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Abstract: Service network design is a core problem for logistic transportation planning. It involves determination of the
most cost-effective transportation network, package flow distribution as well as balanced vehicle schedules. In this paper,
we propose an efficient guided local search approach metaheuristic for this problem, which is able to produce
competitive results with much less computational time than those proposed in the literature.
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I. INTRODUCTION

Service network design is widely used as a generic model to
formulate network design problems faced in the fields of
logistics, telecommunication, transportation and production
systems. The problem is mainly concerned with searching a
network configuration that minimizes the total costs
incurred for shipping customers' commodities through
networks of limited capacity. Depending on the application,
the costs may include the fixed costs that must be invested
for opening (or building) an arc, it can also involve variable
costs that are proportional to the amount of commodities to
be routed. Two of the most common constraints in the
service network design problem are the network capacity
constraint and flow conservation constraint (often referred
as the fixed-charge capacitated multi-commodity network
design problem, or CMND in abbreviation) [7]. The CMND
model is related to the classical network flow problem [1] but
is much more difficult to solve. It has been proved that
CMND problems are NP-hard [7]. Reports also suggests that
the state-of-the-art exact solvers struggle to handle CMND
problem cases of any realistic size [9,4,7]. There are some
successful applications where some large real-world
oriented instances have been solved successfully by
exploiting special structures of the problem and using more
sophisticated modeling techniques [2,3]. However, it may be
difficult to generalize the approach to service network
design problems without similar structures or
characteristics.
The CMND model can be augmented to adapt to different
problem scenarios and requirements. One of modifications
in freight transportation is the inclusion of an asset-balance
constraint [4,10], which is essential for freight transportation
companies to ensure the continuity of the services over time.
That is, at the end of each service time window, the amount
of transportation assets (e.g. vehicles, containers, etc.)
should be kept at the same level as the previous level.
Scheduling the transportation assets are generally based on
a time-space network where a planning horizon (e.g. a week)
is discretized into several time slots (e.g. a day). In the
time-space network, each physical node (or terminal) has a
copy in every time slot. For a network with n physical nodes
and m periods, the number of nodes in the time-space

network will increase significantly to mn. Figure I describes
a simple time-space network with 3 terminals and 7 time
slots. Two schedules are displayed in this figure. The
schedule represented by solid lines indicates that a vehicle
leaves from node 3 on day 2 and arrives at node 2 and node
1 on day 3 and day 4 respectively. It then returns to node 3
on day 5 and stays at node 3 until day 2 of the next planning
cycle. Similarly the schedule represented by the dashed
lines specifies a vehicle movement path from node 1 to node
2 on day 1 and then returning to node 1 on day 6. It then
moves to node 2 on day 7 and stays at node 2. For this
simple example, we say that node 3 is asset-balanced since
the incoming vehicles and outgoing vehicles are the same
throughout the planning horizon. However, for node 1 and
node 2 this is not the case since neither of them is balanced
on day 1.

Figure I A time-space network with three nodes.

Considerable progresses have been made in terms of
investigating and developing effective meta-heuristic or
hybrid algorithms for CMCD problems, in particular, tabu
search and path-relinking have been thoroughly investigated
and improved, with very good computational results having
been obtained [5,7,8,10]. These approaches are generally
competitive against the state-of-the-art MIP solvers for
small and medium sized problems and more importantly
demonstrates superior capability when dealing with large
problem instances. Unfortunately, although these heuristic
based approaches are much faster than the exact MIP solver
for large problem instances, from a practical point of view
the amount of computational time they take is still quite
large. For example, in [10] a single run of the tabu search
approach required 3600 seconds on a machine with Pentium
IV 2.26GHz CPU. This paper intends to improve the
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efficiency of the current metaheuristics for CMND
problems by investigating other heuristic based approaches.
It is hoped that the proposed algorithm is able to produce
similar quality results but with much less computational
effort.
The paper is organized as follows: in the next section, we
present a formal formulation of the asset-balanced CMND
problem and its associated capacitated multicommodity
min-cost flow problem (CMMCF). Section 3 describes the
guided local search algorithm proposed in this paper and its
performance is discussed and analysed in section 4. Section
5 concludes the paper.

II. PROBLEM AND FORMULATIONS

Pedersen et al. [10] introduced a node-arc based
“design-balanced capacitated multicommodity network
design” (DBCMND) formulation. This formulation
represents a generic model for service network design. For
completeness, we also present it here. Let G =(N, A) denote
a service network with a set of nodes N and a set of arcs A.
Denote (i, j) ∈A be the arc from node i to node j. Let K be
the set of commodities to be transported via the network.
For each commodity k ∈K, let o(k) and s(k) stand for its
origin and destination respectively. Other notations used in
the model can be found from Table I.

Table I. List of notations used in the formulation

yij Boolean design variables. yij equals 1 if arc (i, j) is used
in the final design and 0 otherwise.

xij
k is flow of commodity k on arc (i, j).

N+(i)
The set of outward neighbours of node i, i.e. N+(i)= {j|∈
and (i, j) ∈A}.

N-(i)
The set of inward neighbours of node i, i.e. N-(i)={j| j∈
N and (j, i) ∈A}.

uij Capacity of arc (i, j).

fij Fixed cost of arc (i, j).

cij
k Variable cost of moving one unit of commodity k along

arc (i, j).

For simplicity, denote Y and X the design variable vector
and flow distribution variable vector respectively. The
DBCMND model can then be formulated as:
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The objective is to minimize the sum of the fixed cost of the
selected arcs and the total variable shipping costs.
Constraint (2) ensures that the total amount of flow on an arc
does not exceed the limit, determined by the value of design
variables. Constraint (3) is the flow conservation constraint.
Constraint (4) is the asset-balance constraint which ensures
transportation assets (e.g. vehicles) are balanced at the end
of each planning period. Constraints (5) and (6) ensure
non-negativity of commodity flows and binary design
variables.
There is a natural decomposition of the problem into two
related sub-problems: 1). determination of optimal design
variables { | ( , ) }ijY y i j A  firstly, and then, 2). for a given

feasible design variable vector Y , searching the optimal
flow distribution. The second sub-problem can be solved as
follows. Set the flow variables xij

k =0 for all arcs ( , )i j A

where A is the set of open arcs in the design vector Y . Flow
distribution variables for all open arcs (i.e. ( , )i j A ) can be
obtained by solving the following capacitated
multicommodity min-cost flow problem (CMMCF).
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III. OUR PROPOSED APPROACH

In this paper, we propose to use a guided local search
algorithm in combination with a linear programming solver
(we use lp_solve in this paper). It is hoped that the proposed
algorithm is more efficient than those that have been
investigated so far in the literature [6-8,10]. Most
metaheuristic approaches adopted the same decomposition
as we mentioned in section II. That is, metaheuristic
approaches are used to search for a good network design
vector Y , and for a given network design vector Y , an LP
solver is then used to obtain the optimal flow distribution by
solving the corresponding CMMCF problem. Therefore,
these types of approaches involve solving the CMMCF
problem many times which, unfortunately, is
computationally expensive. To speed up the search, one has
to keep the number of LP solver calls to a minimum and
design local search approaches to search the neighborhood
more efficiently. For example, the tabu search method
implemented in [10] evaluates a subset of the neighborhood
only based on some heuristics. Although the algorithm
outperforms a state-of-the-art MIP solver, the amount of
computational time required for a single run of the
algorithm is still very large (an hour) and impractical for
real-world day-to-day applications.



ICLSIM2010 112

One of the main advantages of the guided local search
method is its ability to exploit problem specific features to
guide the search towards promising regions. More
specifically, in a guided local search method, a set of
features are carefully selected with presence of “bad”
features in a solution is punished according to a dynamically
tuned function so that the search is guided towards regions
containing “attractive”features and avoid less promising
regions. It is hoped that the guided local search either solves
the problem with much less computational effort than the
previous tabu search method, or, given the same amount of
computational time, the proposed algorithm obtains better
results.

Figure II Pseudo-code for a basic guided local search
procedure.

A. Guided Local Search

Guided local search (GLS) is a metaheuristic designed for
constraint satisfaction and combinatorial optimization
problems [11]. The core of the guided local search method
is the identification of a set of features and determination of
a transformed evaluation function. The transformed
evaluation function for a given solution s appears in the
form of:

( ) ( ) ( ( ))r r
r

E s g s p I s    (12)

where g(s) is the original objective function. pr is the penalty
for a given feature r existing in the current solution s. Ir(s) is
an indicator variable: Ir(s)=1 means the candidate solution
contains feature r and Ir(s)=0 otherwise. The penalty value
pr for each feature can be dynamically changed. The
selection of features to be penalized is based on a utility
value, utilr(s), defined as ( ) ( ) / (1 )r r r rutil s I s h p   ,
where hr are the cost of the feature r.λis a control parameter
which is often estimated by * *( ) / ( )rrg s I s    where

*s is the current local optimum and α is a parameter that is
less problem-dependent than λ. The basic GLS approach
can be illustrated by Figure II.
In this application, we choose all arcs be the GLS features
and their fixed costs be the features costs, i.e. hij=fij.
Alternatively, one can introduce a feature cost function that
reflects both the fixed cost, variable cost and the popularity

of the arc. The drawback is that it introduces more
parameters into the algorithm.

B. Constraint Handling

Network capacity constraint (2) and flow conservation
constraint (3) are handled directly in the local search. That is,
any moves that violate them will be discarded. However, the
asset-balance constraint (4) is relaxed and violations of this
constraint are allowed but are penalized according to the
following function:

( , ) ( , ) | |i
i N

g X Y z X Y f  


    (13)

where f is the average of the fixed costs of the arcs in the
network.ψi, node asset-unbalance, stands for the difference
(or unbalance) between outgoing open arcs and incoming
open arcs at node i, i.e. ( ) ( )i ij jij N i j N iy y      .τ is

a scaling parameter that controls the importance of the
penalty term. Note that the node asset-unbalance was
magnified by a power γ(> 1) in order to apply higher
penalties to highly unbalanced nodes. In this paper we set γ
=2 for ease of computation. Note that this penalty function is
slightly easier to compute than the one used in [10].

C. Neighborhood Definition

The neighborhood definition used in the guided local search
is similar to the one used in [10]. From an incumbent
solution, a neighbor solution is generated by either closing
an open arc or opening a closed arc. Closing an arc could
result in a better solution since the fixed cost of this arc will
be removed from the objective function. Meanwhile,
opening an arc can also lead to an improvement in the
evaluation function (13) since it could reduce node
unbalance.
1) Closing Arcs: To close an arc (i, j) that has a positive flow,
one needs to redirect the flow to the remaining open arcs. In
theory, the optimal flow re-distribution can be obtained by
solving the model (8)-(11). Unfortunately, this would be
computationally too expensive. To alleviate computational
burden, similar to the most previous approaches, a heuristic
method based on a residual network [7] and the Dijkstra
shortest path algorithm is used. More specifically, let
resCaplt denote the residual capacity of the arc (l, t) ∈A in
the current solution (resCaplt defaults to ult if the arc is
closed). For each commodity k that has a positive flow on

the arc (i, j), a Γk residual network ( , )
k k

G N A  , where
Γk = dk, is constructed with the arcs in this residual network
defined as:

{( , ) | ( , ) ( , ) }.
k k

ltA l t A l t i j resCap      

We compute the “cheapest”path on this residual network
and redirect entire flow of the commodity k to this single
path. If such a path cannot be found, the move is considered
infeasible and the search goes back to the incumbent
solution. The cost associated with each arc in this residual
network is defined as:

· if ( , ) is closed,
· if ( , ) is open.

k

k
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The above flow redistribution is done for each commodity
that has a positive flow on the arc (i, j). If the procedure fails
to redistribute the flow for any of them, this arc closing
procedure is terminated and the move is considered
infeasible.
2) Opening Arcs: Although opening an arc will increase the
objective value due to the fixed cost of the arc, it could
potentially reduce the node unbalance penalty and hence
lead to more feasible solutions. When a closed arc is opened,
the optimal flow distribution is probably changed as well.
One would have to solve the CMMCF model in order to
obtain this optimal flow distribution. However, as stated
earlier, it is computational prohibitive to solve this model
for every possibility. Therefore, similar to [10], the flow
distribution is kept the same and the fixed cost of this arc is
incurred.
3) Opening a path: For two nodes i, j with opposite asset
unbalance (i.e. ψi∙ ψj < 0), opening or closing a path
between
i and j will reduce the asset unbalance penalty for both nodes
(note that the direction of the path will depend on the actual
signs ofψi andψj ). If, however, there is no direct arc linking
between the nodes, a neighborhood move of
closing/opening a single arc will not reduce the node asset
unbalance. It is benedictory to open a path between the
nodes. In addition, sometimes when the local search
stagnates at a local optimum, it is useful to randomize the
incumbent solution and restart the search to escape from this
local optimum. Therefore, we also introduced another
neighborhood operator, which selects a random commodity
and opens one of its top 10 shortest paths with equal
probability. The corresponding CMMCF model is then
solved to obtain the optimal flow distribution. Since this
operator is only called occasionally, solving the CMMCF
problem in this procedure will have much less impact on the
speed of the algorithm. The top 10 shortest paths for a given
commodity are computed independently without
consideration of the other commodities. Therefore, they are
computed only once at the beginning of the search.

D. Recovering Feasibility

Although relaxing the asset-balance constraint will provide
freedom and flexibility in designing more effective
neighborhoods. For most instances, the algorithm converges
to a feasible solution (i.e. all nodes are asset-balanced).
There are, however, some instances that the algorithm is
struggling to find a high quality feasible solution. Therefore,
a specialized heuristic is required to repair the solution and
recover the feasibility. In this paper, we used a similar
heuristic introduced by [10]. The main idea of this heuristic
is to repeatedly reduce the asset-unbalance of the most
unbalanced node (i.e. |ψ| is maximum). This is achieved by
closing (or opening) a path between this node and another
unbalanced node with opposite ψ sign. Since there are
potentially many paths between these two nodes, the
heuristic only evaluates four shortest paths, computed by
solving the shortest path problems in the four different
modified networks. Again since opening a path involves
opening/closing several arcs, the CMMCF model is solved

after each neighborhood move. More details can be found in
[10].

Figure III Pseudo-code A multi-start guided local search
algorithm for AB-CMND.

The proposed algorithm is shown in Figure III. The initial
solution is built by solving the relaxed LP model (i.e.
constraint (6) is relaxed) and then rounding the design
variables to binary. The algorithm mainly consists of two
phases: the guided local search phase and the feasibility
recovery phase. These two phases are executed repeatedly
until the computational time is exhausted. The guided local
search phase stops when either no computational resource is
left or the number of consecutive non-improving iterations
reaches a given value L. In the guided local search, the
neighborhood is defined by closing/opening arcs as
described in section III-C. Procedure BestNeighbour(s,
E(s)) returns the best neighbor of the current solution s
according to the augmented objective function E(s). Since
the flow distribution is estimated in neighborhood
exploration, the solution returned by BestNeighbour(s,
E(s)) is re-optimised by solving the corresponding CMMCF
model. During the guided local search phase, the best
solution with regard to g(s) and the best feasible solution
with regarding to z(X, Y) are recorded.
Since the guided local search operates on a transformed
evaluation function E(s), a “good”solution according to E(s)
and g(s) does not necessarily represent a “good”feasible
solution in terms of z(X, Y). Therefore, procedure
FeasibilityRecovery(s) is applied after the guided local
search phase to recovery the solution feasibility (i.e.
asset-balance) using the heuristic described in section III-D.
If this phase finds a solution that is better than the best
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feasible solution in terms of the original objective z(X, Y)),
the best feasible solution is updated.
After FeasibilityRecovery(s) finishes, the solution is
perturbed using the path-opening heuristic (see section
III-C3) to get ready for the next round guided local search.
The algorithm stops when the computational time is
exhausted.

IV. EXPERIMENT SET UP AND RESULTS ANALYSIS

The proposed multi-start GLS algorithm is implemented in
Microsoft Visual C# 2008. The algorithm is run on a PC
with Intel Core 2 CPU 1.8GHz and 1GB RAM. However,
since the program is sequential, only one processor is
utilized. After some preliminary tests, we fixed the
parameters of the algorithm as follows: L=30,τ=0.5,α=0.2
and the maximum time allowed for a single run of the
algorithm is set to 2400 seconds, a 1/3 reduction in
computational time compared with the tabu search approach
in [10].

Table II Font Settings Computational results for the C problem
instances by different algorithms.

Instance Xpress
MIP

TS
(1 run)

GLS (5 runs)
best average

C20,230,200,V,L 101112 102919 101267 102324
C20,230,200,F,L 153534 150764 143017 146584
C20,230,200,V,T 105840 103371 103428 104090
C20,230,200,F,T 154026 149942 143446 144941
C20,300,200,V,L 81184 82533 80183 80694
C20,300,200,F,L 131876 128757 126097 127334
C20,300,200,V,T 78675 78571 77839 78910
C20,300,200,F,T 127412 116338 116712 120080
C30,520,100,V,L 55138 55981 55437 55548
C30,520,100,F,L n/a 104533 100999 102462
C30,520,100,V,T 53125 54493 53644 53809
C30,520,100,F,T 106761 105167 106096 106972
C30,520,400,V,L n/a 119735 119344 121441
C30,520,400,F,L n/a 162360 163182 164146
C30,520,400,V,T n/a 120421 122877 374020
C30,520,400,F,T n/a 161978 166488 167146
C30,700,100,V,L 48849 49429 49465 49532
C30,700,100,F,L 65516 63889 62936 63685
C30,700,100,V,T 47052 48202 47518 47646
C30,700,100,F,T 57447 58204 58559 59063
C30,700,400,V,L n/a 103932 104534 104826
C30,700,400,F,L n/a 157043 152580 152842
C30,700,400,V,T n/a 103085 103581 413682
C30,700,400,F,T n/a 141917 142575 143876

Benchmark datasets from the literature [7], [10] are used as
a testbed for the proposed algorithm. The instances we used
are drawn from the two sets (C, R) with each set containing
problem instances of different sizes (nodes, arcs,
commodities) and distributions of fixed cost, variable cost
and capacity. The first three numbers in the instance name
represent the number of nodes, the number of arcs and
number of commodities respectively. A letter ‘F’means that
the fixed costs are important relative to the variable costs
while ‘V’stands for dominant variable costs. Letter ‘L’
stands for loose capacity constraints while ‘T’ means
capacities are tight. For each instance, 5 independent runs

were carried out. In Table II, we provides both the best
results and the average results by our proposed algorithm, in
comparison with those obtained by Xpress-MP MIP solver
and the tabu search method by Pedersen et al. [10].
Table II shows the results for C set instances (R set instances
are not included here due to space reasons). We can see that
the proposed algorithm produces promising results, in
comparison with the Xpress MIP solver and the tabu search
approach recently proposed. Since results by TS are based
on a single run, for fairness, we compare against the average
results of our proposed guided local search. For most of
cases, the guided local search performs competitively when
compared with TS. It even outperforms TS for 11 out of 24
instances. This is a very good achievement considering that
GLS used much less computational time on a slower
processor (TS was run on a PC with 2.4GHz processor
while GLS was run on a PC with 1.8GHz processor). For
two instances (C55 and C63) the average results by GLS
were poor. Nevertheless, the best results by GLS are still
competitive. It seems that the proposed algorithm struggles
to perform consistently for some large sized instances.
Finally, Xpress MIP obtained the best results for some
instances but failed to return a feasible solution for 9
instances (marked as “n/a”).
Similar results have been obtained for the R set instances
(consisting of 53 instances) except for 4 instances where the
proposed algorithm fails to find a feasible solution. A close
examination of the results shows that lp_solve fails to solve
the CMMCF problem in reasonable time. For space reasons,
we could not include results in this paper but they are
available on request.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an efficient approach that can be
used to optimise the service network design problem in the
logistic freight transportation. The proposed algorithm
incorporates a guided local search metaheurisic within a
multi-start framework. Computational results have
demonstrated the fast convergence ability of GLS
metaheuristic and its ability to produce promising results
with much less computational effort, when compared with a
recently proposed tabu search approach. Future research
will focus on incorporating new mechanisms to improve the
robustness of the algorithm.
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