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Abstract The dendritic cell algorithm (DCA) has been

applied successfully to a diverse range of applications.

These applications are related by the inherent uncertainty

associated with sensing the application environment. The

DCA has performed well using unfiltered signals from each

environment as inputs. In this paper we demonstrate that

the DCA has an emergent filtering mechanism caused by

the manner in which the cell accumulates its internal

variables. Furthermore we demonstrate a relationship

between the migration threshold of the cells and the

transfer function of the algorithm. A tuning methodology is

proposed and a robotic application published previously is

revisited using the new tuning technique.

Keywords Dendritic cell � Robotics

1 Introduction

The field of ‘artificial immune systems’ (AISs) is an area of

computer science concerning the development and use of

algorithms based on the mechanisms underlying biological

immune systems. The immune system stands out as a

potential source of inspiration for problem-solving algo-

rithms as the information processing is inherently

distributed (as with all cell-based systems) and the input

data is noisy. A review of common algorithms within the

field can be found in [5, 10]. AIS algorithms are diverse

and have contributed to the fields of optimisation [2],

classification [22] and anomaly detection [20]. The den-

dritic cell algorithm (DCA) is an emerging AIS algorithm

based on biological dendritic cells (DCs). DCs form part of

the innate immune system. The key responsibilities of a

DC are the identification of threats to the body and play a

part in the activation of an immune response to those

threats. The authors of this paper view the DCA as a

decision making algorithm, using a population of non-

homogeneous agents to vote on a binary choice. This has

applications within both the fields of heuristic-based clas-

sification [15] and anomaly detection [9].

Analysis of the DCA has shown that appropriate selec-

tion of the migration thresholds is crucial to the

performance of the algorithm [6]. Currently no techniques

exist for tuning the DCAs migration thresholds. Generally

experiments are repeated using a wide selection of migra-

tion thresholds to identify one distribution which

outperforms the others. If a migration threshold is too low,

a cell will migrate too quickly and will not be able to gather

a representative sample of the input signals. If a migration

threshold is too high, the cell will migrate too slowly and

will misclassify the gathered antigen. A balance between

these two extremes is found in part by the population-based

nature of the algorithm. However, this is still dependant on

a suitable selection of migration thresholds within the

population.

Despite an increasing amount of research being carried

out on the DCA, its behaviour within the time and fre-

quency domain are not well understood. Whilst it is

apparent to its users that it behaves differently when

exposed to signals of differing frequency, there is no
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formal understanding of the relationship between the

algorithm’s input parameters and its behaviour in the fre-

quency domain. This paper identifies a mathematical

model of a single DC which can be used to identify the

frequency response of the system as a function of the input

parameters to the DCA. This information allows us to

estimate the response of the algorithm to its input signals

and make informed choices about the migration threshold.

This paper is organized as follows. Section 2 explains

the workings of the DCA. Section 3 goes on to derive an

optimised version of the DCA and demonstrates equiva-

lence to known filters with characterised transfer functions.

In Sect. 4 a tuning methodology is suggested based on the

frequency response of the DCA and in Sect. 5 the robotic

application from [15] is revisited. The latest results from

the updated robotic architecture are presented and a range

of migration thresholds are compared with the threshold

suggested by the tuning methodology. Finally, the ramifi-

cations of these results are discussed in Sect. 6.

2 An overview of the dendritic cell algorithm

2.1 The biological dendritic cell

The authors of this paper are not biologists so we refer the

interested reader to [6, 9] for a more formal treatment of

the biological inspiration of the dendritic cell algorithm.

The outline provided here is a summary of the relevant

information within [6, 9]. For general information about

biological dendritic cells see [13].

The functionality of the immune system that the DCA

attempts to emulate is one of the underlying mechanisms

for the body’s ability to recognise threats such as viruses

and bacteria. There are differing explanations within the

biological community on how these mechanisms are rea-

lised. The DCA is based on one such paradigm known as

danger theory. This model, first put forward in [14], is a

framework underpinned by the concept that the immune

system does not simply respond to antigen because it is

identified as foreign or ‘‘non-self’’, rather it responds to

evidence of ‘‘danger’’. For the purposes of the DCA, dan-

ger can be viewed simply as unexpected cell damage. The

information presented here will be from the perspective of

the danger theory model.

The first stage of a dendritic cell’s life that is relevant to

the DCA is termed the ‘immature’ phase. In this phase

dendritic cells are found throughout the body’s tissue and

within the blood stream. Here they ingest antigen and

absorb molecular patterns and signals. The molecular pat-

terns that the cells absorb are ‘pathogen-associated

molecular patterns’, or PAMPs. These molecular patterns

are released into the tissue by pathogens (viruses, bacteria

etc.), so their presence is indicative that the body has been

invaded by a potentially harmful organism. In the danger

theory model, the signals absorbed by the dendritic cells

are termed ‘danger’ and ‘safe’. Danger signals are evidence

of unexpected cell damage. When cells die naturally (a

process termed ‘apoptosis’), the contents of the cell are

destroyed internally before the cell walls break down. If

cells die due to damage or infection (termed ‘necrosis’) the

contents of the cell are released into the tissue. These

chemical markers are danger signals. Safe signals are

chemicals released by cells during apoptosis and can be

viewed as evidence of ‘normality’ within the system.

When dendritic cells have been sufficiently exposed to

PAMPs, danger or safe signals, they migrate to the lymph

nodes of the body. There the cells become either ‘mature’

or ‘semi-mature’ cells. A cell will become a mature cell if

it has been predominantly exposed to PAMPs or danger

signals. Mature cells present their antigen to T-cells within

the lymph node in conjunction with a compound called

‘interleukin 12’ (IL-12). This stimulates the T-cell and

causes it to effect an immune response. A cell will become

a semi-mature cell if it is predominantly exposed to safe

signals. Semi-mature cells present their antigen to T-cells

within the lymph node in conjunction with a compound call

‘interleukin 10’, (IL-10). This suppresses the T-cell and

prevents an immune response being launched against the

presented antigen.

This capacity to either stimulate or suppress cells that

provide an immune response within an environment that

contains noisy and potentially conflicting data is why

dendritic cells are viewed as a source for decision making

algorithms.

2.2 The dendritic cell algorithm

In this section we present the DCA. The aim is to provide

an engineering-centred model of the algorithm and to

remove the biological terms from its presentation where

possible. For a full description of the original algorithm

please refer to [7].

The DCA accepts four streams of data as input, three

time-varying signals and an application-specific list of

symbols. The time-varying signals are sourced from

application-specific heuristics and are termed ‘‘PAMP’’,

‘‘Danger’’ and ‘‘Safe’’.

• The PAMP heuristic provides a signal which increases

proportionally to the presence of data with a strong

correlation to a positive or ‘anomalous’ situation.

• The Danger heuristic provides a signal which increases

proportionally to the presence of data with a weaker

correlation to a positive or ‘anomalous’ situation. A

weaker correlation typically means that all ‘anomalous’
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or positive situations cause danger signals, but it is

possible for some ‘normal’ or negative situations to

also cause the same effect.

• The Safe heuristic provides a signal which increases

proportionally to the presence of data with a strong

correlation to a negative or ‘normal’ situation.

• The list of application-specific enumerations, termed

‘‘antigen’’, acts as a cyclic buffer, storing the symbols

which describe the current environment for the

algorithm.

An artificial DC uses these input signals to produce three

internal signals, termed ‘CSM’, ‘IL-10’ and ‘IL-12’ after

their biological counterparts. Each of these signals is the

summation over time of a weighted sum of the input

signals (see Fig. 1). The weights used are typically the

same weights suggested in [7] and are listed in Table 1.

CSM accumulates throughout the cell’s lifetime and

rises proportionally to the cell’s exposure to any input

signals. PAMP and Safe signals typically have a greater

impact on the accumulation of CSM than Danger. IL-10 is a

cumulative value that rises proportionally to the cell’s

exposure to the Safe signal. IL-12 is a cumulative value

that rises proportionally to the cell’s exposure to PAMP

and Danger, but can be decreased by exposing the cell to

Safe signals. Each time a cell polls the environment to

update its internal variables it also removes ‘antigen’ from

the input buffer and stores these symbols locally.

At the end of each iteration of the algorithm the accu-

mulated CSM value of each cell is compared to its

migration threshold. For each cell, this threshold is set to a

random value using an application-specific probability

distribution. Typically this is a uniform distribution around

a specified mid-point Mi from 0.5Mi to 1.5Mi. If the

accumulation of CSM is greater than or equal to the

threshold, the cell is said to ‘migrate’. The migration pro-

cess triggers a decision to be made based on the relative

concentrations of IL-10 and IL-12. If the cell has accu-

mulated more IL-12 than IL-10, its decision is positive,

otherwise its decision is negative. When the decision is

reported, the cell also presents all of its locally-stored

antigen. All the sampled antigen for a cell are presented

with the decision value. However, multiple cells can

sample copies of the same antigen. The final decision for a

given antigen is calculated by averaging the decision val-

ues over all cells which sampled it. When a cell has

migrated, it is removed from the population and a new cell

is put in its place. The migration threshold of the new cell

is randomly assigned using the probability distribution. The

pseudocode of the algorithm is presented in Fig. 2.

This algorithm has demonstrated success with a variety

of computer security applications [1, 7, 8]. Other applica-

tion areas include fault detection within sensor networks

[12] and threat classification within the field of robotic

security [15]. All of these areas feature problem environ-

ments where there is a great deal of uncertainty associated

with the information relevant to making the decision. In

computer security, distinguishing which signals are

sourced by legitimate use and which signals are sourced by

malicious operations is an exceptionally difficult problem.

In addition, for a robotic security application, the source

data is often noisy and non-linear.

3 A simplified dendritic cell model

The first step in deriving a simplified model for the DCA is

to identify how to minimise the processing performed by

each unit. This was achieved by rearranging the block

diagram in Fig. 1. The first step was to move any com-

putation that does not require any persistent state from each

cell into the ‘tissue’ (signal pre-processing). This reduces

the overall algorithm processing as any computation that

can be performed instantaneously from the input signals

can be done once per iteration for the entire population,

rather than once per cell, per iteration.

Fig. 1 The block diagram of a dendritic cell. The variable z-1 is used

to denote a delay of one sampling iteration. The output from the

summation of the CSM signal is compared against the migration

threshold to determine the time of migration. At this time the relative

size of the other two summations determines the output signal of the

cell

Table 1 The weights used to relate the input heuristic signals to the

internal variables

PAMP Danger Safe

CSM 2 1 2

IL-10 0 0 3

IL-12 2 1 -3
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A comparison between two numbers can be expressed as

the same comparison between the difference of those two

numbers and zero. This can be applied to the comparison

between IL-10 and IL-12. Rather than storing IL-10 and IL-

12 separately, one can represent them both as the instan-

taneous difference between the two, termed K, i.e.:

K ¼ IL�12� IL�10 ð1Þ

The sign of the summation of K can now be examined to

determine the decision made by the cell. A positive value

yields a positive outcome, while a zero or a negative value

yields a negative outcome. Using the weights from

Table 1, IL-10 and IL-12 can be expressed as the

weighted sums by:

IL�10 ¼ PðtÞWpIL�10 þ DðtÞWDIL�10 þ SðtÞWSIL�10 ð2Þ

and:

IL�12 ¼ PðtÞWpIL�12 þ DðtÞWDIL�12 þ SðtÞWSIL�12 ð3Þ

where P(t) represents the output of the PAMP heuristic,

D(t) represents the output of the danger heuristic, S(t)

represents the output of the safe heuristic and WXY is the

weighting between input signal X and internal signal Y.

Substituting Eqs. 2 and 3 into Eq. 1 yields:

K ¼ PðtÞðWpIL�12 �WpIL�10Þ þ DðtÞðWdIL�12 �WdIL�10Þ
þ SðtÞðWsIL�12 �WsIL�10Þ

ð4Þ

It is common to normalise the signals P(t), D(t) and S(t) to

lie within 0 and 100%. Using the weights from Table 1 it is

possible to identify that K is bounded to lie within the range

-6 to + 3. The maximum value of K occurs when P(t) and

D(t) are at a maximum and S(t) is at a minimum. The

minimum value of K occurs when P(t) and D(t) are at a

minimum and S(t) is at a maximum.

Figure 3 is the new block diagram for a DC. In this new

model, CSM and K can be considered as inputs from the

signal preprocessing to the cell population. This reduces

the number of operations per cell, per iteration. For a

population of 100 cells this represents a reduction from 180

operations per iteration (3 multiplications and 3 additions

for three output signals for every cell) to 12 operations per

iteration (three multiplications and three additions for two

output signals for the entire population). These calculations

are based on arithmetic operations and do not take into

account the number of assignment operations.

3.1 Modelling the DCA as a filter

To analyse the flow of information through the DCA, we

model a single cell as a low-pass filter. The transfer

function of the cell should provide insight into the infor-

mation that is used to make a decision and the information

that is ignored. For the purposes of simplifying the model,

we shall consider the signal being filtered to be the

abstracted K(t). To model a cell as a filter, it was necessary

Fig. 2 The pseudocode for the DCA

Fig. 3 The optimised block diagram for a dendritic cell. Only

processing contained within the dotted line needs to be carried out on

a per cell basis. All other processing can be performed once per

population
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to perform signal reconstruction from the output of the

DCA. For the purposes of this model, this means that the

signals used to make the decision will be explored rather

than the decision itself. The standard technique for

assessing the output from the DC population is to calculate

the ‘mature context antigen value’ (MCAV) [7]. The

MCAV is a symbol-specific calculation that identifies all of

the cells that have voted for a given symbol within a fixed

time-frame. An average is then calculated for that symbol.

A value of one is attributed to cells with a positive vote and

zero is attributed to cells with a negative vote. Thres-

holding the MCAV provides a final decision for the

presented symbol. This technique has the advantages of

being both computationally inexpensive and able to pro-

vide a measure of confidence. The further the result is from

0.5, the more confident the result.

However, this technique does not allow us to make

detailed inferences about the input signal K. For this

analysis, a different technique will be used to allow a

reconstruction of the K signal and thus allow inferences to

be made about the information passed by the algorithm.

Alternatives to the MCAV are also available. In [1] an

alternative that takes into account the volume of antigen as

well as the output signal is used to make more informed

decisions about which antigen represents malicious code.

In this case, we shall pass the time the cell spent accu-

mulating signals (measured in sample steps) with the

accumulated K signal. By dividing the latter by the former

we can estimate the average value of K that the cell was

exposed to. This is given by:

K̂ ¼
PWL�1

n¼0 K½n�
WL

ð5Þ

where WL is the length of time the cell is accumulating

signal. This technique not only allows an estimate of the K

signal to be constructed but the magnitude of K̂ also pro-

vides information about how ‘one-sided’ a decision is.

Large magnitudes indicate that the input signals were

clearly indicating a decision, while low magnitudes indi-

cate that the input signals were split.

For the purposes of this initial investigation we will

simplify the model by assuming a constant CSM value of

C. This will form the basis of future work where it is hoped

to incorporate a probabilistic model of CSM into the model.

It could be argued that a constant CSM is an oversimpli-

fication, as K is likely to be coupled to the CSM signal.

However, from the cell’s point of view, it is only the sum

of the CSM values that is processed. So while the constant

CSM is a simplification, it is a valid representation of a

range of values, with an average value of C. It is also of

note that this model is intended to be instructive, given a

suitably chosen estimate of the CSM value for a given

application.

A constant CSM value allows the window length to be

calculated by:

WL ¼
Mi

C

� �

ð6Þ

where Mi is the migration threshold of cell i and C is the

constant value of CSM. The fraction is rounded up as the

cell can only migrate after an integer number of steps and

will only do so if the accumulated CSM is greater than Mi.

Equations 5 and 6 allow us to infer that the output of a

single cell will be an average value of K, taken over WL

steps and reported every WL steps.

3.2 Equivalence to other filters

The simplest technique for deriving the frequency response

of a DC is to identify equivalence with established filters

with known frequency responses. The description of the

cell’s output, given in Sect. 3.1, is similar to that of a

moving-average filter with a length of WL. Equation 7

describes the behaviour of a moving average filter in the

time domain (taken from [21]).

y½n� ¼
Pn

i¼ðn�ðL�1ÞÞ x½i�
L

ð7Þ

where n is the current time step, y is the output of the filter,

x is the input to the filter and L is the length of the filter.

Figure 4 compares the output of a moving average filter

with the reconstructed output from a DC. A moving aver-

age filter continuously reports the average of the previous L

values for each value of n. In the DCA the population

remains constant. As one cell migrates, it is reset, reas-

signed a new migration threshold using the relevant

probability density function and put back into the tissue.

This means that the output of a single DC, being repeatedly

returned to the tissue with the same migration threshold

will be a series of pulses, with a frequency of 1/WL, where

the magnitude of each pulse is the output of the moving

average filter at that point in time. It is of note that Fig. 4 is

for illustrative purposes only. The large distance between

the filtered line and the original is a result of the input data

being random and the window size being large relative to

the number of points. This type of system can be realised

using the transfer function expressed using the block dia-

gram in Fig. 5.

The frequency domain transfer function of a moving

average filter with length L is given by:

YðxÞ ¼
PL�1

g¼0 e�jgx

L
ð8Þ

For this equation to describe the averaging process within a

dendritic cell, we must substitute the window length L for

the number of samples that a dendritic cell samples over,
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WL. In [18] the transfer function of a filter X(x),

downsampled by the integer M is given by:

VðxÞ ¼
PM�1

g¼0 Xðxþ ð2gpÞÞ
M

ð9Þ

The downsampling factor of a DC is the number of input

samples required before the DC produces an output, the

window length WL.

Substituting Eq. 8 for X(x) in Eq. 9 allows us to cal-

culate the transfer function of a moving average filter,

downsampled by M. Further substituting WL for M and L

gives the transfer function of a moving average filter with

length WL being downsampled by WL. This is the proposed

model of a DC. The result is given in Eq. 10.

HðxÞ ¼
PWL�1

g¼0

PWL�1
b¼0 e�jbððxþð2gpÞÞÞ

W2
L

ð10Þ

This model will provide the basis for our investigation into

the frequency properties of the dendritic cell. This is an

important derivation as it is common in engineering

applications to precede a downsampling block with a

filter [11]. Such a filter-downsampling pair is called a

‘‘decimator’’. A filter precedes the downsampler because if

the original input signal contains any frequencies that

satisfy the inequality in Eq. 11, the downsampling process

will introduce harmful aliasing artefacts into the output.

f [
fs

2M
ð11Þ

where fs is the sampling frequency and M is the down-

sampling factor.

In engineering terms, the ‘cut-off frequency’ or ‘corner

frequency’, fc of a filter is an important property. The gain

for all frequencies greater than fc is considered to be neg-

ligible enough for these frequencies to be ignored. Any

frequency below fc is said to be ‘passed’. This frequency is

generally considered to be the point where the gain has

dropped to 1=
ffiffiffi
2
p

: For the moving average filter this can be

calculated using:

fc ¼
0:443fs

L
ð12Þ

taken from [21]. In the case of a DC, the downsampling

factor and the filter window length are both equal to WL.

Rearranging Eqs. 11 and 12 reveals that the DC removes

88.6% of the frequencies that could cause aliasing prob-

lems. This implies that certain signal frequencies will be

more prone to introducing incorrect classifications due to

aliasing errors in the signal processing equation. However,

the bulk of potentially dangerous signals are removed.

3.3 Verification of the model

In order to verify this model we can compare the predicted

frequency response with the actual frequency response of a

single DC with a constant CSM input and migration

threshold. To do this we must use a modified version of the

algorithm with an additional signal reconstruction stage at

the output of the cell. This was generated by making K

equal to various sine waves at different frequencies and

recording the magnitude of the resultant sine waves from

both the model and the dendritic cell. This is a standard

technique for calculating the frequency response of a sys-

tem, as any periodic signal can be represented as a

weighted sum of sinusoids. To fully verify the model this

must be performed for a variety of CSM values and

migration thresholds.

All of the experiments are performed using frequencies

between 0 and the Nyquist frequency of the system. The

Nyquist frequency, fn, of a system is half the system’s

sampling rate. This is a valid test as the frequency response

of a system from 0 to fn is exactly the same as the fre-

quency response for the system from any Xfn to (X + 1)fn
where X is an even number. For frequency responses in

regions Yfn to (Y + 1)fn where Y is an odd number, the

response is the mirror of the response from 0 to fn. Thus,

establishing that the model is accurate from 0 to the

Nyquist frequency establishes that the model is accurate for

any frequency. See pages 41–43 of [11] for a more detailed

explanation.

Fig. 4 The output from a DC for constant C and Mi. The x-axis is in

sample steps and the y-axis is arbitrary. The output from the cell is

represented as impulses occurring every three steps. The dark line is a

randomly generated input signal. The light line is a moving average of

that signal with a window size of 3

Fig. 5 The equivalent to a dendritic cell implemented as known

filters. The first box is a moving average filter with a window length

of WL and the second box is a downsampler which reduces the sample

rate of the input by a factor of WL
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Two sets of experiments were run. Firstly, nine runs of

the experiment were performed keeping the sampling rate

at 1 Hz, testing every migration threshold against every

CSM signal value listed in Table 2. Secondly a further

fifteen experiments were performed, keeping the CSM

signal at 10 and using every value of the migration

threshold with every sampling frequency in Table 3.

3.3.1 Results

In all cases the response followed a similar overall shape.

The gain has an initial drop from 1 to 0 and in the higher

frequencies, oscillations in the gain value can be observed.

These oscillations are known as ‘‘ripple’’. The total,

absolute error over the entire frequency range for the model

can be defined as the Euclidean distance between its pre-

dictions and the actual response from 0 to the Nyquist

frequency. In the worst case (Mi = 120, C = 30) the total,

absolute error was approximately 0.69 and is shown in

Fig. 6. This value represents that the model accurately

follows the general shape of the DC response. This is an

acceptable result.

It is clear from the plot that the error arises from cir-

cumstances where the actual DC gain transiently drops.

This is not a serious concern for this investigation as we are

merely interested in determining which frequency ranges

are passed and which frequency ranges are rejected by the

DCA. It is the general shape of the response that is

important. In future work the cause of these transient drops

will be investigated further.

Figure 7 shows the effects of changing the CSM value

for a constant value of Mi (60). As the CSM value is

increased the initial drop-off slope becomes slower. The

ripple in the cut-band becomes larger with a lower CSM.

Both of these aspects are generally considered to be

negative features in a filter. A gradual cut-off slope means

that more of the unwanted frequencies are close enough to

the cut-off frequency to have an effect on the output signal.

A high magnitude of ripple means that some higher fre-

quencies have a disproportionately high effect on the

output signal. This reinforces the idea that migration

thresholds which are low relative to the CSM signal can

lead to erroneous and noisy data being presented as part of

Table 2 The parameter values used for experiments 1–9

Migration thresholds (Mi) CSM signal values (C) Calculated WL

30 10 3

60 10 6

120 10 12

30 20 2

60 20 3

120 20 6

30 30 1

60 30 2

120 30 4

Table 3 The parameter values used for experiments 10–24

Migration thresholds (Mi) Sampling frequencies(fs)

30 (WL = 3) 0.5

60 (WL = 6) 1

120 (WL = 12) 2

4

10

For each migration threshold, the calculated WL is also listed

Fig. 6 The worst performing model prediction (Mi = 120 and CSM =

30). The grey, dot-dashed line represents the model’s prediction and

the thick, solid line represents the actual frequency response of the

algorithm under those conditions

Fig. 7 The effects of varying the CSM value. For these experiments

the value of the migration threshold is set to 60 and the CSM value is

10, (black line) 20, (light grey line) and 30, (dark grey line). In each

case the dot-dashed line is the model prediction and the thick, solid
line is the actual response
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the output. High values of the migration threshold relative

to CSM cause a fast drop-off in the cut band, but this means

that if the useful information is in the cut band, its infor-

mation will be lost. In all of these cases the model predicts

the performance of the algorithm excellently.

Increasing the migration threshold predictably had the

inverse effect to increasing the CSM value. This supports

previously seen experimental behaviour of the algorithm.

Again the model’s predictions were accurate across the

entire range. These results can be seen in Fig. 8.

For the next set of experiments the sampling frequency

of the algorithm was altered. For all experiments the effect

was to simply scale the same shaped frequency response

between 0 and the new Nyquist frequency. Three of the

results can be seen in Fig. 9. In all cases the error rate was

identical for all migration threshold/CSM pairs for all

sampling frequencies. This is intuitive, given a stationary

CSM, a larger sampling rate will proportionally increase

the rate at which the cells migrate.

3.3.2 Analysis of results

For all parameters, the predictions from the model were

reasonably accurate. The significant effect of changing the

ratio between the migration threshold and the CSM signal

highlights the importance of correctly parameterising the

algorithm. This further emphasises the need for a more

informed way of selecting the migration threshold. Fig-

ures 7, 8 and 9 clearly demonstrate that the correct

selection of the migration threshold will significantly alter

which information is passed and which information is cut.

The shapes of frequency responses are all characteristic of

low-pass filters. This suggests that when used with appli-

cations where the useful information has a higher

frequency than the noise, that the DCA would fail. A

possible solution to this could be to use the input heuristics

to cut any irrelevant low frequency information.

The scaling effects of varying the sampling frequency

had no impact on the accuracy of the model. The scaling

effect is an important result as it demonstrates that

selecting the correct sampling frequency for a given

application is crucial. In some microprocessor-based sam-

pling systems the sampling rate can vary in times of high

processor loading. Such systems could potentially be

incompatible with an algorithm whose performance has a

high sensitivity to the sampling frequency. However, it is

likely that this is rectified by the population-based nature of

the algorithm, so long as the spectrum of migration

thresholds is chosen appropriately.

The construction of an accurate frequency domain

model of a DC has an impact on using the DCA in the

future. With representative samples of the CSM and K

signals, for a given application, it may now be possible to

tune the probability density function for the migration

thresholds of the population to provide an optimum

response for the application. By selecting a migration

threshold that rejects data that could be potentially mis-

leading to the decision making process our hypothesis is

that the error rate of the algorithm could be significantly

reduced. This of course assumes that the irrelevant infor-

mation has a higher frequency than the useful information.

This assumption is true for many complex problems. In

robotics the misleading information comes from noisy

sensors injecting high-frequency noise into the input data.

The current model lacks the capacity to be parameterised

using probabilistic methods, though such a development is

intended as part of the future work. As a result of the

model’s current state it is not possible to tune either the

Fig. 8 The effects of varying the migration threshold. For these

experiments the value of the CSM is held at 20 and the migration

threshold is 30 (black), 60 (light grey) and 120 (dark grey). In each

case the dot-dashed line is the model prediction and the thick-solid
line is the actual response

Fig. 9 The effects of varying the sampling frequency. The CSM was

held at 10, the migration threshold was held at 60 and the sampling

frequency was changed from 0.5 Hz (black), 2 Hz (solid grey) and

5 Hz (dashed grey). The x-axis is scaled to the Nyquist frequency of a

system with a sampling rate of 5 Hz (2.5 Hz)
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shape nor the width of the probability density function.

However, it may be possible to use the model to provide an

insight into an appropriate mid point for the standard uni-

form distribution used in previous applications.

4 Tuning the DCA using the frequency domain model

It is hypothesised that the model proposed in Sect. 3.1 can

be used to identify an appropriate choice of Mi, the mid-

point for the migration threshold distribution, for the ori-

ginal DCA algorithm. The tuning methodology that we

have devised can be broken down into six distinct stages.

Step One Take an indicative sample of the typical values

of K and CSM that the system will encounter

for the application.

Step Two Identify the median period between ‘‘interest-

ing events’’. The definition of ‘‘interesting’’

will vary from application to application.

However, if the application-specific heuristics

generated as part of the algorithm’s imple-

mentation process are appropriately selected,

these events will correlate with peaks in the

CSM and K values. An interesting event should

cause a positive peak in CSM and either a

positive or a negative peak in K. Using the

median period is likely to remove outliers.

Step Three Identify the length of the interesting event

with the lowest CSM value associated with

that event. Events of interest will generate a

spike in the CSM value of the system. The

smallest spike is indicative of the most

difficult event to extract from the input data.

Record the median value of the spike and its

duration.

Step Four Calculate the target corner frequency. The

target corner frequency is the inverse of the

period calculated in step two. As the filtering

process has a very gradual cut-off (see

Sect. 3.3.1) the fact that this is an approxi-

mation should not prevent any useful

information from passing through to the

decision making process.

Step Five Calculate the constant CSM value for the

model. The median value of the smallest spike

divided by the duration of that spike provides

a good approximation of the value of C (C is

the constant CSM value to use in the model).

Note that this value is not intended to

represent the entire range of the CSM signal

for the application, but instead represents

those events that contain useful information,

but would be most vulnerable to over-aggres-

sive filtering. Dividing the magnitude by the

length of the spike ensures that the summation

of C over the length of this spike alone will

cause a cell migration. This should become

the smallest artefact within the signal to be

used in the decision making process.

Step Six The transfer function is used to search the space

of available frequency responses to find one

with a corner frequency which is approximately

equal to the target corner frequency. A search is

used rather than a calculation as it is possible

that a range of possible solutions could exist for

the same search parameters. It is also possible

that no solution provides the target corner

frequency and that a value of Mi needs to be

selected that approximates the target. For the

purposes of this investigation, all integer values

of Mi were tried in the range 1–240. The upper

limit of this search will obviously be effected by

the application.

Figure 10 is a graphical representation of the tuning

methodology outlined. In the following section we apply

this methodology to a case study based on a previous

Fig. 10 A flowchart representation of the tuning methodology.

Numbers in italics relate flowchart stages to methodology steps
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application of the DCA. The tuned migration threshold is

evaluated to see how it performs when compared to the

arbitrarily picked migration thresholds.

5 Revisiting the robotic classification problem

In [15] a prototype security system was proposed. The

original DCA was used to assess sensor readings to decide

if the current situation was of interest to a human operator

or not. This style of security system, where the robot(s)

act(s) as intelligent, mobile sensor-platforms, capable of

drawing the attention of a security professional to an

‘anomalous’ or dangerous situation, has been explored

within the field of robotics before using a variety of dif-

ferent decision making techniques [3, 4, 16, 17]. The robot

used was a Pioneer manufactured by MobileRobots Inc.

(http://www.mobilerobots.com/). It was decided to revisit

this application as it represents a problem that the original

DCA has been tested on before, with a degree of success.

The use of unfiltered sensor data as the basis for the input

heuristics guarantees a noisy, uncertain decision making

environment.

In [15] the robot is placed in an environment as

described by Fig. 11. It is of note that space restrictions

prevented a pen of the same size as [15] being used. The

inputs to the DCA are fed directly from normalised sensor

readings. The danger signal is connected to the sonar array,

the safe signal is connected to the laser range finder, and

the PAMP signal is connected to the output of an image

processing algorithm acting on the camera. The ranged

sensors are normalised using a look-up table. This relates

signal strength to the measured distance away from the

closest object within the sensor scanning range. Table 4

shows the look-up table values. The signal values for dis-

tances lying between the table values are calculated using

linear interpolation.

The image processing unit uses histogram back-projec-

tion [19] to identify clusters of pixels within each captured

frame that have similar colour characteristics to a target

object. The algorithm is trained using a single image of a

pink cylinder placed within the robot’s environment. The

output from the algorithm is the volume, in pixels, of the

largest cluster with similar characteristics to the training

image. This is normalised by the PAMP heuristic into a

percentage of 6798.5 pixels. This value is the half-way

point between the median output and the maximum output

of the algorithm after a seven minute random walk around

the robot’s environment.

The antigen in this application is a representation of

the robot’s position and orientation. The pen is divided

into a grid with 30 cm 9 30 cm spacing. Each grid

square is further subdivided into twelve segments, repre-

senting direction. Each segment is assigned an integer

identifier. These identifiers are used as antigen. It was

decided to add an antigen multiplier to this system. This

ensures that multiple copies sample the same antigen. For

this application a dynamic multiplier is used. This means

that the number of additional antigen copies made is not

the same for all antigen. Equation 13 (taken from [15]) is

the formula used to calculate the number of antigen

copies to make. This equation provides a number between

2 and 102. It is composed of a variable range from 0 to

100 with an offset of 2. The offset ensures that 2 copies

of every antigen are added. The variable range is inver-

sely proportional to the speed of the robot. Locations

which the robot passes through quickly, necessarily con-

tribute less sensor data. This formula ensures that such

locations also contribute less antigen. Translational

velocity contributes more to the formula as it was

observed that the rotational speed of the robot had a

smaller impact on the robot’s movement through the

antigen enumerations.

Wðv; _hÞ ¼ 75 1� v

vmax

�
�
�
�

�
�
�
�

� �

þ 25 1�
_h

_hmax

�
�
�
�
�

�
�
�
�
�

 !

þ 2 ð13Þ

In Eq. 13 v is the velocity of the robot, _h is the rotational

velocity of the robot and W is the amount of antigen added

to the environment.

Fig. 11 The robot pen layout for the experiments (not to scale). The

shorter cylinder is the cylinder with a diameter of 210 mm. An

updated version of the diagram taken from [15]

Table 4 The look-up table used to normalise ranged sensor readings

Distance (mm) Signal strength

0 100

300 90

600 50

900 20

1,200 0
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By using the laser as the inhibitory safe signal, it was

theorised that the shorter cylinder, which is too small to

reflect the laser from the sensor, should be recognised as an

anomalous object. In contrast the taller cylinder and the

walls of the pen would be ignored.

As a base-line for the experiment, a theoretically ‘‘per-

fect’’ response was calculated using a Java program to

identify all of the enumerated segments which have line of

sight to the anomalous object.

For every experiment a population of 100 cells was

used. In keeping with the original DCA, the migration

thresholds were generated using a uniform distribution. For

the initial experiments a range of Mi ± (0.5Mi) where Mi is

the specified mid point for the migration thresholds. To

gain a better understanding of the effectiveness of the

tuning algorithm the experiments were repeated using a

small distribution of Mi ± (0.1Mi).

The original results from the experiment, whilst

promising, suffered from a continual degradation of per-

formance over time. This was originally attributed to

errors in the robot’s tracking algorithm, which did not

take into account wheel slippage. Over time the robot’s

concept of its own location within the pen became

increasingly incorrect. As the experiment was validated

using a location-based assessment, these errors seriously

harmed the perceived false-negative and false-positive

rates. In the experiments presented in this paper this

limitation was overcome by providing the robot with a

map identifying the shape of the outer walls of the pen.

With this information a Monte-Carlo localisation algo-

rithm corrected the odometry error. This generated higher

quality results, with a more consistent performance over

time.

5.1 Tuning the algorithm

A sample of the CSM and K values for a typical run of the

experiment were taken. The sample rate used was 4 Hz.

Figure 12 shows the first 400 samples covering a period of

10 s.

The estimated peaks from the sample in Fig. 12 are

given in Table 5. The median distance of 30.5 samples

gives a target corner frequency of approximately 0.131 Hz.

The ‘interesting’ event with the lowest CSM signal was

identified as the small peak in CSM between samples 297

and 302. The positive K signal associated with this period

implies that it was a transient inspection of the anomalous

cylinder. The median CSM value between these points is

approximately 22.9. This equates to a constant CSM value

of approximately 4.5.

After searching the parameterised space of frequency

responses a migration threshold of 54 was identified as an

optimal result.

5.2 Results

Tables 6, 7 and 8 show the results from the experiments on

the robot using a distribution of ±0.5Mi, ±0.1Mi and ±0.

The error rates presented are the average percentage of

incorrect readings over 10 blocks of 12 s.

In Table 6, selecting the best performing value of Mi is a

non-trivial task. The value of 54 has by far the lowest false

positive rate and the lowest standard deviation. The false

negative rate for an Mi of 15 is the lowest though this

appears to be at the cost of the false positive rate. The false

negative rates for 30, 54 and 60 are all comparable, though

60 has both the lowest value and the lowest standard

deviation. The poor performance of the lowest and highest

values of Mi are unsurprising. A low value of Mi will be

prone to error as noise in the input signals will cause

premature migration. Making decisions based on such little

data is obviously more prone to noise. Conversely the large

values will collect large numbers of antigen and apply the

same decision to all. This is a particularly disastrous

Fig. 12 A plot of the magnitude of K and CSM against time (in

sample steps). A 10 s sample from the robot application. The dashed
line is the K signal and the solid line is the CSM value. The vertical,
dot-dashed lines highlight the region of interest

Table 5 The sample numbers of the peaks identified within Fig. 12

Sample number Distance from last peak

42 NA

62 20

114 52

133 19

178 45

205 27

230 25

264 34

299 35

321 22

356 35

380 24
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strategy for periods of low CSM where excessively large

numbers of antigen could potentially be collected.

In Table 7 the best performing value of Mi is clearly 60,

with the second best false positive rate and the best false

negative rate. The false positive rates of all the values

improve with the smaller distributions, with the exception

of 54, the tuned value. The performance of an Mi of 54

degrades heavily with a significantly worse false positive

rate and a much worse standard deviation. The only false

negative rate that was significantly altered by changing the

distribution width was that of Mi = 240.

When the migration threshold was kept constant across

the entire population Mi = 60 still outperforms the other

migration threshold values. The performance of Mi = 60

with a large deviation is comparable with the performance

of Mi = 60 with no deviation, whilst the mid-range

performance is much better. For the experiments with

constant Mi, the tuned value of 54 is one of the better

performing values.

5.3 Conclusions

The initial experiments suggested that the tuned value was

performing well. However, its severe degradation with a

smaller distribution suggests that the tuning was ineffective

and that the performance was a side effect of the large

range touching on a better selection of migration thresh-

olds. However, when the range was reduced to zero the

performance of the tuned value, in comparison to the other

values, is amongst the best. It was still out performed by

one of the arbitrarily pick values.

The large changes in performance with different distri-

butions suggest that the key to improving the algorithm’s

performance is not simply to identify a suitable mid point,

but to also shape the distribution appropriately. It is pos-

sible that a mapping based on the distribution of CSM

values or input frequencies could be used to calculate the

appropriate shape. This is further supported by the degra-

dation of the results for constant values of Mi. As the tuned

value was calculated using data from the region of interest

with the lowest CSM it is possible that this value is not a

suitable midrange value, but in fact the lower bound of a

suitable distribution.

6 Discussion

The DCA has been optimised in this paper to improve the

speed of execution for future implementations of the

algorithm. This optimised model has been evaluated

mathematically to derive the transfer function for a single

DC under the condition that the CSM value is held con-

stant. The accuracy of this model was verified

experimentally and found to be an excellent indicator for

the performance of a DC with a constant CSM input. Most

importantly, it has been demonstrated that there is a clear

relationship between the frequency of the information

presented by the input heuristics and the amount of influ-

ence that information has on the final decision made by the

cells. Insight has been gained into the relationship between

the CSM signal, the migration threshold, and the sampling

frequency of the DCA. A low migration threshold has been

shown to indicate a more gradual reduction in gain as the

frequency is increased. This increase in the volume of

information being used in the decision making process is

intuitive. In contrast, a high migration threshold means that

higher frequencies are cut from the decision making pro-

cess. A tuning methodology, based on the transfer function

equation, was put forward and investigated using a robotic

Table 6 The results from the experiments on the robot using a

migration threshold distribution of Mi ± (0.5Mi)

Mi Average false

positive (%)

False positive

deviation

Average false

negative (%)

False negative

deviation

15 13.70 0.13 5.96 0.07

30 12.88 0.10 9.16 0.10

54 4.77 0.09 10.09 0.12

60 9.87 0.16 8.84 0.09

120 13.47 0.16 10.32 0.15

240 9.78 0.17 17.35 0.18

Table 7 The results from the experiments on the robot using a

migration threshold distribution of Mi ± (0.1Mi)

Mi Average false

positive (%)

False positive

deviation

Average false

negative (%)

False negative

deviation

15 7.05 0.13 7.84 0.09

30 9.11 0.10 7.41 0.09

54 15.01 0.19 7.71 0.09

60 5.00 0.13 6.83 0.10

120 11.70 0.10 12.31 0.14

240 2.50 0.08 9.69 0.12

Table 8 The results from the experiments on the robot using a

migration threshold distribution of Mi ± 0

Mi Average false

positive (%)

False positive

deviation

Average false

negative (%)

False negative

deviation

15 16.65 0.13 6.15 0.08

30 16.82 0.18 9.64 0.12

54 11.10 0.12 9.62 0.13

60 10.81 0.12 9.47 0.12

120 10.28 0.14 12.00 0.14

240 9.17 0.14 9.16 0.14
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application of the DCA. Whilst the tuning methodology

was found to yield mixed results, this does not detract from

the validity of the model which has been demonstrated to

be accurate. Instead the results indicate that more work is

required to identify a model capable of generating a good

distribution of migration thresholds for a given application.

The derivation process demonstrated that a useful

measure of the output of a DC is K̂: This estimate of the

overall signal that the cell was exposed to during its sam-

pling phase provides an indication of how certain the cell is

of the final decision. Cells with low magnitudes of K̂ have

been exposed to low signal values or approximately equal

amounts of positive and negative signal. This could

potentially be incorporated into future versions of the DCA

to provide an alternative to the MCAV that is more resilient

when cells are exposed to multiple, conflicting events

during their sampling phase. A negative feature of this

technique is that it requires some measure of ‘age’ in order

to calculate the estimate, a measurement which is not found

in the biological model.

In future work the transient drops in gain for certain

frequencies in the normal DCA will be investigated. These

are the main source of error between the model the actual

algorithm. A more advanced model that can take into

account the varying nature of the CSM would also poten-

tially yield more insight into the workings of the DCA.
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