
11/27/2008

1

Memory Management

G53OPS: Operating Systems

Graham Kendall

27‐Nov‐08 1
G53OPS: Operating Systems

©Graham Kendall

Memory Management
Introduction

• Memory Management consists of many tasks,
including
• Being aware of what parts of the memory are in

use and which parts are not

27‐Nov‐08 2
G53OPS: Operating Systems

©Graham Kendall

use and which parts are not
• Allocating memory to processes when they request

it and de-allocating memory when a process
releases it

• Moving data from memory to disc, when the
physical capacity becomes full, and vice versa

Memory Management
Monoprogramming

• Only allow a single process in memory and only
allow one process to run at any one time
• Very Simple

Monoprogramming

27‐Nov‐08 3
G53OPS: Operating Systems

©Graham Kendall

Very Simple
• No swapping of processes to disc when we run out

of memory
• No problems in having separate processes in

memory

Memory Management
Monoprogramming

• Even this simple scheme has its problems.
• We have not yet considered the data that the

program will operate upon

Monoprogramming

27‐Nov‐08 4
G53OPS: Operating Systems

©Graham Kendall

program will operate upon
• Process must be self contained

• e.g. drivers in every process
• Operating system can be seen as a process – so we

have two anyway

Memory Management
Monoprogramming

• Additional Problems
• Monoprograming is unacceptable as multi-

programming is expected

Monoprogramming

27‐Nov‐08 5
G53OPS: Operating Systems

©Graham Kendall

programming is expected
• Multiprogramming makes more effective use of

the CPU
• Could allow only a single process in memory at any

one time but allow multi-programming
• i.e. swap out to disc
• Context switch would take time

Memory Management
Monoprogramming

• Assumption that multiprogramming can improve the
utilisation of the CPU – is this true?
• Intuitively it is

Modelling Multi-programming

27‐Nov‐08 6
G53OPS: Operating Systems

©Graham Kendall

Intuitively it is
• But, can we model it?

11/27/2008

2

Memory Management
Monoprogramming

• Probabilistic model
• A process spends p percent of its time waiting for

I/O

Modelling Multi-programming

27‐Nov‐08 7
G53OPS: Operating Systems

©Graham Kendall

I/O
• There are n processes in memory
• The probability that all n processes are waiting for

I/O (CPU is idle) is pn

• The CPU utilisation is then given by
• CPU Utlisation = 1 - pn

Memory Management
Multi-programming

Modelling Multi-programming
C P U U t i l i sa t i on

0.8

1

1.2

20%I/ OWai t Time

27‐Nov‐08 8
G53OPS: Operating Systems

©Graham Kendall

• With an I/O wait time of 20%, almost 100% CPU utilisation can be achieved with four
processes

• I/O wait time of 90% then with ten processes, we only achieve just above 60% utilisation
• The more processes we run, the better the CPU utilisation

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7 8 9 10

Degr ee of M ul t i pr ogr ammi ng

20% I/ O Wai t Time

50% I/ O Wai t Time

80% I/ O Wai t Time

90% I/ O Wai t Time

Memory Management
Multi-programming

• Model assumes that all the processes are independent.
Thi i t t

Modelling Multi-programming

27‐Nov‐08 9
G53OPS: Operating Systems

©Graham Kendall

This is not true

• More complex models could be built using queuing
theory but we can still use this simplistic model to
make approximate predictions.

Memory Management
Multi-programming

Modelling Multi-programming
• Example of model use

• Assume a computer with one megabyte of memory
• The operating system takes up 200K, leaving room for four

200K processes

27‐Nov‐08 10
G53OPS: Operating Systems

©Graham Kendall

• If we have an I/O wait time of 80% then we will achieve
just under 60% CPU utilisation

• If we add another megabyte of memory, it allows us to run
another five processes

• We can now achieve about 86% CPU utilisation
• If we add another megabyte of memory (fourteen

processes) we will find that the CPU utilisation will
increase to about 96%.

Memory Management
Multi-programming

Multi-programming with fixed partitions
• Accept that mulitiprogramming

is a good idea
• How do we organise the

Partition 4

Partition 3 700K

27‐Nov‐08 11
G53OPS: Operating Systems

©Graham Kendall

available memory?
• One method is to divide the

memory into fixed sized
partitions

• Partitions can be of different
sizes but their size remain fixed

Partition 2

Partition 1

OS
0

100K

200K

400K

Memory Management
Multi-programming

Multi-programming with fixed partitions
• Memory divided into four

partitions
Partition 4

Partition 3
700K

Input
Queues

27‐Nov‐08 12
G53OPS: Operating Systems

©Graham Kendall

• When job arrives it is
placed in the input queue
for the smallest partition
that will accommodate it

Partition 2

Partition 1

OS
0

100K

200K

400K

11/27/2008

3

Memory Management
Multi-programming

Multi-programming with fixed partitions
• Drawbacks

• As the partition sizes are
fixed, any space not used
by a particular job is lost.

Partition 4

Partition 3
700K

Input
Queues

27‐Nov‐08 13
G53OPS: Operating Systems

©Graham Kendall

y p j
• It may not be easy to state

how big a partition a
particular job needs.

• If a job is placed in (say)
queue three it may be
prevented from running by
other jobs waiting (and
using) that partition.

Partition 2

Partition 1

OS
0

100K

200K

400K

Memory Management
Multi-programming

Multi-programming with fixed partitions

• Just have a single input queue where all jobs
are held

27‐Nov‐08 14
G53OPS: Operating Systems

©Graham Kendall

• When a partition becomes free we search the
queue looking for the first job that fits into the
partition

Memory Management
Multi-programming

Multi-programming with fixed partitions

• Alternative search strategy
• Search the entire input queue looking for the

largest job that fits into the partition

27‐Nov‐08 15
G53OPS: Operating Systems

©Graham Kendall

g j p

• Do not waste a large partition on a small job but
smaller jobs are discriminated against

• Have at least one small partition or ensure that small
jobs only get skipped a certain number of times.

Memory Management
Multi-programming

Relocation and Protection

• Introducing multiprogramming gives two problems
• Relocation: When a program is run it does not know in

advance what location it will be loaded at. Therefore, the
t i l t t ti dd (f

27‐Nov‐08 16
G53OPS: Operating Systems

©Graham Kendall

program cannot simply generate static addresses (e.g. from
jump instructions). Instead, they must be made relative to
where the program has been loaded

• Protection: Once you can have two programs in memory at
the same time there is a danger that one program can write
to the address space of another program. This is obviously
dangerous and should be avoided

Memory Management
Multi-programming

Relocation and Protection

• Solution to solve both relocation and protection
• Have two registers (called the base and limit

registers)

27‐Nov‐08 17
G53OPS: Operating Systems

©Graham Kendall

registers)
• The base register stores the start address of the

partition
• The limit register holds the length of the partition

• Additional benefit of this scheme is moving programs
in memory

Memory Management
Multi-programming

Swapping

• Fixed partitions becomes ineffective when we
have more processes than we can fit into

27‐Nov‐08 18
G53OPS: Operating Systems

©Graham Kendall

memory at one time (e.g. when timesharing)

• Solution : Hold some of the processes on disc
and swap processes between disc and main
memory as necessary

11/27/2008

4

Memory Management
Multi-programming

Swapping: Variable Partitions

• Because we are swapping processes between
memory and disc does not stop us using fixed
partition sizes

27‐Nov‐08 19
G53OPS: Operating Systems

©Graham Kendall

• But, the reason we are having swap processes out
to disc is because memory is a scare resource and:
• Fixed partitions can be wasteful of memory
• We might want to run more processes that we

can fit into memory at any given time.

Memory Management
Multi-programming

Swapping: Variable Partitions

• Obvious step is to use variable partition sizes
• That is a partition size can change as the

need arises

27‐Nov‐08 20
G53OPS: Operating Systems

©Graham Kendall

need arises

• Variable partitions
• The number of partitions vary
• The sizes of the partitions vary
• The starting addresses of the partitions

varies

Memory Management
Multi-programming

Swapping: Variable Partitions

• Makes for a more effective memory
management system but it makes the process of
maintaining the memory much more difficult

27‐Nov‐08 21
G53OPS: Operating Systems

©Graham Kendall

maintaining the memory much more difficult

• As memory is allocated and deallocated holes
will appear in the memory (fragmentation)

• Eventually holes will be too small to have a process
allocated to it

• We could shuffle the memory downwards (memory
compaction) but this is inefficient

Memory Management
Multi-programming

Swapping: Variable Partitions

• If processes are allowed to dynamically request more memory
what happens if a process requests extra memory such that
increasing its partition size is impossible without it having to

27‐Nov‐08 22
G53OPS: Operating Systems

©Graham Kendall

c eas g ts pa t t o s e s poss b e w t out t av g to
overwrite another partitions memory

• Wait until memory is available that the process is able to
grow into it?

• Terminate the process?
• Move the process to a hole in memory that is large enough

to accommodate the growing process?
• Only realistic option is the last one but very inefficient

Memory Management
Multi-programming

Swapping: Variable Partitions

• None of the above proposed solutions are ideal so it would
seem a good idea to allocate more memory than is initially
required

27‐Nov‐08 23
G53OPS: Operating Systems

©Graham Kendall

required

• Most processes will have two growing data segments
• Stack
• Heap

Memory Management
Multi-programming

Swapping: Variable Partitions
• Instead of having the two data segments grow upwards in

memory a neat arrangement has one data area growing
downwards and the other data segment growing upwards

Process B
(Room for Growth)

B-Stack

27‐Nov‐08 24
G53OPS: Operating Systems

©Graham Kendall

Process A
(In Use)

Process A
(Room for Growth)

Process B
(In Use)

(Room for Growth)

Operating System

Process A
(In Use)

A-Stack

Process B
(In Use)

Operating System

A-Data

B-Data

11/27/2008

5

Memory Management
Multi-programming

Swapping: Bit Maps
• Memory is divided into allocation units and each allocation

unit has a corresponding bit in a bit map
• If the bit is zero, the memory is free. If the bit is one, then the

memory is being used

27‐Nov‐08 25
G53OPS: Operating Systems

©Graham Kendall

1 0 0 0 1 1 1 0 1

Allocation Units

Bit Map

Memory Management
Multi-programming

Swapping: Bit Maps

• Main decision is the size of the allocation unit
• The smaller the allocation unit, the larger the

bi h b

27‐Nov‐08 26
G53OPS: Operating Systems

©Graham Kendall

bit map has to be
• But a larger allocation unit could waste

memory as we may not use all the space
allocated in each allocation unit

Memory Management
Multi-programming

Swapping: Bit Maps

• Another problem comes when we need to
allocate memory to a process
• Assume the allocation size is 4 bytes

27‐Nov‐08 27
G53OPS: Operating Systems

©Graham Kendall

Assume the allocation size is 4 bytes
• If a process requests 256 bytes of memory,

we must search the bit map for 64
consecutive zeroes (256/4 = 64)

• Slow operation, therefore bit maps are not
often used

Memory Management
Multi-programming

Swapping: Linked Lists
• Free and allocated memory can be represented as a

linked list
• The memory shown on the bit map slide can be

d li k d li f ll

27‐Nov‐08 28
G53OPS: Operating Systems

©Graham Kendall

represented as a linked list as follows
• Each entry in the list holds the following data

• P or H : for Process or Hole
• Starting segment address
• The length of the memory segment

Memory Management
Multi-programming

Swapping: Linked Lists
• Each entry in the list holds the following data

• P or H : for Process or Hole
• Starting segment address

Th l h f h

27‐Nov‐08 29
G53OPS: Operating Systems

©Graham Kendall

• The length of the memory segment

P 0 1 H 1 3 P 4 3 H 7 1 P 8 1

1 0 0 0 1 1 1 0 1

Allocation Units

Bit Map

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 1 H 1 3 P 4 3 H 7 1 P 8 1

27‐Nov‐08 30
G53OPS: Operating Systems

©Graham Kendall

• In the list above, processes follow holes and vice
versa

• Processes can be next to each other and we need to
keep them as separate elements in the list

• Consecutive holes can always be merged into a
single list entry

11/27/2008

6

Memory Management
Multi-programming

Swapping: Linked Lists

• This leads to the following observations when a
process terminates
• A terminating process can have four

27‐Nov‐08 31
G53OPS: Operating Systems

©Graham Kendall

A terminating process can have four
combinations of neighbours (ignoring the start
and the end of the list)

• Consecutive holes, on the other hand, can
always be merged into a single list entry

Memory Management
Multi-programming

Swapping: Linked Lists
• If X is the terminating process the four combinations are

Before X terminates After X terminates

1 X 1

2 X 2

27‐Nov‐08 32
G53OPS: Operating Systems

©Graham Kendall

2 X 2

3 X 3

4 X 4

• In the first option we simply have to replace the P by an H, other than that the list
remains the same

• In the second option we merge two list entries into one and make the list one entry
shorter

• Option three is effectively the same as option 2
• For the last option we merge three entries into one and the list becomes two entries

shorter

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 3 P 3 2 H 5 1 P 6 7 P 13 2 P 15 1 P 16 5

• Update the linked list if the following occurs
• Process [P 3 2] terminates

27‐Nov‐08 33
G53OPS: Operating Systems

©Graham Kendall

• Process [P,3,2] terminates
• Then process [P,13,2] terminates
• Then process [P,6,7] terminates

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 3 P 3 2 H 5 1 P 6 7 P 13 2 P 15 1 P 16 5

27‐Nov‐08 34
G53OPS: Operating Systems

©Graham Kendall

• Update the linked list if the following occurs
• Process [P,3,2] terminates
• Process [P,13,2] terminates
• Process [P,6,7] terminates

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 3 H 3 3 P 6 7 P 13 2 P 15 1 P 16 5

27‐Nov‐08 35
G53OPS: Operating Systems

©Graham Kendall

• Update the linked list if the following occurs
• Process [P,3,2] terminates
• Process [P,13,2] terminates
• Process [P,6,7] terminates

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 3 H 3 3 P 6 7 H 13 2 P 15 1 P 16 5

27‐Nov‐08 36
G53OPS: Operating Systems

©Graham Kendall

• Update the linked list if the following occurs
• Process [P,3,2] terminates
• Process [P,13,2] terminates
• Process [P,6,7] terminates

11/27/2008

7

Memory Management
Multi-programming

Swapping: Linked Lists

P 0 3 H 3 12 P 15 1 P 16 5

27‐Nov‐08 37
G53OPS: Operating Systems

©Graham Kendall

• Update the linked list if the following occurs
• Process [P,3,2] terminates
• Process [P,13,2] terminates
• Process [P,6,7] terminates

Memory Management
Multi-programming

Swapping: Linked Lists

• How could we find the best place to allocate
memory?

27‐Nov‐08 38
G53OPS: Operating Systems

©Graham Kendall

Memory Management
Multi-programming

Swapping: Linked Lists

• When we need to allocate memory, storing the
list in segment address order allows us to

27‐Nov‐08 39
G53OPS: Operating Systems

©Graham Kendall

implement various strategies
• First Fit
• Best Fit
• Worst Fit

• Any other optimisations we could do?

Memory Management
Multi-programming

Swapping: Linked Lists

• All three algorithms can be speeded up if we
maintain two lists

f

27‐Nov‐08 40
G53OPS: Operating Systems

©Graham Kendall

• One for processes
• One for holes

• Allocation of memory is speeded up as we only
have to search the hole list

• Any disadvantages with this method?

Memory Management
Multi-programming

Swapping: Linked Lists

• Downside is that list maintenance is complicated
• Maintaining two lists allow us to introduce another

optimisation

27‐Nov‐08 41
G53OPS: Operating Systems

©Graham Kendall

• If we hold the hole list in size order (rather than
segment address order) we can make the best fit
algorithm stop as soon as it finds a hole that is large
enough

• In fact, first fit and best fit effectively become the
same algorithm

Memory Management
Multi-programming

Swapping: Linked Lists
• Quick Fit algorithm takes a different approach to those we

have considered so far
• Separate lists are maintained for some of the common

memory sizes that are requested

27‐Nov‐08 42
G53OPS: Operating Systems

©Graham Kendall

y q
• For example, we could have a list for holes of 4K, a list for

holes of size 8K etc.
• One list can be kept for large holes or holes which do not fit

into any of the other lists
• Quick fit allows a hole of the right size to be found very

quickly, but it suffers in that there is even more list
maintenance

11/27/2008

8

Memory Management
Multi-programming

Swapping: Buddy System

• Observation: If we keep a list of holes sorted by their
size, we can make allocation to processes very fast as
we only need to search down the list until we find a

27‐Nov‐08 43
G53OPS: Operating Systems

©Graham Kendall

we only need to search down the list until we find a
hole that is big enough

• The problem is that when a process ends the
maintenance of the lists is complicated

• In particular, merging adjacent holes is difficult as the
entire list has to be searched in order to find its
neighbours

Memory Management
Multi-programming

Swapping: Buddy System

• The Buddy System is a memory allocation that
works on the basis of using binary numbers as

27‐Nov‐08 44
G53OPS: Operating Systems

©Graham Kendall

works on the basis of using binary numbers as
these are fast for computers to manipulate

Memory Management
Multi-programming

Swapping: Buddy System
• Lists are maintained which stores lists of free

memory blocks of sizes 1, 2, 4, 8,…,n, where n
is the size of the memory (in bytes). This

27‐Nov‐08 45
G53OPS: Operating Systems

©Graham Kendall

means that for a one megabyte memory we
require 21 lists

• If we assume we have one megabyte of
memory and it is all unused then there will be
one entry in the 1M list; and all other lists will
be empty

Memory Management
Multi-programming

Swapping: Buddy System

27‐Nov‐08 46
G53OPS: Operating Systems

©Graham Kendall

Memory Management
Multi-programming

Swapping: Buddy System

• The buddy system is fast as when a block size
of 2k bytes is returned only the 2k list has to be
searched to see if a merge is possible

27‐Nov‐08 47
G53OPS: Operating Systems

©Graham Kendall

g p

• The problem with the buddy system is that it is
inefficient in terms of memory usage. All
memory requests have to be rounded up to a
power of two

Memory Management
Multi-programming

Swapping: Buddy System

• Try question 5 from the 2000 2001

27‐Nov‐08 48
G53OPS: Operating Systems

©Graham Kendall

• Try question 5, from the 2000-2001
examination

11/27/2008

9

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
a) The buddy system is a memory management scheme that uses variable sized
partitions.
Explain the basic principle behind the buddy system.

(5)
b) Assume a computer with a memory size of 256K, initially empty. Requests

27‐Nov‐08 49
G53OPS: Operating Systems

©Graham Kendall

b) Assume a computer with a memory size of 256K, initially empty. Requests
are received for blocks of memory of 17K, 6K, 63K and 9K. Show how the
buddy system would deal with each request, showing the memory layout at
each stage and the status of the lists at each stage.

(8)
(c) The processes terminate in the following order; 6K, 9K, 17K and 63K.
Discuss what happens as each process terminates.

(4)
d) Describe and evaluate an alternative to the buddy system

(8)

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
a) The buddy system is a memory management scheme that uses variable sized
partitions.
Explain the basic principle behind the buddy system.

(5)

27‐Nov‐08 50
G53OPS: Operating Systems

©Graham Kendall

If we keep a list of holes (in memory) sorted by their size, we can make allocation to processes
very fast as we only need to search down the list until we find a hole that is big enough.
The problem is that when a process ends the maintenance of the list is complicated. In particular,
merging adjacent holes is difficult as the entire list has to be searched in order to find its
neighbours.
The Buddy System is a memory allocation that works on the basis of using binary numbers as
these are fast for computers to manipulate.
Lists are maintained which stores lists of free memory blocks of sizes 1, 2, 4, 8,…, n, where n is
the size of the memory (in bytes). This means that for a 256K memory we require 19 lists.
If we assume we have 256K of memory and it is all unused then there will be one entry in the
256K list; and all other lists will be empty.

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
b) Assume a computer with a memory size of 256K, initially empty. Requests
are received for blocks of memory of 17K, 6K, 63K and 9K. Show how the
buddy system would deal with each request, showing the memory layout at
each stage and the status of the lists at each stage.

(8)

27‐Nov‐08 51
G53OPS: Operating Systems

©Graham Kendall

(8)

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)

27‐Nov‐08 52
G53OPS: Operating Systems

©Graham Kendall

Allocation ends here. The de‐
allocation is shown for
completeness

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
List No. Block Size Start 17K 6K 63K 9K

1 1
2 2
3 4
4 8
5 16
6 32
7 64

Requests: 17K, 6K, 63K and 9K

27‐Nov‐08 53
G53OPS: Operating Systems

©Graham Kendall

7 6
8 128
9 256
10 512
11 1024 (1K)
12 2048 (2K)
13 4096 (4K)
14 8192 (8K) 40K 40K 40K
15 16384 (16K) 48K 48K
16 32768 (32K) 32K
17 65536 (64K) 64K 64K
18 131072 (128K) 128K 128K 128K 128K

19 262144 (256K) 0

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
(c) The processes terminate in the following order; 6K, 9K, 17K and 63K.
Discuss what happens as each process terminates.

(4)

The effect of each of these is described below and the changing lists are also shown.
• When the 6K process is returned (b in the above diagram) the 8K slot of memory is returned

27‐Nov‐08 54
G53OPS: Operating Systems

©Graham Kendall

• When the 6K process is returned (b in the above diagram), the 8K slot of memory is returned.
This returns a block of memory from 32K to 40K. Checking the 8K list, it is found that there is
an adjacent block of memory, which can be merged into a 16K block. Therefore the result is
that the two 8K blocks are merged into a 16K block and this is added to the list.

• When the 9K block is returned (d in diagram) this releases a 16K block of memory from 48K to
64K. Checking the 16K list there is a block from 32K (to 48K). As the two 16K blocks are
consecutive it allows these two blocks to be merged into a 32K block.

• The 17K block (a in diagram) returns a 32K block of memory from 0K to 32K. This can be
merged with the block from 32K to 64K, giving a block in the 64K list.

• The final release of memory (64K, c in diagram) allows two 64K blocks to be merged into a
128K block and then two 128K blocks to be merged to return to a position where the memory is
empty and there is only one list entry in the 256K block starting at 0K.

11/27/2008

10

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
List No. Block Size Initial 6K 9K 17K 63K

1 1
2 2
3 4
4 8
5 16
6 32
7 64

27‐Nov‐08 55
G53OPS: Operating Systems

©Graham Kendall

7 64
8 128
9 256
10 512
11 1024 (1K)
12 2048 (2K)
13 4096 (4K)
14 8192 (8K) 40K
15 16384 (16K) 32K
16 32768 (32K) 32K
17 65536 (64K) 0K
18 131072 (128K) 128K 128K 128K 128K
19 262144 (256K) 0K

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
(c) The processes terminate in the following order; 6K, 9K, 17K and 63K.
Discuss what happens as each process terminates.

(4)

The effect of each of these is described below and the changing lists are also shown.
• When the 6K process is returned (b in the above diagram) the 8K slot of memory is returned

27‐Nov‐08 56
G53OPS: Operating Systems

©Graham Kendall

• When the 6K process is returned (b in the above diagram), the 8K slot of memory is returned.
This returns a block of memory from 32K to 40K. Checking the 8K list, it is found that there is
an adjacent block of memory, which can be merged into a 16K block. Therefore the result is
that the two 8K blocks are merged into a 16K block and this is added to the list.

• When the 9K block is returned (d in diagram) this releases a 16K block of memory from 48K to
64K. Checking the 16K list there is a block from 32K (to 48K). As the two 16K blocks are
consecutive it allows these two blocks to be merged into a 32K block.

• The 17K block (a in diagram) returns a 32K block of memory from 0K to 32K. This can be
merged with the block from 32K to 64K, giving a block in the 64K list.

• The final release of memory (64K, c in diagram) allows two 64K blocks to be merged into a
128K block and then two 128K blocks to be merged to return to a position where the memory is
empty and there is only one list entry in the 256K block starting at 0K.

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
List No. Block Size Initial 6K 9K 17K 63K

1 1
2 2
3 4
4 8
5 16
6 32
7 64

27‐Nov‐08 57
G53OPS: Operating Systems

©Graham Kendall

7 64
8 128
9 256
10 512
11 1024 (1K)
12 2048 (2K)
13 4096 (4K)
14 8192 (8K) 40K
15 16384 (16K) 32K
16 32768 (32K) 32K
17 65536 (64K) 0K
18 131072 (128K) 128K 128K 128K 128K
19 262144 (256K) 0K

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
(c) The processes terminate in the following order; 6K, 9K, 17K and 63K.
Discuss what happens as each process terminates.

(4)

The effect of each of these is described below and the changing lists are also shown.
• When the 6K process is returned (b in the above diagram) the 8K slot of memory is returned

27‐Nov‐08 58
G53OPS: Operating Systems

©Graham Kendall

• When the 6K process is returned (b in the above diagram), the 8K slot of memory is returned.
This returns a block of memory from 32K to 40K. Checking the 8K list, it is found that there is
an adjacent block of memory, which can be merged into a 16K block. Therefore the result is
that the two 8K blocks are merged into a 16K block and this is added to the list.

• When the 9K block is returned (d in diagram) this releases a 16K block of memory from 48K to
64K. Checking the 16K list there is a block from 32K (to 48K). As the two 16K blocks are
consecutive it allows these two blocks to be merged into a 32K block.

• The 17K block (a in diagram) returns a 32K block of memory from 0K to 32K. This can be
merged with the block from 32K to 64K, giving a block in the 64K list.

• The final release of memory (64K, c in diagram) allows two 64K blocks to be merged into a
128K block and then two 128K blocks to be merged to return to a position where the memory is
empty and there is only one list entry in the 256K block starting at 0K.

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
List No. Block Size Initial 6K 9K 17K 63K

1 1
2 2
3 4
4 8
5 16
6 32
7 64

27‐Nov‐08 59
G53OPS: Operating Systems

©Graham Kendall

7 64
8 128
9 256
10 512
11 1024 (1K)
12 2048 (2K)
13 4096 (4K)
14 8192 (8K) 40K
15 16384 (16K) 32K
16 32768 (32K) 32K
17 65536 (64K) 0K
18 131072 (128K) 128K 128K 128K 128K
19 262144 (256K) 0K

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
(c) The processes terminate in the following order; 6K, 9K, 17K and 63K.
Discuss what happens as each process terminates.

(4)

The effect of each of these is described below and the changing lists are also shown.
• When the 6K process is returned (b in the above diagram) the 8K slot of memory is returned

27‐Nov‐08 60
G53OPS: Operating Systems

©Graham Kendall

• When the 6K process is returned (b in the above diagram), the 8K slot of memory is returned.
This returns a block of memory from 32K to 40K. Checking the 8K list, it is found that there is
an adjacent block of memory, which can be merged into a 16K block. Therefore the result is
that the two 8K blocks are merged into a 16K block and this is added to the list.

• When the 9K block is returned (d in diagram) this releases a 16K block of memory from 48K to
64K. Checking the 16K list there is a block from 32K (to 48K). As the two 16K blocks are
consecutive it allows these two blocks to be merged into a 32K block.

• The 17K block (a in diagram) returns a 32K block of memory from 0K to 32K. This can be
merged with the block from 32K to 64K, giving a block in the 64K list.

• The final release of memory (64K, c in diagram) allows two 64K blocks to be merged into a
128K block and then two 128K blocks to be merged to return to a position where the memory is
empty and there is only one list entry in the 256K block starting at 0K.

11/27/2008

11

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
List No. Block Size Initial 6K 9K 17K 63K

1 1
2 2
3 4
4 8
5 16
6 32
7 64

27‐Nov‐08 61
G53OPS: Operating Systems

©Graham Kendall

7 64
8 128
9 256
10 512
11 1024 (1K)
12 2048 (2K)
13 4096 (4K)
14 8192 (8K) 40K
15 16384 (16K) 32K
16 32768 (32K) 32K
17 65536 (64K) 0K
18 131072 (128K) 128K 128K 128K 128K
19 262144 (256K) 0K

Memory Management
Multi-programming

0K 16K 32K 48K 64K 80K 96K 112K 128K

Discussion

Time

Memory Management
Multi-programming

Buddy System (Q5: 2000-2001)
d) Describe and evaluate an alternative to the buddy system

(8)

Two alternatives have been presented; managing memory with bit maps and managing
memory with linked lists.

27‐Nov‐08 63
G53OPS: Operating Systems

©Graham Kendall

e o y w ed s s.

Memory Management
Multi-programming

Swapping: Buddy System

• The buddy system is fast as when a block size
of 2k bytes is returned only the 2k list has to be
searched to see if a merge is possible

27‐Nov‐08 64
G53OPS: Operating Systems

©Graham Kendall

g p

• The problem with the buddy system is that it is
inefficient in terms of memory usage. All
memory requests have to be rounded up to a
power of two

Memory Management
Multi-programming

Swapping: Buddy System

• This type of wastage is known as internal
fragmentation. As the wasted memory is
internal to the allocated segments

27‐Nov‐08 65
G53OPS: Operating Systems

©Graham Kendall

internal to the allocated segments

• Opposite is external fragmentation where the
wasted memory appears between allocated
segments

Memory Management
Multi-programming

Virtual Memory

• Swapping allows us to allocate memory to
processes when they need it. But what happens

h d t h h ?

27‐Nov‐08 66
G53OPS: Operating Systems

©Graham Kendall

when we do not have enough memory?

11/27/2008

12

Memory Management
Multi-programming

Virtual Memory
• In the past, overlays were used

• Responsibility of the programmer
• Program split into logical sections (called overlays)
• Only one overlay would be loaded into memory at a time

27‐Nov‐08 67
G53OPS: Operating Systems

©Graham Kendall

y y y
• Meant that more programs could be running than would be

the case if the complete program had to be in memory

• Downsides
• Programmer had to take responsibility for splitting the

program into logical sections
• Time consuming, boring and open to error

Memory Management
Multi-programming

Virtual Memory: Paging
• In a computer system that does not support virtual

memory, when a program generates a memory address
it is placed directly on the memory bus which causes
the req ested memor location to be accessed

27‐Nov‐08 68
G53OPS: Operating Systems

©Graham Kendall

the requested memory location to be accessed

• On a computer that supports virtual memory, the
address generated by a program goes via a memory
management unit (MMU). This unit maps virtual
addresses to physical addresses

Memory Management
Multi-programming

Virtual Memory: Paging

12K – 16K
8K – 12K
4K – 8K
0K – 4K

12K – 16K
8K – 12K
4K – 8K
0K – 4K

0
6
1
2

Virtual Address
Space

Physical Memory
Addresses

27‐Nov‐08 69
G53OPS: Operating Systems

©Graham Kendall

28K – 32K
24K – 28K
20K – 24K
16K – 20K

60K – 64K
56K – 60K
52K – 56K
48K – 52K
44K – 48K
40K – 44K
36K – 40K
32K – 36K
28K – 32K
24K – 28K
20K – 24K
16K – 20K

X
X
X
X
7
X
5
X
X
X
3
4

Virtual Page

Page Frame

Memory Management
Multi-programming

Virtual Memory: Paging

12K – 16K
8K – 12K
4K – 8K
0K – 4K

12K – 16K
8K – 12K
4K – 8K
0K – 4K

0
6
1
2

Virtual Address
Space

Physical Memory
Addresses

• Assume a program tries to
access address 8192

• This address is sent to the MMU
• The MMU recognises that this

address falls in virtual page 2
(assume pages start at zero)

• The MMU looks at its page

27‐Nov‐08 70
G53OPS: Operating Systems

©Graham Kendall

28K – 32K
24K – 28K
20K – 24K
16K – 20K

60K – 64K
56K – 60K
52K – 56K
48K – 52K
44K – 48K
40K – 44K
36K – 40K
32K – 36K
28K – 32K
24K – 28K
20K – 24K
16K – 20K

X
X
X
X
7
X
5
X
X
X
3
4

Virtual Page

Page Frame

e U oo s at ts page
mapping and sees that page 2
maps to physical page 6

• The MMU translates 8192 to the
relevant address in physical
page 6 (this being 24576)

• This address is output by the
MMU and the memory board
simply sees a request for address
24576. It does not know that the
MMU has intervened. The
memory board simply sees a
request for a particular location,
which it honours.

Memory Management
Multi-programming

Virtual Memory: Paging
• If a virtual memory address is not on a page boundary

(unlike the above example) then the MMU also has to
calculate an offset (in fact, there is always an offset –

27‐Nov‐08 71
G53OPS: Operating Systems

©Graham Kendall

in the above example it was zero)

• Exercise in Notes

Memory Management
Multi-programming

Virtual Memory: Paging

• We have not really achieved anything yet as, in effect,
we have eight virtual pages which do not map to a
physical page

27‐Nov‐08 72
G53OPS: Operating Systems

©Graham Kendall

physical page

• Each virtual page will have a present/absent bit which
indicates if the virtual page is mapped to a physical
page

11/27/2008

13

Memory Management
Multi-programming

Virtual Memory: Paging

12K – 16K
8K – 12K
4K – 8K
0K – 4K

12K – 16K
8K – 12K
4K – 8K
0K – 4K

0
6
1
2

Virtual Address
Space

Physical Memory
Addresses • What happens if we try to use an

unmapped page? For example, the
program tries to access address
24576 (i.e. 24K)

• The MMU will notice that the page
is unmapped and will cause a trap
(f lt) t th ti t

27‐Nov‐08 73
G53OPS: Operating Systems

©Graham Kendall

28K – 32K
24K – 28K
20K – 24K
16K – 20K

60K – 64K
56K – 60K
52K – 56K
48K – 52K
44K – 48K
40K – 44K
36K – 40K
32K – 36K
28K – 32K
24K – 28K
20K – 24K
16K – 20K

X
X
X
X
7
X
5
X
X
X
3
4 (page fault) to the operating system

• The operating system will decide to
evict one of the currently mapped
pages and use that for the page that
has just been referenced

• The page that has just been
referenced is copied (from disc) to
the virtual page that has just been
freed.

• The virtual page frames are
updated.

• The trapped instruction is restarted.

Memory Management
Multi-programming

Virtual Memory: Paging
• A virtual page that is mapped is elected

for eviction (let’s assume 11)
• Virtual page 11 is mark as unmapped

(i.e. the present/absent bit is changed)
• Physical page 7 is written to disc (we’ll

assume for now that this needs to be
12K – 16K
8K – 12K
4K – 8K
0K – 4K

12K – 16K
8K – 12K
4K – 8K
0K – 4K

0
6
1
2

Virtual Address
Space

Physical Memory
Addresses

27‐Nov‐08 74
G53OPS: Operating Systems

©Graham Kendall

assume for now that this needs to be
done). That is the physical page that
virtual page 11 maps onto

• Virtual page 6 is loaded to physical
address 28672 (28K)

• The entry for virtual page 6 is changed
so that the present/absent bit is
changed. Also the ‘X’ is replaced by a
‘7’ so that it points to the correct
physical page

• When the trapped instruction is re-
executed it will now work correctly

28K – 32K
24K – 28K
20K – 24K
16K – 20K

60K – 64K
56K – 60K
52K – 56K
48K – 52K
44K – 48K
40K – 44K
36K – 40K
32K – 36K
28K – 32K
24K – 28K
20K – 24K
16K – 20K

X
X
X
X
7
X
5
X
X
X
3
4

Virtual Page
6

Virtual Page
11

Memory Management
Multi-programming

Virtual Memory: Paging
• A virtual page that is mapped is elected

for eviction (let’s assume 11)
• Virtual page 11 is mark as unmapped

(i.e. the present/absent bit is changed)
• Physical page 7 is written to disc (we’ll

assume for now that this needs to be
12K – 16K
8K – 12K
4K – 8K
0K – 4K

12K – 16K
8K – 12K
4K – 8K
0K – 4K

0
6
1
2

Virtual Address
Space

Physical Memory
Addresses

27‐Nov‐08 75
G53OPS: Operating Systems

©Graham Kendall

assume for now that this needs to be
done). That is the physical page that
virtual page 11 maps onto

• Virtual page 6 is loaded to physical
address 28672 (28K)

• The entry for virtual page 6 is changed
so that the present/absent bit is
changed. Also the ‘X’ is replaced by a
‘7’ so that it points to the correct
physical page

• When the trapped instruction is re-
executed it will now work correctly

28K – 32K
24K – 28K
20K – 24K
16K – 20K

60K – 64K
56K – 60K
52K – 56K
48K – 52K
44K – 48K
40K – 44K
36K – 40K
32K – 36K
28K – 32K
24K – 28K
20K – 24K
16K – 20K

X
X
X
X
X
X
5
X
X
7
3
4

Virtual Page
6

Virtual Page
11

Memory Management
Multi-programming

Virtual Memory: Paging
How the MMU Operates

010 1
001 1
110 1
000 1
100 1

0
1
2
3
4

0 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0

Present/Absent
Bits

Incoming Address

27‐Nov‐08 76
G53OPS: Operating Systems

©Graham Kendall

011 1
000 0
000 0
000 0
101 1
000 0
111 1
000 0
000 0
000 0
000 0

5
6
7
8
9
10
11
12
13
14
15

0 1 1 0 0 0 1 0 1 0 1 0 0 1 0
Outgoing Address

Memory Management
Multi-programming

Virtual Memory: Paging

Page Frame Number

ProtectionReferenced

Caching Disabled Modified Present/Absent

27‐Nov‐08 77
G53OPS: Operating Systems

©Graham Kendall

Referenced

• Page Frame Number: This is the number of the physical page
that this page maps to. As this is the whole point of the page, this
can be considered the most important part of the page frame entry

• Present/Absent Bit: This indicates if the mapping is valid. A
value of 1 indicates the physical page, to which this virtual page
relates is in memory. A value of zero indicates the mapping is not
valid and a page fault will occur if the page is accessed

Memory Management
Multi-programming

Virtual Memory: Paging

Page Frame Number

ProtectionReferenced

Caching Disabled Modified Present/Absent

27‐Nov‐08 78
G53OPS: Operating Systems

©Graham Kendall

Referenced

• Protection: The protection bit could simply be a single bit which is set to 0
if the page cane be read and written and 1 if the page can only be read. If
three bits are allowed then each bit can be used to represent read, write and
execute

• Modified: This bit is updated if the data in the page is modified. This bit is
used when the data in the page is evicted. If the modified bit is set, the data
in the page frame needs to be written back to disc. If the modified bit is not
set, then the data can simply be evicted, in the knowledge that the data on
disc is already up to date

11/27/2008

14

Memory Management
Multi-programming

Virtual Memory: Paging

Page Frame Number

ProtectionReferenced

Caching Disabled Modified Present/Absent

27‐Nov‐08 79
G53OPS: Operating Systems

©Graham Kendall

Referenced

• Referenced: This bit is updated if the page is referenced. This bit
can be used when deciding which page should be evicted (we will be
looking at its use later)

• Caching Disabled: This bit allows caching to be disabled for the
page. This is useful if a memory address maps onto a device register
rather than to a memory address. In this case, the register could be
changed by the device and it is important that the register is accessed,
rather than using the cached value which may not be up to date

Memory Management
Multi-programming

Virtual Memory: Page Replacement
• Choose a mapped page at random

• Likely to lead to degraded system performance
• Page chosen has a reasonable chance of being a page that

will need to be used again in the near future

27‐Nov‐08 80
G53OPS: Operating Systems

©Graham Kendall

will need to be used again in the near future

• The Optimal Page Replacement Algorithm
• Evict the page that we will not use for the longest period
• Problem is we cannot look into the future and decide which

page to evict
• But, if we could, we could implement an optimal algorithm

Memory Management
Multi-programming

Virtual Memory: Page Replacement

• But, if we cannot implement the algorithm then why
bother discussing it?

27‐Nov‐08 81
G53OPS: Operating Systems

©Graham Kendall

• In fact, we can implement it, but only after running
the program to see which pages we should evict at
what point

• We can then use this as a measure to see how other
algorithms perform against this ideal

Memory Management
Multi-programming

Virtual Memory: Page Replacement (NRU)
• The Not-Recently-Used Page Replacement Algorithm

• Makes use of the referenced and modified bits
• When a process starts all its page entries are

k d i

27‐Nov‐08 82
G53OPS: Operating Systems

©Graham Kendall

marked as not in memory
• When a page is referenced a page fault will occur
• The R (reference) bit is set and the page table entry

modified to point to the correct page
• The page is set to read only. If the page is later

written to the M (modified) bit is set and the page
is changed so that it is read/write

Memory Management
Multi-programming

Virtual Memory: Page Replacement (NRU)
• Updating the flags in this way allows a simple paging

algorithm to be built

Wh i t t d ll R d M bit

27‐Nov‐08 83
G53OPS: Operating Systems

©Graham Kendall

• When a process is started up all R and M bits are
cleared set to zero

• Periodically (e.g. on each clock interrupt) the R bit is
cleared (allows us to recognise which pages have been
recently referenced)

Memory Management
Multi-programming

Virtual Memory: Page Replacement (NRU)

• When a page fault occurs (so that a page needs to be evicted),
the pages are inspected and divided into four categories based
on their R and M bits

• Class 0: Not Referenced Not Modified

27‐Nov‐08 84
G53OPS: Operating Systems

©Graham Kendall

• Class 0: Not Referenced, Not Modified
• Class 1: Not Referenced, Modified
• Class 2: Referenced, Not Modified
• Class 3: Referenced, Modified

• The NRU algorithm removes a page at random from the lowest
numbered class that has entries in it

• Not optimal algorithm, NRU often provides adequate
performance and is easy to understand and implement

11/27/2008

15

Memory Management
Multi-programming

Virtual Memory: Page Replacement (FIFO)

• The First-In, First-Out (FIFO) Page Replacement
Algorithm

• Maintains a linked list, with new pages being added to the
end of the list

27‐Nov‐08 85
G53OPS: Operating Systems

©Graham Kendall

end of the list
• When a page fault occurs, the page at the head of the list

(the oldest page) is evicted
• Simple to understand and implement but does not lead to

good performance as a heavily used page is just as likely to
be evicted as a lightly used page

Memory Management
Multi-programming

Virtual Memory: Page Replacement (SC)

• The Second Chance Page Replacement Algorithm
• Modification of the FIFO algorithm
• When a page fault occurs if the page at the front of the

li k d li h b f d i i i d

27‐Nov‐08 86
G53OPS: Operating Systems

©Graham Kendall

linked list has not been referenced it is evicted.
• If its reference bit is set, then it is placed at the end of the

linked list and its reference bit reset

• In the worst case, SC, operates the same as FIFO

Memory Management
Multi-programming

Virtual Memory: Page Replacement (CP)

• The Clock Page Replacement Algorithm
• The clock page (CP) algorithm differs from SC only in its

i l t ti

27‐Nov‐08 87
G53OPS: Operating Systems

©Graham Kendall

implementation
• SC suffers in the amount of time it has to devote to the

maintenance of the linked list
• More efficient to hold the pages in a circular list and move

the pointer rather than move the pages from the head of the
list to the end of the list

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

• The Least Recently Used (LRU) Page Replacement
Algorithm

• Approximate an optimal algorithm by keeping track of
when a page was last used

27‐Nov‐08 88
G53OPS: Operating Systems

©Graham Kendall

when a page was last used
• If a page has recently been used then it is likely that it will

be used again in the near future
• Therefore, if we evict the page that has not been used for

the longest amount of time we can implement a least
recently used (LRU) algorithm

• Whilst this algorithm can be implemented it is not cheap as
we need to maintain a linked list of pages which are sorted
in the order in which they have been used

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)
• We can implement the algorithm in hardware
• The hardware is equipped with a counter (typically 64 bits).

After each instruction the counter is incremented
• Each page table entry has a field large enough to accommodate

27‐Nov‐08 89
G53OPS: Operating Systems

©Graham Kendall

the counter
• Every time the page is referenced the value from the counter is

copied to the page table field
• When a page fault occurs the operating system inspects all the

page table entries and selects the page with the lowest counter
• This is the page that is evicted as it has not been referenced for

the longest time

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

• Another hardware implementation of the LRU algorithm is
given below

• If we have n page table entries a matrix of n x n bits, initially
ll i i t i d

27‐Nov‐08 90
G53OPS: Operating Systems

©Graham Kendall

all zero, is maintained
• When a page frame, k, is referenced then all the bits of the k

row are set to one and all the bits of the k column are set to zero
• At any time the row with the lowest binary value is the row that

is the least recently used (where row number = page frame
number)

• The next lowest entry is the next recently used; and so on

11/27/2008

16

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

• If we have four page frames and access them as follows
0 1 2 3 2 1 0 3 2 3

the algorithm operates as follows

27‐Nov‐08 91
G53OPS: Operating Systems

©Graham Kendall

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

0
1
2

0 1 2 3 0 1 2 30 1 2 30 1 2 3
0 1 2 3 2 1 0 3 2 3

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 03

(a) (b) (c) (d)

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0

0
1
2

0 1 2 3 0 1 2 30 1 2 30 1 2 3
0 1 2 3 2 1 0 3 2 3

=0
=8
=12

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 03

(a) (b) (c) (d)
=14

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)

0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1

0
1
2

0 1 2 3 0 1 2 30 1 2 30 1 2 3 0 1 2 3
0 1 2 3 2 1 0 3 2 3

27‐Nov‐08 94
G53OPS: Operating Systems

©Graham Kendall

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0

0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0

1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 1 0 0

1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 0

3

0 1 2 30 1 2 30 1 2 30 1 2 30 1 2 3
0
1
2
3

(f) (g) (h) (i) (j)

(a) (b) (c) (d) (e)

Memory Management
Multi-programming

Virtual Memory: Page Replacement (LRU)
LRU in Software
• We cannot, as OS writers, implement LRU in hardware if the

hardware does not provide the facilities
• We can implement a similar algorithm in software• We can implement a similar algorithm in software
• Not Frequently Used – NFU associates a counter with each

page
• This counter is initially zero but at each clock interrupt the

operating system scans all the pages and adds the R bit to the
counter

• When a page fault occurs the page with the lowest counter is
selected for replacement.

Memory Management
Multi-programming

Virtual Memory: Page Replacement (NFU)

• Problem with NFU is that it never forgets anything
• To alleviate this problem we can make a modification to NFU

so that it closely simulates NRUso that it closely simulates NRU
• The counters are shifted right one bit before the R bit is added.
• The R bit is added to the leftmost bit rather than the rightmost

bit.
• This implements a system of aging.
• When a page fault occurs, the counter with the lowest value is

removed

11/27/2008

17

Memory Management
Multi-programming

Virtual Memory: Page Replacement (NFU)
• Problem with NFU is that it never forgets anything
• To alleviate this problem we can make a modification to NFU so that it closely simulates NRU
• The counters are shifted right one bit before the R bit is added.
• The R bit is added to the leftmost bit rather than the rightmost bit.
• This implements a system of aging.
• When a page fault occurs, the counter with the lowest value is removed

10000000 11000000 11100000 11110000 01111000

00000000 10000000 11000000 01100000 10110000

10000000 01000000 00100000 00010000 10001000

00000000 00000000 10000000 01000000 00100000

10000000 11000000 01100000 10110000 01011000

10000000 01000000 10100000 01010000 00101000

R bits for pages 0-5
Clock Tick 0

101011

R bits for pages 0-5
Clock Tick 1

110010

R bits for pages 0-5
Clock Tick 2

110101

R bits for pages 0-5
Clock Tick 3

100010

R bits for pages 0-5
Clock Tick 4

011000

Page

(a) (b) (c) (d) (e)

0

1

2

3

4

5

Memory Management
Multi-programming

Demand Paging

• The most obvious way to implement a paging system is to start
a process with none of its pages in memory

• When the process starts to execute it will try to get its first p y g
instruction, which will cause a page fault

• Other page faults will quickly follow
• After a period of time the process should start to find that most

of its pages are in memory
• Known as demand paging as pages are brought into memory on

demand

Memory Management
Multi-programming

Working Set
• The reason that page faults decrease (and then stabilise) is because

processes normally exhibit a locality of reference
• At a particular execution phase of the process it only uses a small

fraction of the pages available to the entire process
Th f h i l b i d i ll d i ki• The set of pages that is currently being used is called its working set

• If the entire working set is in memory then no page faults will occur
• Only when the process moves onto its next phase will page faults

begin to occur again
• If the memory of the computer is not large enough to hold the entire

working set, then pages will constantly be copied out to disc and
subsequently retrieved

• This drastically slows a process down and the process is said to be
thrashing

Memory Management
Multi-programming

Pre-Paging / Working Set
• In a system that allows many processes to run at the

same time it is common to move all the pages for a
process to disc (i.e. swap it out)

• When the process is restarted we have to decide whatWhen the process is restarted we have to decide what
to do

• Do we simply allow demand paging?
• Or do we move all its working set into memory so that

it can continue with minimal page faults?
• The second option is to be preferred
• We would like to avoid a process, every time it is

restarted, raising page faults

Memory Management
Multi-programming

Pre-Paging / Working Set
• The paging system has to keep track of a processes’ working

set so that it can be loaded into memory before it is restarted.
• The approach is called the working set model (or pre-paging).

Its aim, as we have stated, is to avoid page faults being raised, , p g g
• A problem arises when we try to implement the working set

model as we need to know which pages make up the working
set

• One solution is to use the aging algorithm described above.
Any page that contains a 1 in n high order bits is deemed to be
a member of the working set. The value of n has to be
experimentally although it has been found that the value is not
that sensitive

Memory Management
Multi-programming

Paging Daemons

• If a page fault occurs it is better if there are plenty of free pages
for the page to be copied to

• If every page is full we have to find a page to evict and we may
have to write the page to disc before evicting ithave to write the page to disc before evicting it

• Many systems have a background process called a paging
daemon

• This process sleeps most of the time but runs at periodic
intervals

• Its task is to inspect the state of the page frames and, if too few
pages are free, it selects pages to evict using the page
replacement algorithm that is being used

11/27/2008

18

Memory Management
Multi-programming

Paging Daemons

• A further performance improvement can be achieved
by remembering which page frame a page has been
evicted fromevicted from

• If the page frame has not been overwritten when the
evicted page is needed again then the page frame is
still valid and the data does not have to copied from
disc again

• In addition the paging daemon can ensure pages are
clean

