in pictures:

R

R R

R R R

.

Triangles that grow in the opposite direction are also useful:

7

Definition 9: irtn R = revn ; trin R ; revn.

For example, irt4 R = [R3, R2, R1, R0], or in pictures:

R

R

R

R

R

R
.

The generic version of ↔ is the row construction:

Definition 10:

row1 R = snd apl0
−1 ; R ; fst apl0,

rown+2 R = snd apln+1
−1 ; (R↔ rown+1 R) ; fst apln+1.

For example, here is a picture of row4 R:

R R R R

.

Just as l is dual to ↔, so col is dual to row:

Definition 11: coln R = (rown R
−1)
−1

.

For example, here is a picture of col4 R:

R

R

R

R

.

Relational versions of the familiar reduce (or fold) operators from functional
programming can be defined in Ruby by using row and col:

8

Definition 12:

rdln R = rown (R ; fork) ; π2,

rdrn R = coln (R ; fork) ; π1.

Here are pictures of rdl4 R and rdr4 R:

R R R R

R

R

R

R

.

For example, if ⊕ is a function from pairs to values, then

〈a, 〈b, c, d, e〉〉 rdl4 G(⊕) x ⇔ x = (((a⊕ b)⊕ c)⊕ d)⊕ e,
〈〈a, b, c, d〉, e〉 rdr4 G(⊕) x ⇔ x = a⊕ (b⊕ (c⊕ (d⊕ e))).

Many circuits operate with streams of values rather than single values. A
stream is modelled in Ruby as a function from the natural numbers N to the
universe U . Given a relation R, the relation R̂ on streams is defined by a R̂
b ⇔ ∀t ∈ N . a(t) R b(t); in practice the ˆ(–) operator is always left implicit
in Ruby programs. Note that new definitions for the operators of Ruby are not
needed when working with streams; the standard definitions suffice. A single
new primitive is introduced when working with streams, a unit-delay primitive
Ds (parameterised with a starting value s):

Definition 13: a Ds b ⇔ b(0) = s ∧ ∀t ∈ N . b(t+ 1) = a(t).

9

Chapter 3

Executable terms

The Ruby interpreter does not accept all Ruby terms, but only those that are
executable. In this chapter we define the class of executable terms, using the
notion of the network of primitive relations denoted by a Ruby term.

Definition 14: Let V be a set of wire names. A wire is either an
element of V , or a finite tuple of wires. A node is a triple 〈D,P,R〉
where D,R are wires (the domain and range wires for the node) and
P is a binary relation. A network is a triple 〈N,D,R〉 where N is a
set of nodes and D,R are wires (the domain and range wires for the
network).

We can define a translation function f from Ruby terms to networks, and seman-
tic functions [–]T and [–]N respectively mapping terms and networks to binary
relations [2, 1]. The translation is correct with respect to these semantic func-
tions: if t is a term, then [t]T = [f(t)]N . The reader is referred to [2, 1] for the
details. Here we just give a few example translations; see figures 3.1 and 3.2.

Before defining the class of executable networks, we make a number of defi-
nitions about wire names. Firstly, we say that a wire name x occurs in a node
〈D,P,R〉 if x occurs in either of the wires D and R. A wire name occurs in a
network 〈N,D,R〉 if it occurs in any of the nodes N , or in either of the wires D
and R. If 〈N,D,R〉 is a network and x is a wire name that occurs in this network,
then x is called external if it occurs in D or R, and internal otherwise. Finally,
the dependents for a node 〈D,P,R〉 in a network is the set of wire names given
by the union of the names in D and the dependents for all nodes 〈D′, P ′, R′〉
in the network for which the wire names in R′ and those in D are not disjoint.
There is one special case: the dependents for a node 〈D,P,R〉 where P is a delay
primitive is the empty-set ∅.

Definition 15: A network is executable if:

• For every node 〈D,P,R〉 the relation P is functional;

10

• For each external wire name x there is at most one node 〈D,P,R〉
for which x occurs in R, and moreover, x must occur precisely
once in this R;

• For each internal wire name x there is precisely one node 〈D,P,R〉
for which x occurs in R, and moreover, x must occur precisely
once in this R;

• For each node 〈D,P,R〉 the dependents for this node and the
wire names in R are disjoint sets.

That is, an executable network is a network of functions for which each wire name
is an output wire name for precisely one function (or at most one function if the
wire name is external), and for which there are no cyclic dependencies between
the input and output wire names to any function in the network.

Figures 3.1 and 3.2 give examples of executable and non-executable networks.

11

Term Network Executable

not ; not
- - -not not

a b c

〈{〈a, not, b〉, 〈b, not, c〉}, a, c〉

yes

not−1 ; not−1
� � �not−1 not−1
a b c

〈{〈b, not, a〉, 〈c, not, b〉}, a, c〉

yes

not ; not−1
- -� �not not−1

a b c

〈{〈a, not, b〉, 〈c, not, b〉}, a, c〉

no

(b is driven twice)

not−1 ; not
� - -�not−1 not
a b c

〈{〈b, not, a〉, 〈b, not, c〉}, a, c〉

no

(b is undriven)

fst (not−1) ; fork−1 ; not � - -�not−1 not
a

b

c

〈{〈b, not, a〉, 〈b, not, c〉}, 〈a, b〉, c〉

yes

Figure 3.1: Examples of executable and non-executable Ruby terms

12

Term Network Executable

π1
−1 ; snd not ; fork−1

�

not
-

a

b

〈{〈b, not, a〉}, a, a〉

no

(b is undriven)

fork ; snd not ; π1
-

- not
a

b

〈{〈a, not, b〉}, a, a〉

yes

[not−1, not]
�

-

not−1

not

�

-

a

b

c

d

〈{〈c, not, a〉, b, not, d}, 〈a, b〉, 〈c, d〉〉

yes

fork ; snd not ; fork−1 �

-

-

not
a a

〈{〈a, not, a〉}, a, a〉

no

(cyclic dependency)

fork ; [DF−1, not] ; fork−1
�

-

DF−1

not

�

-
a b

〈{〈a, not, b〉, 〈b,DF , a〉}, a, b〉

yes

Figure 3.2: More examples of executable and non-executable Ruby terms

13

Chapter 4

Worked examples

In this chapter we illustrate the features of the Ruby interpreter by working
through a number of simple examples. You should try these out for yourself.

To begin with, load the interactive LML system:

graham% lmli

Welcome to interactive LML version 0.999.4 SPARC 1993 Mar 16!

Loading prelude... 348 values, 41 types found.

Type "help;" to get help.

Now load the Ruby interpreter: (you should replace /u/graham/LML/NewRuby

below with the path for the interpreter as installed at your site)

> source "/u/graham/LML/NewRuby/rubysim";

Loading "/u/graham/LML/NewRuby/lml-lib.o"

$set_diff: (List *a)->(List *a)->List *a

split_on: (*a->Bool)->(List *a)->(List *a)#(List *a)

.

.

!!: prog->prog->prog

..: prog->prog->prog

+------------------------------+

| ‘The Ruby Interpreter’ |

| version of 19/5/93 |

| |

| Copyright 1993 Graham Hutton |

| graham@cs.chalmers.se |

+------------------------------+

14

As shown above, commands typed after the > prompt from the LML system must
be ended with a semi-colon. Loading the Ruby interpreter produces a lot of type
information; you can ignore all of this.

Ruby programs are compiled using the rc function, which translates a pro-
gram to a network of primitive relations. The function rc takes an argument
of type prog, which is the LML type of Ruby programs. What you need know
about the prog type is explained in chapter 5. (The main differences from stan-
dard Ruby notation is that composition is written as .., converse is written as
inv, and product is written as !!.) As a first example, let us compile the program
not ; not:

> rc (NOT .. NOT);

Name Domain Range

NOT w1 w2

NOT w2 w3

Primitives - 2

Delays - 0

Longest path - 2

Parallelism - 0%

Directions - in ~ out

Wiring - w1 ~ w3

Inputs - w1

In this example, the network has two nodes: 〈w1, not, w2〉 and 〈w2, not, w3〉.
Below the network, Wiring gives the domain and range wires for the network as
a whole, Inputs tells which of these wire names are inputs (all other external
wire names are outputs), and Directions is derived from Wiring by replacing
each wire name with in or out as appropriate. Primitives and Delays are the
number of non-delay and delay primitives in the network. Longest path is the
length of the longest path through the network that does not include a delay
primitive. Parallelism gives an absolute measure of the available concurrency
in the network, being the ratio of the total number of primitives in the network
(both combinational and sequential) to the length of the longest path, scaled to
a percentage.

The most recently compiled Ruby program is stored in a file ruby-prog, and
is executed using the rsim function. This function takes a string as its argument,

15

containing a value for each of the input wires as named in the Wiring part below
the network. You can supply more than one set of input values, with successive
sets of input values being separated by a semi-colon. For example,

> rsim "F;T";

0 - F ~ F

1 - T ~ T

verifies that not ; not denotes the identity relation on booleans. As shown in
this example, for each set of input values supplied, the rsim function gives the
Wiring part for the network, with wire names replaced by the values obtained by
executing the network with these input values. So the output 0 - F ~ F above
says that supplying wire w1 with value F resulted in wire w2 having value F; the
number 0 indicates that this is the result for the first set of input values.

Here are some other examples from figures 3.1 and 3.2:

> rc (NOT .. inv NOT);

ERROR: multiple output to single wire

> rc (inv NOT .. NOT);

ERROR: undriven internal input

> rc (first (inv NOT) .. inv fork .. NOT);

Name Domain Range

NOT w1 w2

NOT w1 w3

Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100%

Directions - <out,in> ~ out

Wiring - <w2,w1> ~ w3

Inputs - w1

16

> rc (fork .. second NOT .. inv fork);

ERROR: unbroken loop in {NOT}

> rc (fork .. (inv (bdel false) !! NOT) .. inv fork);

Name Domain Range

NOT w1 w2

D_F w2 w1

Primitives - 1

Delays - 1

Longest path - 2

Parallelism - 0%

Directions - out ~ out

Wiring - w1 ~ w2

Inputs - none

LML can be used as a meta-language to define new primitives and combining
forms in terms of those pre-defined by the interpreter. For example, a program
sort2 that sorts a pair of numbers can be defined and compiled as follows:

> let sort2 = fork .. (MIN !! MAX);

sort2: prog

> rc sort2;

Name Domain Range

MIN <w1,w2> w3

MAX <w1,w2> w4

Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100%

17

Directions - <in,in> ~ <out,out>

Wiring - <w1,w2> ~ <w3,w4>

Inputs - w1 w2

For example,

> rsim "4 7";

0 - (4,7) ~ (4,7)

> rsim "7 4";

0 - (7,4) ~ (4,7)

As well as supplying numbers as inputs to sort2, we can supply symbolic values,
which are just strings. Using symbolic values allows us to see how the outputs
from the program are constructed in terms of the inputs:

> rsim "a b";

0 - (a,b) ~ (a min b,a max b)

We aim now to define a program that sorts n numbers, rather than just 2. We
begin by using sort2 to define a generic primitive minim that takes an n-tuple
(n > 1) of numbers, and returns a pair comprising the minimum number and an
(n− 1)-tuple of the remaining numbers:

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

For example,

> rc (minim 4);

Name Domain Range

MIN <w1,w2> w3

MAX <w1,w2> w4

MIN <w5,w3> w6

MAX <w5,w3> w7

18

MIN <w8,w6> w9

MAX <w8,w6> w10

Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> ~ <out,<out,out,out>>

Wiring - <w8,w5,w1,w2> ~ <w9,<w10,w7,w4>>

Inputs - w8 w5 w1 w2

Notice that the primitives in the network above are divided into blocks, separated
by dashed lines. Each block contains all the primitives whose output depends only
upon external inputs, and outputs of primitives in earlier blocks. (Operationally
this means that blocks must be executed sequentially, from the first to the last.
All the primitives within a block can however be executed in parallel, since they
are independent of one another.) Note also that the Longest path is just the
number of blocks in the network for the program. A picture of the network above
is helpful in understanding the definition for minim (the boxes represent sort2):

w8

w5

w1

w2

w10

w7

w4

w9

w6

w3

.

Executing the network with symbolic values confirms that the first component of
the result is the minimum of the 4 input values:

> rsim "a b c d";

19

0 - (a,b,c,d) ~ (a min (b min (c min d)),

(a max (b min (c min d)),

b max (c min d),

c max d))

Note that the name sort2 does not appear in the network for minim 4, but
rather its definition has been unfolded at each instance. We can prevent such
unfolding and treat sort2 as a new primitive by using the function NAME of type
String -> prog -> prog. For example, if we make the definitions

> let sort2 = NAME "sort2" (fork .. (MIN !! MAX));

sort2: prog

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

then the compilation produces the following result: (we have to define minim

again because the existing version uses the old definition for sort2)

> rc (minim 4)

Name Domain Range

"sort2" <w1,w2> <w3,w4>

"sort2" <w5,w3> <w6,w7>

"sort2" <w8,w6> <w9,w10>

Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> ~ <out,<out,out,out>>

Wiring - <w8,w5,w1,w2> ~ <w9,<w10,w7,w4>>

Inputs - w8 w5 w1 w2

20

Using the NAME function can reduce compilation time, particularly when named
programs are used as arguments to generic combining forms. A named program
is compiled once and its network instantiated at each instance, rather than the
definition being unfolded at each instance and hence compiled many times.

Using minim we can define a sorting program. An n-tuple (n > 0) of numbers
can be sorted by first selecting the minimum number, and then recursively sorting
the remaining (n−1)-tuple of numbers. A 1-tuple of numbers requires no sorting,
and forms the base-case for the definition:

> let rec mysort 1 = par [rid]

|| mysort n = minim n .. second (mysort (n-1)) .. apl (n-1);

mysort: Int->prog

Let us compile a sorter for 4 numbers:

> rc (mysort 4);

Name Domain Range

"sort2" <w1,w2> <w3,w4>

"sort2" <w5,w3> <w6,w7>

"sort2" <w8,w6> <w9,w10>

"sort2" <w7,w4> <w11,w12>

"sort2" <w10,w11> <w13,w14>

"sort2" <w14,w12> <w15,w16>

Primitives - 12

Delays - 0

Longest path - 5

Parallelism - 12%

Directions - <in,in,in,in> ~ <out,out,out,out>

Wiring - <w8,w5,w1,w2> ~ <w9,w13,w15,w16>

Inputs - w8 w5 w1 w2

Here is a picture of this network:

21

w9 w13 w15 w16

w8

w5

w1

w2

w6

w3

w10

w7

w14

w11

w4

w12

.

For example,

> rsim "4 2 3 1";

0 - (4,2,3,1) ~ (1,2,3,4)

> rsim "a 3 1 2";

0 - (a,3,1,2) ~ (a min 1,

(a max 1) min 2,

((a max 1) max 2) min 3,

((a max 1) max 2) max 3)

Note from the last example that symbolic values are not simplified. We can see
however that the output 4-tuple in this example is equal to (a min 1, (a max

1) min 2, (a max 2) min 3, a max 3), which makes clear how the symbolic
value ‘a’ is routed to one of the 4 components in the output tuple.

To finish off, we take a closer look at wiring primitives. Networks produced by
the interpreter have two kinds of wires. Monomorphic wires start with the letter w
and are restricted to carrying boolean, integer, and symbolic values; polymorphic
wires start with p and can also carry tuples of such values. The wiring primitives
of Ruby (id, fork, π1, . . .) have networks with polymorphic wires, and can be used
to defined other programs with polymorphic wires. For example,

> let swap = fork .. (p2 !! p1);

swap : prog

> rc swap;

22

Wiring - <p1,p2> ~ <p2,p1>

Inputs - p1 p2

Note that the polymorphic primitive fork is being used here to duplicate a pair
of values. Since the wires in the network produced above are polymorphic, they
are not restricted to carrying just basic values. For example, we can swap pairs:

> rsim "(a,b) (c,d)";

0 - ((a,b),(c,d)) ~ ((c,d),(a,b))

New wiring primitives (like swap) need not be defined in terms of the existing
wiring primitives, but can also be defined directly using the function wiring of
type (expr # expr) -> prog. Values of type expr are built using two functions:
wire of type Int -> expr and list of type List expr -> expr. An example
shows how these three functions are used to define wiring primitives:

> let swap = wiring (list [wire 1; wire 2], list [wire 2; wire 1]);

swap: prog

> rc swap;

Wiring - <p1,p2> ~ <p2,p1>

Inputs - p1 p2

23

Chapter 5

Reference material

This chapter gives some reference material. Section 5.1 documents the differences
between Ruby syntax and the LML syntax for Ruby terms. Section 5.2 defines the
built-in logical and arithmetic primitives of the interpreter. Sections 5.3 and 5.4
give the LML definitions for the built-in wiring primitives and combining forms.

5.1 LML syntax for Ruby terms

Because of syntactic constraints imposed by LML, some Ruby primitives and
combining forms have different names from normal in LML syntax:

Ruby LML
r ; s r .. s

[r, s] r !! s

r−1 inv r

rn repeat n r

id rid

π1 p1

π2 p2

fst r first r

snd r second r

mapn r rmap n r

zipn rzip n

r ↔ s r $beside s

r l s r $below s

Two programs are placed in parallel using !!. For other than two programs use
the function par, which takes a list of programs as its argument; for example,
[r, s, t] in Ruby becomes par [r; s; t] in LML. Note that all infix Ruby combining
forms have the same precedence when written in LML notation, and associate to
the right; for example, r !! s .. t would be interpreted as r !! (s .. t).

24

Delays are made using one of three functions (bdel, idel, or sdel), depending
on whether the starting value is boolean, integer, or symbolic. Constant relations
are made using bcon, icon, or scon. For example, the delay D5 is written as
idel 5 in LML and the constant relation {(T, T)} is written as bcon true.

5.2 Logical and arithmetic primitives

AND 〈a, b〉 ⇔ a ∧ b
OR 〈a, b〉 ⇔ a ∨ b
NOT a ⇔ ¬a

LT 〈m,n〉 ⇔ m < n

GT 〈m,n〉 ⇔ m > n

EQ 〈m,n〉 ⇔ m = n

IF 〈b, 〈x, y〉〉 =

{
x if b = true
y if b = false

BTOI b =

{
0 if b = false
1 if b = true

ITOB n =

{
false if n = 0
true if n = 1

MUX n 〈i, xs〉 = xsi {0 ≤ i < n}
ADD 〈m,n〉 = m+ n

SUB 〈m,n〉 = m− n
MULT 〈m,n〉 = m ∗ n

DIV 〈m,n〉 = max {i | n ∗ i ≤ m}
MOD 〈m,n〉 = m− n ∗ (m div n)

EXP 〈m,n〉 = mn

LOG 〈m,n〉 = max {i | in ≤ m}
MAX 〈m,n〉 = max {m,n}
MIN 〈m,n〉 = min {m,n}

GCD 〈m,n〉 = max {i | m mod i = n mod i = 0}
FAC n = 1 ∗ 2 ∗ . . . ∗ n

5.3 Wiring primitives

rid = wiring (wire 1,wire 1)

25

p1 = wiring (list [wire 1;wire 2],wire 1)

p2 = wiring (list [wire 1;wire 2],wire 2)

fork = wiring (wire 1,list [wire 1;wire 1])

rsh = wiring (list [wire 1;list [wire 2;wire 3]],
list [list [wire 1;wire 2];wire 3])

lsh = wiring (list [list [wire 1;wire 2];wire 3],
list [wire 1;list [wire 2;wire 3]])

swap = wiring (list [wire 1;wire 2],list [wire 2;wire 1])

rev n = let vs = map wire (1 $to n)
in wiring (list vs,list (reverse vs))

apl n = let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)], list vs)

apr n = let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs], list vs)

distl n = let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)],

list [list [hd vs;x] ;; x <- tl vs])

distr n = let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs],

list [list [x;last vs] ;; x <- head n vs])

flatr n = let f e es = LIST [e;es]
and vs = map wire (1 $to n)
in wiring (foldr1 f vs, LIST vs)

pair n = let rec vs = map wire (1 $to (2*n))
and pairup [] = []
|| pairup (x.y.ys) = list [x;y] . pairup ys
in wiring (list vs, list (pairup vs))

halve n = let vs = map wire (1 $to (2*n))
in wiring (list vs, list [list (head n vs); list (tail n vs)])

rzip n = let rec vs = map wire (1 $to (2*n))

26

and (v1,v2) = (head n vs, tail n vs)
and zipped = [list [x;y] ;; (x,y) <- v1 $zip v2]
in wiring (list [list v1;list v2], list zipped)

5.4 Combining forms

first r = r !! rid

second r = rid !! r

repeat n r = foldr (..) rid (rept n r)

rmap n r = par (rept n r)

r $beside s = rsh .. first r .. lsh .. second s .. rsh

r $below s = inv (inv r $beside inv s)

row n r = second (inv (flatr n))
.. foldr1 ($beside) (rept n r)
.. first (flatr n)

col n r = inv (row n (inv r))

grid (m,n) r = row m (col n r)

rdl n r = row n (r .. inv p2) .. p2

rdr n r = col n (r ..inv p1) .. p1

tri n r = par [repeat x r ;; x <- 0 $to (n-1)]

irt n r = rev n .. tri n r .. rev n

27

Bibliography

[1] Carolyn Brown and Graham Hutton. The geometry of relational programs.
Chalmers University, February 1993.

[2] Graham Hutton. Between Functions and Relations in Calculating Programs.
PhD thesis, University of Glasgow, October 1992.

[3] Geraint Jones. Designing circuits by calculation. Technical Report PRG-TR-
10-90, Oxford University, April 1990.

[4] Geraint Jones and Mary Sheeran. Circuit design in Ruby. In Staunstrup,
editor, Formal Methods for VLSI Design, Amsterdam, 1990. Elsevier Science
Publications.

[5] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refine-
ment in Ruby. In Proc. Second International Conference on Mathematics of
Program Construction, Lecture Notes in Computer Science. Springer-Verlag,
1992.

[6] Mary Sheeran. Describing and reasoning about circuits using relations. In
Tucker et al., editors, Proc. Workshop in Theoretical Aspects of VLSI, Leeds,
1986.

[7] Mary Sheeran. Retiming and slowdown in ruby. In Milne, editor, The Fusion
of Hardware Design and Verification. North-Holland, 1988.

[8] Mary Sheeran. Describing butterfly networks in Ruby. In Proc. Glasgow
Workshop on Functional Programming, Fraserburgh, 1989. Springer-Verlag.

28

