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Abstract. We have recently introduced a hyper-heuristic genetic algorithm 
(hyper-GA) with an adaptive length chromosome which aims to evolve an 
ordering of low-level heuristics so as to find good quality solutions to given 
problems. The guided mutation and crossover hyper-GA, the focus of this 
paper, extends that work. The aim of a guided hyper-GA is to make the 
dynamic removal and insertion of heuristics more efficient, and evolve 
sequences of heuristics in order to produce promising solutions more 
effectively. We apply the algorithm to a geographically distributed training 
staff and course scheduling problem to compare the computational result 
with the application of other hyper-GAs. In order to show the robustness of 
hyper-GAs, we apply our methods to a student project presentation 
scheduling problem in a UK university and compare results with the 
application of another hyper-heuristic method. 

1. Introduction 

Since their introduction by Bremermann [2] and Fraser [12] and the seminal work 
of Holland [17] genetic algorithms have been used to solve a whole range of 
problems including the travelling salesman problem [25], bin packing problems 
[11] and scheduling problems [24]. 
    Personnel scheduling problems have also successfully been solved using GAs. 
Aickelin and Dowsland [1] used a GA for a nurse rostering problem in a large UK 
hospital. The result of their approach was a fast, robust implementation and the 
approach proved flexible and able to solve the large rostering problem in the 
hospital with a range of objectives and constraints. Easton and Mansour [10] also 
used a GA for deterministic and stochastic labour scheduling problems. Their 
approach is a distributed genetic algorithm, which runs in parallel, on a network of 
workstations. Their procedure uses a combination of feasibility and penalty 
methods to help exploit favourable adaptations in infeasible offspring so as to 
maintain the search near the feasible region. They applied this approach to three 
different sets of published test suites of labour scheduling problem. They compared 
the results to those problems solved by other meta-heuristics and conventional 
heuristics and found, on average, the genetic algorithm outperformed other 
methods. 
    In addition to GAs with a direct chromosome representation, indirect genetic 
algorithms have been studied widely. For example, Terashima-Marin, Ross and 
Valenzuela-Rendon [23] designed an indirect GA to solve an examination 
timetabling problem. They encode strategies for the problem as parameters into a 
10-position array, thus the chromosome represents how to construct a timetable 
rather than representing the timetable itself. The use of an indirect chromosome 
representation avoids the limitation of a direct chromosome, which is known as the 
coordination failure between different parts of a solution when solving examination 



timetabling problem. Corne and Ogden [4] compared their indirect and direct GA 
for a Methodist preaching timetabling problem and found the former was more 
efficient.  
    Although genetic algorithms have been shown to be effective in solving a range 
of problems, they are often time intensive and require domain knowledge. 
Normally the chromosome of a genetic algorithm is either the solution of the target 
problem or a structure of the solution. This means problem specific knowledge is 
essential in the design of chromosome. The heavy dependence of domain 
knowledge makes it difficult to reuse on different problems. In order address this 
problem, and have a reusable, robust and fast-to-implement approach, applicable to 
a wide range of problems and instances, we have designed a genetic algorithm 
using an indirect chromosome representation based on evolving a sequence of 
heuristics which are applied to the problem. In this case the problem is a personnel 
scheduling problem that can be regarded as the allocation of staff to timeslots and 
possibly locations [26]. The motivation behind this approach is a hyper-heuristic, 
which we introduce in the next section. 

2. Hyper-Heuristics 

Hyper-heuristics [3] are an approach that operate at a higher level of abstraction 
than a meta-heuristic. It is described in [6] thus: “The hyper-heuristics manage the 
choice of which lower-level heuristic method should be applied at any given time, 
depending upon the characteristics of the heuristics and the region of the solution 
space currently under exploration.” Their hyper-heuristic consists of a set of low 
level heuristics and a high level heuristic selector. They defined a general 
framework for the hyper-heuristic which selects which low-level heuristics to apply 
at each decision point. A state is maintained within the hyper-heuristic which 
records the amount of CPU time taken by each low-level heuristic and the change 
in the evaluation function. A hyper-heuristic only knows whether the objective 
function is to be maximised or minimised and has no information as to what the 
objective function represents. There is no domain knowledge in the hyper-heuristic, 
and each low level heuristic communicates with the hyper-heuristic using a 
common, problem independent, interface architecture [6]. In addition to the general 
framework, they also have a choice function which decides which heuristic to call 
next. This is calculated based on information derived from recently called low-level 
heuristics. The three levels of data they maintain are the recent improvement of 
each individual heuristic, the recent improvement of each pair of heuristics, and the 
CPU time used by each heuristic. Their hyper-heuristic approach was applied to a 
sales summit scheduling problem  [7], a project presentation scheduling problem 
[8], and a nurse scheduling problem [9], and they found that it solved these 
problems effectively. The choice function was further improved in [8]. 
    A hyper-heuristic method was also developed by Hart, Ross and Nelson [16]. 
They developed an evolving heuristically driven schedule builder for a real-life 
chicken catching and transportation problem. The problem was divided into two 
sub-problems and each was solved using a separate genetic algorithm. The two 
genetic algorithms evolved a strategy for producing schedules, rather than a 
schedule itself. All the information collected from the company is put into a set of 
rules, which were combined into a schedule builder by exploiting the searching 
capabilities of the genetic algorithm. A sequence of heuristics was evolved to 



dictate which heuristic to use to place a task into the schedule. The approach 
successfully solved a highly constrained real-life scheduling problem of a Scottish 
company that must produce daily schedules for the catching and transportation of a 
huge number of live chickens. They also compared the performance of the 
approach to other methods such as hill-climbing and simulated annealing and found 
their approach to be superior. 
    Randall and Abramson [22] designed a general purpose meta-heuristic based 
solver for combinatorial optimisation problems, where they used linked list 
modelling to represent the problem. The problem was specified in a textual format 
and solved directly using meta-heuristic search engines. The solver worked 
efficiently and returned good quality results when being applied to several 
traditional combinatorial optimisation problems. Nareyek [21] proposed an 
approach that was able to learn how to select promising heuristics during the search 
process. The learning was based on weight adaptation. The configuration of 
heuristics was constantly updated during the search according to the performance 
of each heuristic under different phases of the search. The results showed that the 
adaptive approach could improve upon static strategies when applied to the same 
problems. Gratch and Chien [13] developed an adaptive problem solving system to 
select heuristic methods from a space of heuristics after a period of adaptation and 
applied it successfully to a network scheduling problem. 
    In our previous work we have designed an indirect genetic algorithm hyper-
heuristic approach, hyper-GA, which may be regarded as a hyper-heuristic that uses 
a GA to select low-level heuristics [5] and further improved this approach to an 
adaptive length chromosome hyper-GA (ALChyper-GA), which is more parameter-
adaptive [14] than our previous work. We investigated the behaviour of the 
algorithms for a trainer scheduling problem and believe that given an appropriate 
set of low-level heuristics and an evaluation function the hyper-GA approach may 
be applied to a wide range of scheduling and optimisation problems.  
    In this paper, we investigate a guided mutation and crossover hyper-GA. The 
motivation for this work is to find good heuristic combinations that we can use in a 
crossover operator in order to guide the search. We also want to identify badly 
performing sequences of heuristics and use mutation to remove them from a 
chromosome. In previous work [14] we explicitly controlled the length of the 
chromosome. We hope this new approach will maintain the chromosome length to 
reasonable limits by a method of self-adaptation. This is similar to the idea of  
“select programming components based on the evolution of the program” of 
genetic programming [19]. 

3. Geographically Distributed Course Scheduling Problem 

The problem is to create a timetable of geographically distributed courses over a 
period of several weeks using geographically distributed trainers. We wish to 
maximise the total priority of courses which are delivered in the period, while 
minimising the amount of travel for each trainer. To schedule the events, we have 
25 staff, 10 training centres (or locations) and 60 timeslots. Each event is to be 
delivered by one member of staff from the limited number who are competent to 
deliver that event. Each staff member can only work up to 60% of his/her working 
time (i.e. 36 timeslots). Each event is to be scheduled at one location from a limited 
list of possible locations. Each location, however, can only be used by a limited 



number of events in each timeslot because of room availability at each site. The 
start time of each event must occur within a given time window. The duration of 
each event varies from 1 to 5 time slots. Each course has a numerical priority value. 
Each member of staff has a home location and a penalty is associated with a staff 
member who must travel to an event. The objective function is to maximise total 
priority for scheduled courses minus total travel penalty for trainers. A 
mathematical model for the problem is shown in figure 1, where we have 
E: the set of events; S: the set of staff members; T: the set of timeslots; 
L: the set of locations; duri:  the duration of event ei ; 

dsl:  the distance penalty for staff member s  delivering a course at  location l;  
wi: the priority of event ei;  cl: the number of room at  location l 
 
 
     
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Variable yistl = 1 when event ei is delivered by staff s at location l commencing at 
timeslot t, or 0 otherwise. Variable xistl = 1 when event ei is delivered by staff s at 
location l, or 0 otherwise. Constraint (1) ensures that one event can happen at most 
once. Constraint (2) ensures that each staff member is only required to deliver at 
most one event in each timeslot. Constraint (3) ensures that each location has 
sufficient room capacity for the event scheduled. Constraints (4), (5), and (6) link 
the xistl and yistl variables, which ensures that if one event is delivered, its duration 
must be consecutive.  

4. Low-Level Heuristics  

A hyper-heuristic consists of a set of low-level heuristics and a high level selector. 
We have developed fourteen problem-specific low-level heuristics, which accepted 
a current solution, and modify it in an attempt to return an improved solution. At 
each generation the hyper-GA could call the set of low-level heuristics and apply 
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Figure 1. Mathematical model for the geographically 
distributed trainer scheduling problem 



them in any sequence. These low-level heuristics may be considered in four groups: 
(1) add, (2) add-swap, (3) add-remove, and (4) remove. The add heuristics 
comprise five methods which can be sub-divided into two groups. Add-first, add-
random and add-best try to add unscheduled events by descending priority, and 
add-first-improvement and add-best-improvement consider the unscheduled list in a 
random order. There are four add-swap heuristics: add-swap-first and add-swap-
randomly try to schedule one event but if there is a conflicting event when 
considering a particular timeslot, staff member and location, we will consider all 
swaps between that conflicting event and other scheduled events to see if the 
conflict can be resolved; add-swap-first-improvement and add-swap-best-
improvement do the same but consider the unscheduled list in a random order. The 
mechanism of the third group (add-remove-first, add-remove-random, and add-
remove-worst) is: select one event from the unscheduled event list by descending 
priority, if the event is in conflict with event(s) in the timetable (none of the event’s 
possible staff members are able to work in the possible timeslots), and the event’s 
fitness is higher than the fitness(es) of the conflicting event(s), delete the 
conflicting event(s) and add the unscheduled event. The last group has two 
heuristics: remove-first and remove-random. These two heuristics try to remove 
events from the schedule. They are likely to return a worse solution but will 
hopefully lead to an improvement later on, after other heuristics have been applied.     
We list all our 14 low-level problem specific heuristics as follows: 
0. Add-first  1. Add-random  
2. Add-best 3. Add-swap-first 
4. Add-swap-randomly 5. Add-remove-first 
6. Add-remove-random 7. Add-remove-worst 
8. Add-first-improvement 9. Add-best-improvement 
10. Add-swap-first-improvement 11. Add-swap-best- improvement 
12. Remove-first 13. Remove-random 
    The integer in front of each heuristic is the integer used in the chromosome.        

5. Hyper-GA and Guided Operators 
5.1 Hyper-GA 

Hyper-GA [5] and the adaptive length chromosome hyper-GA (ALChyper-GA) 
[14] are hyper-heuristics that use a GA to select low-level heuristics to produce 
high quality solutions for the given problem. The GA is an indirect GA with the 
representation being a sequence of integers each of which represents a single low-
level heuristic. Each individual in a GA population gives a sequence of heuristic 
choices which tell us which low-level heuristics to apply and in which order to 
apply them. Figure 2 is an example of hyper-GA. Integer 2 represents low-level 
heuristic add-best, 3 refers add-swap-first and so on. 
 

2 3 1 5 0 7 9 8 11 1 10 9 12 13 

 

5.2 Adaptive Length Chromosome Hyper-GA (ALCHyper-GA) 
The adaptive length chromosome hyper-GA assumes that a fixed length 
chromosome is not always the optimal length and aims to evolve good 
combinations of low-level heuristics without explicit consideration of the 
chromosome length. Each heuristic may work efficiently at one moment but work 

Figure 2. Example of hyper-GA 



poorly during other periods. A heuristic such as add-random helps to add a few 
courses to the schedule during the initial generations, but it becomes less helpful 
when the schedule is “full”. Thus, the behaviour of each heuristic can be different 
in different chromosomes at different times of the evolutionary process. Because 
the behaviour of a given low-level heuristic, or a combination of low-level 
heuristics, within a chromosome, could be very promising, while another low-level 
heuristic or combination could perform poorly, we use removal of poor-performing 
heuristics from a chromosome or the injection of efficient heuristics from one 
chromosome to another in order to try and improve the quality of solutions. As a 
result, the length of the chromosomes in each generation changes as genes are 
inserted or removed. A new crossover operator and two new mutation operators 
were designed for this algorithm. The best-best crossover, will select the best group 
of genes (the call of low-level heuristics by these genes that gives the most 
improvement of the objective function) in either selected chromosome, and 
exchanges them. One new mutation operator, removing-worst mutation, will 
remove the worst group of genes (the call of low-level heuristics by these genes 
which gives the largest decrease in the objective function, or which is the longest 
group giving no improvement to the objective function) in the selected 
chromosome. Another mutation, inserting-good mutation, inserts the best group of 
genes from a randomly selected chromosome to a random point of the desired 
chromosome.  
    The reason why we combine good groups of genes and remove bad genes is that 
we hope the work of particular heuristic or combination of heuristics can be helpful 
with in other chromosome. See [14] for detailed description of these operators. 

5.3 Guided Operators 
The adaptive length chromosome, hyper-GA, produced promising results with our 
test data sets. However, we hypotheses the algorithm should work more efficiently 
if removal and injection of genes can be better guided. The ALChyper-GA has the 
ability to identify good groups and poor groups of genes in each chromosome, but 
it still needs to identify whether the chromosome needs new genes to enhance the 
search or redundant genes need to be removed. For example, the ALChyper-GA 
should have the ability to know that new genes need to be added to very short 
chromosomes and some genes need to be removed from a chromosome when it 
becomes too long (and thus increases the computation time). In order to add this 
ability to ALChyper-GA, we wanted to design a strategy to guide the algorithm to 
adapt the length of chromosome more effectively and efficiently. We wanted the 
strategy to be able to identify when it is appropriate to remove genes and when it 
should inject genes. There are two points in the strategy:  
a. When the chromosome is longer than the average length of chromosomes 

over previous generations, remove the worst-block of genes. 
b. When the chromosome is shorter than the average length of chromosomes 

over previous generations, inject the best-block of genes from another 
chromosome. 

    These two strategies are designed to help the dynamic injection/removal of 
genes, and should also maintain a reasonable length chromosome. The average 
length should not become too short, because this will not help the solution. On the 
other hand, long chromosomes will be computationally expensive to evaluate.     
    The pseudo-code for the guided operator hyper-GA is shown below: 



1. Generate an initial solution (S) randomly. 
2. Generate 30 initial chromosomes (length of 14), put them into a pool 
3. For each chromosome k (0 ≤ k<30), 

a. Apply low-level heuristics in the order given in the chromosome to S 
b. Record the solution Sk (k is the position of the chromosome in the pool) 
c. Record the change each single gene makes to the objective function 

4. Compare each Sk to S: if Sk>S, then S=Sk. 
5. Select parents. For each pair of parents: decide which crossover operator to 

use (either best-best crossover or one-point crossover, choosing them with 
equal probability), if best-best crossover is used, select best groups of genes 
in each parent, and exchange them. 

6. Select chromosomes for mutation and for each selected chromosome: 
decide which mutation operator to use (inserting-good mutation or 
removing-worst mutation). If a (see previous page) can be used, using 
removing-worst mutation to remove the worst group of genes from the 
chromosome; if b can be used, use inserting-good mutation to inject the 
best group of genes from a randomly selected chromosome to the desired 
chromosome. 

7. Add all new chromosomes and 10 best chromosomes in current pool to a 
new pool. If the stopping criteria is met, stop the evolution, else, go to 3. 

    We have 4 versions of hyper-GA, two with adaptive parameters and two with 
non-adaptive parameters. In the adaptive versions, the mutation rate and crossover 
rate adapt according to the change in fitness in each generation. When there is no 
improvement in average fitness over 3 generations, the mutation rate will be 
increased using the following formula: 

 New Mutation Rate = (Old Mutation Rate + 1)/2 (7) 
and the crossover rate will be decreased using : 
 New Crossover Rate =Old Crossover Rate/2. (8) 

    If the average fitness has improved over 3 generations, the mutation rate will be 
decreased using:  
 New Mutation Rate =Old MutationRrate/2 (9) 

and the crossover rate will be increased using: 
 New Crossover Rate = (Old Crossover Rate + 1)/2 (10) 
    The aim of the modification to the crossover/mutation rates is to observe the 
effect these have on the performance of hyper-GA. 
    There are two fitness functions in our algorithm. One uses total priority minus 
total travelling penalty. The formula is: 
 ∑∑ − PenaltyTravellingiorityPr  (11) 

        The other uses total priority minus total travelling penalty divided by the CPU 
time, so that improvement per unit time is the fitness. The formula for this 
objective function is: 
 )/()Pr( ChromosomeinTimeCPUPenaltyTravellingiority ∑∑ −  (12) 

    The consideration of CPU time is so as to easily compare the efficiency of each 
individual sequence of low-level heuristic. The comparison of these four versions 
can test the robustness of hyper-GA under a range of conditions. 
    The four versions of hyper-GA, according to the objective function and the 

context of parameters for mutation and crossover rate, are as follows: 
•  PPPN uses (11) as the objective function. 



•  PPPA uses same objective function as PPPN, and the crossover and mutation 
rate are adapted using (7)-(10). 

•  FTPN, uses (12) as the objective function. 
•  FTPA, whose objective function is the same as FTPN, and the crossover and 

mutation rate are adapted using (7)-(10).     
   PPPN, PPPA, FTPN, and FTPA are simply mnemonic names. 

6. Results 

All algorithms were implemented in C++ and the experiments were conducted on 
an AMD 800MHZ with 128MB RAM running under Windows 2000. We used five 
data sets, which describe realistic problem instances, each having differing degrees 
of difficulty [5]. Each data set contains more than 500 events. The events in each 
data set are generated randomly, based on the characteristics of a real staff trainer 
scheduling problem at a large financial institution. 
    In order to ascertain the correct length at which to remove and inject genes, we 
tried to remove genes when the chromosome was 10%, 20%, 30%, 40%, 50%, 
100%, or 200% longer than the average length of chromosome in one generation, 
and inject genes when the chromosome was 10%, 20%, 30%, 40%, 50% shorter 
than the average length in our experiment. We also combined these rates so as to 
find the effect of them on the evolution of hyper-GA. Table 1 shows the results. 
 
     
 
     
   
 
 
 
 
 
 
    
 
   All combinations find relatively good results (the best result in our previous work 
[14] is 1961/1357), and the CPU time is less than our previous work. However, 
trying to find the best combination is computationally extensive, since the sum of 
CPU time in table 1 is large. In order to avoid tuning parameters manually, we tried 
to evolve the guiding rates within the algorithm itself. 
    To evolve rates, we add two more genes to each chromosome, one for the rate of 
removing genes, the other one for the rate of injection. These two genes are real 
numbers in the range 0 to 1, they don’t exchange information with other genes 
during the evolution. The evolution of these parameters is carried out by adding a 
random number.  The result of the self-evolving rate experiment is 1972/1184. The 
objective function is not better than the best result (1973/1042) in the fixed rate 
group, and the CPU time is greater. However, the chromosomes are kept to a 
reasonable length and the guiding parameter does not need to be manually tuned. 
This is important as different problems, or even problem instances could require 
different parameters to produce good quality solutions. 

 10% 20% 30% 40% 50% 

10% 1973/1042 1971/1021 1967/1035 1965/1024 1964/1039 

20% 1972/1053 1967/1060 1969/1040 1966/1053 1968/1042 

30% 1969/1031 1968/1043 1965/1031 1964/1035 1969/1052 

40% 1971/1046 1969/1045 1963/1052 1965/1059 1969/1047 

50% 1970/1038 1967/1049 1966/1061 1966/1049 1968/1051 

100% 1970/1041 1965/1057 1967/1060 1968/1074 1967/1072 

200% 1962/1074 1963/1080 1962/1079 1964/1083 1962/1076 

Table 1. Results of guided ALChyper-GA applied to the basic data set [5] (percentage of 
shorter than average length over the generation in row, percentage of longer than average 
length over the generation in column. Objective (maximise)/CPU time (secs)) 



    In some experiments in table 1, because the length of chromosomes drops 
sharply during the evolution (the average length becomes 1 or 2 after about 100 
generations), we designed a new mutation, (add-remove-mutation). This operator 
adds a best block of genes from a list of best blocks to the selected chromosome and 
replaces the worst-block of genes in that chromosome. This heuristic is added to the 
original 14 and is used in the experiments discussed below.We compare each of our 
hyper-heuristic approaches over the five problem instances (each result is the 
average of 5 runs).  
    The results of the self-evolving guiding rate hyper-GA tests on the 5 data sets are 
shown in table 2 along with the results of our previous work: application of hyper-
GA and ALChyper-GA to the same data. We also compare with the results of the 
application of genetic algorithm and memetic algorithm (defined by Moscato [20]). 
The upper bound is calculated by solving a relaxed knapsack problem [18] where 
we ignore travel penalties. We can see from the table that the results of our new 
algorithm are all better than previous results. In addition the computation al time is 
less. We find that the result of guided operator hyper-GA for the basic data set is 
1972/1184, which is not better than the best value in table 1, however, the self-
evolving guiding rate hyper-GA avoids manually tuning the guiding rate. 
    Results from our hyper-TGA [15] are also included in table 2. Although the 
hyper-TGA consumes less processing time, the guided-operator hyper-GA 
produces superior results. We suspect this is due to the increased computation 
required to identify the best/worst genes in each chromosome by the guided-
operator hyper-GA.     
Heuristics Basic data Very few staff Few staff 1 Few staff 2 Non 

-restricted 

Upper bound (priority) 2261 2179 2124  2244  2179 
GA (30, 100) [5] 1796/1628 1633/1629 1589/1641 1706/1721 1644/1699 
MA (30, 100) [5] 1832/2064 1678/2054 1617/2129 1769/2254 1698/2133 
Hyper-GA  PPPN [5] 1959/1456 1780/1387 1749/1404 1858/1496 1742/1422 
Hyper-GA  PPPA [5] 1939/1448 1754/1461 1712/1306 1854/1475 1814/1571 
Hyper-GA  FTPN [5] 1943/1411 1770/1437 1673/1436 1803/1422 1774/1434 
Hyper-GA  FTPA [5] 1951/1420 1731/1424 1738/1436 1769/1427 1770/1419 
ALCHyper-GA  PPPN [14] 1961/1357 1788/1250 1816/1163 1831/1591 1822/1437 
ALCHyper-GA  PPPA [14] 1933/1638 1757/1644 1795/1325 1862/1506 1804/1638 
ALCHyper-GA  FTPN[14] 1949/1450 1780/1365 1781/1277 1821/1638 1813/1488 

ALCHyper-GA  FTPA1[14] 1954/1526 1764/1496 1766/1364 1799/1583 1799/1419 

Guided  Hyper-GA PPPN 1972/1184 1792/1139 1819/1087 1869/1257 1826/1194 

Guided  Hyper-GA PPPA 1960/1208 1780/1158 1796/1135 1849/1306 1814/1270 

Guided  Hyper-GA FTPN 1964/1223 1786/1164 1802/1158 1852/2286 1811/1248 

Guided  Hyper-GA FTPA 1969/1215 1785/1162 1807/1143 1865/1324 1816/1186 

Hyper-TGA PPPN [15] 1966/972 1789/911 1820/834 1866/1004 1824/941 

Hyper-TGA PPPA [15] 1959/958 1782/931 1804/864 1852/996 1809/970 

Hyper-TGA FTPN [15] 1960/963 1784/933 1799/856 1852/1012 1814/982 

Hyper-TGA FTPA [15] 1965/985 1782/942 1811/892 1857/997 1804/930 

 
 

7. Student Project Presentation Scheduling Problem 

Table 2. Comparison of Guided Operator Hyper-GA with Other Algorithms (Objective (maximise)/Time) 



From table 2 it is apparent that the guided-operator hyper-GA outperforms other 
algorithms across all problem instances for the trainer scheduling problem. In order 
to further demonstrate the effectiveness of the guided-operator hyper-GA, and to 
test the robustness and generality of our hyper-GAs, we applied the hyper-heuristic 
to a student project presentation scheduling problem, which was solved by Cowling 
et al [8]. 

7.1 Problem Description 

    Every final year BSc student in the School of Computer Science and IT at the 
University of Nottingham has to give a 15-minute presentation to describe his/her 
project. A 4-week time slot is allocated for all presentations. Each student chooses 
a project topic and works under the supervision of an assigned staff member. 
Project presentations are then organised and each student must present his work in 
front of a panel of three staff members (a first marker, a second marker and an 
observer), who will mark the presentation. Ideally, the project’s supervisor should 
be involved in the presentation (as the first marker or the observer) but this is rarely 
the case in practice. Once every student has been assigned a project supervisor, the 
problem is to schedule all individual presentations, i.e. determine a panel of three 
staff members for each presentation, and allocate both a room and a timeslot to the 
presentation. The presentations are organised in sessions, each of which contains up 
to six presentations. Typically the same markers and observers will see all 
presentations in a particular session. So the problem can be seen as the search of 
(student, 1st marker, 2nd marker, observer, room, timeslot) tuples, and has the to 
following constraints: 
(1) Each presentation must be scheduled exactly once; 
(2) No more than 6 presentations in each session; 
(3) Only one session in one room at one time; 
(4) No marker can be scheduled to be in 2 different rooms within the same session. 
     Moreover, presentations can only be scheduled in a given session when both the 
academic members of staff and the room assigned to those presentations are 
available during that session. There are four objectives to be achieved: 
(A) Fair distribution of the total number of presentations per staff member; 
(B) Fair distribution of the total number of sessions per staff member; 
(C) Fair distribution of the number of inconvenient sessions ( before 10 am and 
after 4 pm) per staff member. 
(D) Optimise the match between staff research interest and project themes, and try 
to ensure that supervisors attend presentations for projects they supervise. 
    There are 151 students, 26 staff members, 60 sessions and 2 rooms involved in 
this problem. For further details of the problem and its formulation please refer to 
[8]. 

7.2 Application of Hyper-GAs to The Problem  

Cowling et al [8] designed a hyper-heuristic choice function to select 8 low-level 
heuristics to solve the problem. They ran their algorithm for 600 CPU seconds. In 
our application, we use the same objective function and same low-level heuristics. 
The choice function, however, is replaced by the hyper-GAs. The initial length of 
each chromosome is 8. The same parameter rates and population size as for the 
trainer scheduling problem were used. We ran our program over 200 generations. 
All experimental results were averaged over 10 runs. Table 3 presents the result. 



 
 A B C D Obj (E) Time 

(CPU sec) 
Choice Function 344.40 14.60 17.70 -1637.00 -1444.99 600 
Hyper-GA 360.50 19.10 10.90 -1622.00 -1419.38 984 
ALCHyper-GA 347.20 15.10 9.40 -1631.80 -1440.28 975 
Guided Operator Hyper-GA 325.00 14.80 5.60 -1632.30 -1453.32 924 
 
     
    The A, B, C, D in table 3 represent the evaluation results of A, B, C and D in 7.1. 
The objective function is try to minimise E(x) = 0.5A + B + 0.3C – D. 
     From table 3 we find that the guided operator hyper-GA gives the best result, 
though it takes longer time than Cowling et al’ hyper-heuristic choice function. The 
result also demonstrates that the guided operator hyper-GA is superior to our other 
versions of hyper-GA.  

8. Conclusion 

The guided adaptive length chromosome hyper-GA is a further improvement of our 
previous work. It is a promising approach for solving personnel scheduling 
problems and other optimisation problems. The removal of poorly performing 
heuristics and the injection of promising heuristics as a guiding strategy appears to 
help the search. The strategy presented in this paper also helps to reduce the CPU 
time. We have tried many combinations of guiding rates. However, trying to find 
suitable parameters is computationally expensive. Therefore, we designed a new 
strategy that is able to evolve the removal/injection rates. The use of this strategy 
can evolve good quality solutions on all our testing data sets, and it improves upon 
our previous work. The comparison of hyper-GAs to the hyper-heuristic choice 
function further shows that the guided operator hyper-GA can achieve better results 
than other versions of hyper-GA, and hyper-GAs are robust across a range of 
problem instances. 
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