
Guided Operators for a Hyper-Heuristic Genetic
Algorithm

Limin Han, Graham Kendall

Automated Scheduling, Optimisation and Planning Research Group, School of Computer
Science and IT University of Nottingham NG8 1BB, UK

Email: lxh/gxk@cs.nott.ac.uk

Abstract. We have recently introduced a hyper-heuristic genetic algorithm
(hyper-GA) with an adaptive length chromosome which aims to evolve an
ordering of low-level heuristics so as to find good quality solutions to given
problems. The guided mutation and crossover hyper-GA, the focus of this
paper, extends that work. The aim of a guided hyper-GA is to make the
dynamic removal and insertion of heuristics more efficient, and evolve
sequences of heuristics in order to produce promising solutions more
effectively. We apply the algorithm to a geographically distributed training
staff and course scheduling problem to compare the computational result
with the application of other hyper-GAs. In order to show the robustness of
hyper-GAs, we apply our methods to a student project presentation
scheduling problem in a UK university and compare results with the
application of another hyper-heuristic method.

1. Introduction

Since their introduction by Bremermann [2] and Fraser [12] and the seminal work
of Holland [17] genetic algorithms have been used to solve a whole range of
problems including the travelling salesman problem [25], bin packing problems
[11] and scheduling problems [24].
 Personnel scheduling problems have also successfully been solved using GAs.
Aickelin and Dowsland [1] used a GA for a nurse rostering problem in a large UK
hospital. The result of their approach was a fast, robust implementation and the
approach proved flexible and able to solve the large rostering problem in the
hospital with a range of objectives and constraints. Easton and Mansour [10] also
used a GA for deterministic and stochastic labour scheduling problems. Their
approach is a distributed genetic algorithm, which runs in parallel, on a network of
workstations. Their procedure uses a combination of feasibility and penalty
methods to help exploit favourable adaptations in infeasible offspring so as to
maintain the search near the feasible region. They applied this approach to three
different sets of published test suites of labour scheduling problem. They compared
the results to those problems solved by other meta-heuristics and conventional
heuristics and found, on average, the genetic algorithm outperformed other
methods.
 In addition to GAs with a direct chromosome representation, indirect genetic
algorithms have been studied widely. For example, Terashima-Marin, Ross and
Valenzuela-Rendon [23] designed an indirect GA to solve an examination
timetabling problem. They encode strategies for the problem as parameters into a
10-position array, thus the chromosome represents how to construct a timetable
rather than representing the timetable itself. The use of an indirect chromosome
representation avoids the limitation of a direct chromosome, which is known as the
coordination failure between different parts of a solution when solving examination

timetabling problem. Corne and Ogden [4] compared their indirect and direct GA
for a Methodist preaching timetabling problem and found the former was more
efficient.
 Although genetic algorithms have been shown to be effective in solving a range
of problems, they are often time intensive and require domain knowledge.
Normally the chromosome of a genetic algorithm is either the solution of the target
problem or a structure of the solution. This means problem specific knowledge is
essential in the design of chromosome. The heavy dependence of domain
knowledge makes it difficult to reuse on different problems. In order address this
problem, and have a reusable, robust and fast-to-implement approach, applicable to
a wide range of problems and instances, we have designed a genetic algorithm
using an indirect chromosome representation based on evolving a sequence of
heuristics which are applied to the problem. In this case the problem is a personnel
scheduling problem that can be regarded as the allocation of staff to timeslots and
possibly locations [26]. The motivation behind this approach is a hyper-heuristic,
which we introduce in the next section.

2. Hyper-Heuristics

Hyper-heuristics [3] are an approach that operate at a higher level of abstraction
than a meta-heuristic. It is described in [6] thus: “The hyper-heuristics manage the
choice of which lower-level heuristic method should be applied at any given time,
depending upon the characteristics of the heuristics and the region of the solution
space currently under exploration.” Their hyper-heuristic consists of a set of low
level heuristics and a high level heuristic selector. They defined a general
framework for the hyper-heuristic which selects which low-level heuristics to apply
at each decision point. A state is maintained within the hyper-heuristic which
records the amount of CPU time taken by each low-level heuristic and the change
in the evaluation function. A hyper-heuristic only knows whether the objective
function is to be maximised or minimised and has no information as to what the
objective function represents. There is no domain knowledge in the hyper-heuristic,
and each low level heuristic communicates with the hyper-heuristic using a
common, problem independent, interface architecture [6]. In addition to the general
framework, they also have a choice function which decides which heuristic to call
next. This is calculated based on information derived from recently called low-level
heuristics. The three levels of data they maintain are the recent improvement of
each individual heuristic, the recent improvement of each pair of heuristics, and the
CPU time used by each heuristic. Their hyper-heuristic approach was applied to a
sales summit scheduling problem [7], a project presentation scheduling problem
[8], and a nurse scheduling problem [9], and they found that it solved these
problems effectively. The choice function was further improved in [8].
 A hyper-heuristic method was also developed by Hart, Ross and Nelson [16].
They developed an evolving heuristically driven schedule builder for a real-life
chicken catching and transportation problem. The problem was divided into two
sub-problems and each was solved using a separate genetic algorithm. The two
genetic algorithms evolved a strategy for producing schedules, rather than a
schedule itself. All the information collected from the company is put into a set of
rules, which were combined into a schedule builder by exploiting the searching
capabilities of the genetic algorithm. A sequence of heuristics was evolved to

dictate which heuristic to use to place a task into the schedule. The approach
successfully solved a highly constrained real-life scheduling problem of a Scottish
company that must produce daily schedules for the catching and transportation of a
huge number of live chickens. They also compared the performance of the
approach to other methods such as hill-climbing and simulated annealing and found
their approach to be superior.
 Randall and Abramson [22] designed a general purpose meta-heuristic based
solver for combinatorial optimisation problems, where they used linked list
modelling to represent the problem. The problem was specified in a textual format
and solved directly using meta-heuristic search engines. The solver worked
efficiently and returned good quality results when being applied to several
traditional combinatorial optimisation problems. Nareyek [21] proposed an
approach that was able to learn how to select promising heuristics during the search
process. The learning was based on weight adaptation. The configuration of
heuristics was constantly updated during the search according to the performance
of each heuristic under different phases of the search. The results showed that the
adaptive approach could improve upon static strategies when applied to the same
problems. Gratch and Chien [13] developed an adaptive problem solving system to
select heuristic methods from a space of heuristics after a period of adaptation and
applied it successfully to a network scheduling problem.
 In our previous work we have designed an indirect genetic algorithm hyper-
heuristic approach, hyper-GA, which may be regarded as a hyper-heuristic that uses
a GA to select low-level heuristics [5] and further improved this approach to an
adaptive length chromosome hyper-GA (ALChyper-GA), which is more parameter-
adaptive [14] than our previous work. We investigated the behaviour of the
algorithms for a trainer scheduling problem and believe that given an appropriate
set of low-level heuristics and an evaluation function the hyper-GA approach may
be applied to a wide range of scheduling and optimisation problems.
 In this paper, we investigate a guided mutation and crossover hyper-GA. The
motivation for this work is to find good heuristic combinations that we can use in a
crossover operator in order to guide the search. We also want to identify badly
performing sequences of heuristics and use mutation to remove them from a
chromosome. In previous work [14] we explicitly controlled the length of the
chromosome. We hope this new approach will maintain the chromosome length to
reasonable limits by a method of self-adaptation. This is similar to the idea of
“select programming components based on the evolution of the program” of
genetic programming [19].

3. Geographically Distributed Course Scheduling Problem

The problem is to create a timetable of geographically distributed courses over a
period of several weeks using geographically distributed trainers. We wish to
maximise the total priority of courses which are delivered in the period, while
minimising the amount of travel for each trainer. To schedule the events, we have
25 staff, 10 training centres (or locations) and 60 timeslots. Each event is to be
delivered by one member of staff from the limited number who are competent to
deliver that event. Each staff member can only work up to 60% of his/her working
time (i.e. 36 timeslots). Each event is to be scheduled at one location from a limited
list of possible locations. Each location, however, can only be used by a limited

number of events in each timeslot because of room availability at each site. The
start time of each event must occur within a given time window. The duration of
each event varies from 1 to 5 time slots. Each course has a numerical priority value.
Each member of staff has a home location and a penalty is associated with a staff
member who must travel to an event. The objective function is to maximise total
priority for scheduled courses minus total travel penalty for trainers. A
mathematical model for the problem is shown in figure 1, where we have
E: the set of events; S: the set of staff members; T: the set of timeslots;
L: the set of locations; duri: the duration of event ei ;

dsl: the distance penalty for staff member s delivering a course at location l;
wi: the priority of event ei; cl: the number of room at location l

 Variable yistl = 1 when event ei is delivered by staff s at location l commencing at
timeslot t, or 0 otherwise. Variable xistl = 1 when event ei is delivered by staff s at
location l, or 0 otherwise. Constraint (1) ensures that one event can happen at most
once. Constraint (2) ensures that each staff member is only required to deliver at
most one event in each timeslot. Constraint (3) ensures that each location has
sufficient room capacity for the event scheduled. Constraints (4), (5), and (6) link
the xistl and yistl variables, which ensures that if one event is delivered, its duration
must be consecutive.

4. Low-Level Heuristics

A hyper-heuristic consists of a set of low-level heuristics and a high level selector.
We have developed fourteen problem-specific low-level heuristics, which accepted
a current solution, and modify it in an attempt to return an improved solution. At
each generation the hyper-GA could call the set of low-level heuristics and apply

∑∑∑∑∑∑∑∑
∈ ∈∈ ∈∈ ∈ ∈∈

−=
Ei Tt

istl
Ss Ll

sl
Ss Tt Ll

istl
Ei

i ydywMaxW)*(

Objective

Subject

)(1 Eiy
Ss Tt Ll

istl ∈≤∑∑∑
∈ ∈ ∈

)(1 Ssx
Ei

istl
Ll Tt

∈≤∑∑∑
∈ ∈ ∈

)(Llcx l
Ei Ss

istl
Tt

∈≤∑∑∑
∈ ∈ ∈

∑
=

∈∈∈∈<=
t

j
istlistl LlTtSsEiyx

1

))()()((

)(* Eiydurx
Ss Tt Ll

istl
Ss Tt Ll

iistl ∈= ∑∑∑∑∑∑
∈ ∈ ∈∈ ∈ ∈

))()()((

0

LlTtSsEiyx

idurjt

Tj
istlistl ∈∈∈∈<= ∑

<−<=
∈

(1)

(2)

(3)

(4)

(5)

(6)

Figure 1. Mathematical model for the geographically
distributed trainer scheduling problem

them in any sequence. These low-level heuristics may be considered in four groups:
(1) add, (2) add-swap, (3) add-remove, and (4) remove. The add heuristics
comprise five methods which can be sub-divided into two groups. Add-first, add-
random and add-best try to add unscheduled events by descending priority, and
add-first-improvement and add-best-improvement consider the unscheduled list in a
random order. There are four add-swap heuristics: add-swap-first and add-swap-
randomly try to schedule one event but if there is a conflicting event when
considering a particular timeslot, staff member and location, we will consider all
swaps between that conflicting event and other scheduled events to see if the
conflict can be resolved; add-swap-first-improvement and add-swap-best-
improvement do the same but consider the unscheduled list in a random order. The
mechanism of the third group (add-remove-first, add-remove-random, and add-
remove-worst) is: select one event from the unscheduled event list by descending
priority, if the event is in conflict with event(s) in the timetable (none of the event’s
possible staff members are able to work in the possible timeslots), and the event’s
fitness is higher than the fitness(es) of the conflicting event(s), delete the
conflicting event(s) and add the unscheduled event. The last group has two
heuristics: remove-first and remove-random. These two heuristics try to remove
events from the schedule. They are likely to return a worse solution but will
hopefully lead to an improvement later on, after other heuristics have been applied.
We list all our 14 low-level problem specific heuristics as follows:
0. Add-first 1. Add-random
2. Add-best 3. Add-swap-first
4. Add-swap-randomly 5. Add-remove-first
6. Add-remove-random 7. Add-remove-worst
8. Add-first-improvement 9. Add-best-improvement
10. Add-swap-first-improvement 11. Add-swap-best- improvement
12. Remove-first 13. Remove-random
 The integer in front of each heuristic is the integer used in the chromosome.

5. Hyper-GA and Guided Operators
5.1 Hyper-GA

Hyper-GA [5] and the adaptive length chromosome hyper-GA (ALChyper-GA)
[14] are hyper-heuristics that use a GA to select low-level heuristics to produce
high quality solutions for the given problem. The GA is an indirect GA with the
representation being a sequence of integers each of which represents a single low-
level heuristic. Each individual in a GA population gives a sequence of heuristic
choices which tell us which low-level heuristics to apply and in which order to
apply them. Figure 2 is an example of hyper-GA. Integer 2 represents low-level
heuristic add-best, 3 refers add-swap-first and so on.

2 3 1 5 0 7 9 8 11 1 10 9 12 13

5.2 Adaptive Length Chromosome Hyper-GA (ALCHyper-GA)
The adaptive length chromosome hyper-GA assumes that a fixed length
chromosome is not always the optimal length and aims to evolve good
combinations of low-level heuristics without explicit consideration of the
chromosome length. Each heuristic may work efficiently at one moment but work

Figure 2. Example of hyper-GA

poorly during other periods. A heuristic such as add-random helps to add a few
courses to the schedule during the initial generations, but it becomes less helpful
when the schedule is “full”. Thus, the behaviour of each heuristic can be different
in different chromosomes at different times of the evolutionary process. Because
the behaviour of a given low-level heuristic, or a combination of low-level
heuristics, within a chromosome, could be very promising, while another low-level
heuristic or combination could perform poorly, we use removal of poor-performing
heuristics from a chromosome or the injection of efficient heuristics from one
chromosome to another in order to try and improve the quality of solutions. As a
result, the length of the chromosomes in each generation changes as genes are
inserted or removed. A new crossover operator and two new mutation operators
were designed for this algorithm. The best-best crossover, will select the best group
of genes (the call of low-level heuristics by these genes that gives the most
improvement of the objective function) in either selected chromosome, and
exchanges them. One new mutation operator, removing-worst mutation, will
remove the worst group of genes (the call of low-level heuristics by these genes
which gives the largest decrease in the objective function, or which is the longest
group giving no improvement to the objective function) in the selected
chromosome. Another mutation, inserting-good mutation, inserts the best group of
genes from a randomly selected chromosome to a random point of the desired
chromosome.
 The reason why we combine good groups of genes and remove bad genes is that
we hope the work of particular heuristic or combination of heuristics can be helpful
with in other chromosome. See [14] for detailed description of these operators.

5.3 Guided Operators
The adaptive length chromosome, hyper-GA, produced promising results with our
test data sets. However, we hypotheses the algorithm should work more efficiently
if removal and injection of genes can be better guided. The ALChyper-GA has the
ability to identify good groups and poor groups of genes in each chromosome, but
it still needs to identify whether the chromosome needs new genes to enhance the
search or redundant genes need to be removed. For example, the ALChyper-GA
should have the ability to know that new genes need to be added to very short
chromosomes and some genes need to be removed from a chromosome when it
becomes too long (and thus increases the computation time). In order to add this
ability to ALChyper-GA, we wanted to design a strategy to guide the algorithm to
adapt the length of chromosome more effectively and efficiently. We wanted the
strategy to be able to identify when it is appropriate to remove genes and when it
should inject genes. There are two points in the strategy:
a. When the chromosome is longer than the average length of chromosomes

over previous generations, remove the worst-block of genes.
b. When the chromosome is shorter than the average length of chromosomes

over previous generations, inject the best-block of genes from another
chromosome.

 These two strategies are designed to help the dynamic injection/removal of
genes, and should also maintain a reasonable length chromosome. The average
length should not become too short, because this will not help the solution. On the
other hand, long chromosomes will be computationally expensive to evaluate.
 The pseudo-code for the guided operator hyper-GA is shown below:

1. Generate an initial solution (S) randomly.
2. Generate 30 initial chromosomes (length of 14), put them into a pool
3. For each chromosome k (0 ≤ k<30),

a. Apply low-level heuristics in the order given in the chromosome to S
b. Record the solution Sk (k is the position of the chromosome in the pool)
c. Record the change each single gene makes to the objective function

4. Compare each Sk to S: if Sk>S, then S=Sk.
5. Select parents. For each pair of parents: decide which crossover operator to

use (either best-best crossover or one-point crossover, choosing them with
equal probability), if best-best crossover is used, select best groups of genes
in each parent, and exchange them.

6. Select chromosomes for mutation and for each selected chromosome:
decide which mutation operator to use (inserting-good mutation or
removing-worst mutation). If a (see previous page) can be used, using
removing-worst mutation to remove the worst group of genes from the
chromosome; if b can be used, use inserting-good mutation to inject the
best group of genes from a randomly selected chromosome to the desired
chromosome.

7. Add all new chromosomes and 10 best chromosomes in current pool to a
new pool. If the stopping criteria is met, stop the evolution, else, go to 3.

 We have 4 versions of hyper-GA, two with adaptive parameters and two with
non-adaptive parameters. In the adaptive versions, the mutation rate and crossover
rate adapt according to the change in fitness in each generation. When there is no
improvement in average fitness over 3 generations, the mutation rate will be
increased using the following formula:

 New Mutation Rate = (Old Mutation Rate + 1)/2 (7)
and the crossover rate will be decreased using :
 New Crossover Rate =Old Crossover Rate/2. (8)

 If the average fitness has improved over 3 generations, the mutation rate will be
decreased using:
 New Mutation Rate =Old MutationRrate/2 (9)

and the crossover rate will be increased using:
 New Crossover Rate = (Old Crossover Rate + 1)/2 (10)
 The aim of the modification to the crossover/mutation rates is to observe the
effect these have on the performance of hyper-GA.
 There are two fitness functions in our algorithm. One uses total priority minus
total travelling penalty. The formula is:
 ∑∑ − PenaltyTravellingiorityPr (11)

 The other uses total priority minus total travelling penalty divided by the CPU
time, so that improvement per unit time is the fitness. The formula for this
objective function is:
)/()Pr(ChromosomeinTimeCPUPenaltyTravellingiority ∑∑ − (12)

 The consideration of CPU time is so as to easily compare the efficiency of each
individual sequence of low-level heuristic. The comparison of these four versions
can test the robustness of hyper-GA under a range of conditions.
 The four versions of hyper-GA, according to the objective function and the

context of parameters for mutation and crossover rate, are as follows:
• PPPN uses (11) as the objective function.

• PPPA uses same objective function as PPPN, and the crossover and mutation
rate are adapted using (7)-(10).

• FTPN, uses (12) as the objective function.
• FTPA, whose objective function is the same as FTPN, and the crossover and

mutation rate are adapted using (7)-(10).
 PPPN, PPPA, FTPN, and FTPA are simply mnemonic names.

6. Results

All algorithms were implemented in C++ and the experiments were conducted on
an AMD 800MHZ with 128MB RAM running under Windows 2000. We used five
data sets, which describe realistic problem instances, each having differing degrees
of difficulty [5]. Each data set contains more than 500 events. The events in each
data set are generated randomly, based on the characteristics of a real staff trainer
scheduling problem at a large financial institution.
 In order to ascertain the correct length at which to remove and inject genes, we
tried to remove genes when the chromosome was 10%, 20%, 30%, 40%, 50%,
100%, or 200% longer than the average length of chromosome in one generation,
and inject genes when the chromosome was 10%, 20%, 30%, 40%, 50% shorter
than the average length in our experiment. We also combined these rates so as to
find the effect of them on the evolution of hyper-GA. Table 1 shows the results.

 All combinations find relatively good results (the best result in our previous work
[14] is 1961/1357), and the CPU time is less than our previous work. However,
trying to find the best combination is computationally extensive, since the sum of
CPU time in table 1 is large. In order to avoid tuning parameters manually, we tried
to evolve the guiding rates within the algorithm itself.
 To evolve rates, we add two more genes to each chromosome, one for the rate of
removing genes, the other one for the rate of injection. These two genes are real
numbers in the range 0 to 1, they don’t exchange information with other genes
during the evolution. The evolution of these parameters is carried out by adding a
random number. The result of the self-evolving rate experiment is 1972/1184. The
objective function is not better than the best result (1973/1042) in the fixed rate
group, and the CPU time is greater. However, the chromosomes are kept to a
reasonable length and the guiding parameter does not need to be manually tuned.
This is important as different problems, or even problem instances could require
different parameters to produce good quality solutions.

 10% 20% 30% 40% 50%

10% 1973/1042 1971/1021 1967/1035 1965/1024 1964/1039

20% 1972/1053 1967/1060 1969/1040 1966/1053 1968/1042

30% 1969/1031 1968/1043 1965/1031 1964/1035 1969/1052

40% 1971/1046 1969/1045 1963/1052 1965/1059 1969/1047

50% 1970/1038 1967/1049 1966/1061 1966/1049 1968/1051

100% 1970/1041 1965/1057 1967/1060 1968/1074 1967/1072

200% 1962/1074 1963/1080 1962/1079 1964/1083 1962/1076

Table 1. Results of guided ALChyper-GA applied to the basic data set [5] (percentage of
shorter than average length over the generation in row, percentage of longer than average
length over the generation in column. Objective (maximise)/CPU time (secs))

 In some experiments in table 1, because the length of chromosomes drops
sharply during the evolution (the average length becomes 1 or 2 after about 100
generations), we designed a new mutation, (add-remove-mutation). This operator
adds a best block of genes from a list of best blocks to the selected chromosome and
replaces the worst-block of genes in that chromosome. This heuristic is added to the
original 14 and is used in the experiments discussed below.We compare each of our
hyper-heuristic approaches over the five problem instances (each result is the
average of 5 runs).
 The results of the self-evolving guiding rate hyper-GA tests on the 5 data sets are
shown in table 2 along with the results of our previous work: application of hyper-
GA and ALChyper-GA to the same data. We also compare with the results of the
application of genetic algorithm and memetic algorithm (defined by Moscato [20]).
The upper bound is calculated by solving a relaxed knapsack problem [18] where
we ignore travel penalties. We can see from the table that the results of our new
algorithm are all better than previous results. In addition the computation al time is
less. We find that the result of guided operator hyper-GA for the basic data set is
1972/1184, which is not better than the best value in table 1, however, the self-
evolving guiding rate hyper-GA avoids manually tuning the guiding rate.
 Results from our hyper-TGA [15] are also included in table 2. Although the
hyper-TGA consumes less processing time, the guided-operator hyper-GA
produces superior results. We suspect this is due to the increased computation
required to identify the best/worst genes in each chromosome by the guided-
operator hyper-GA.
Heuristics Basic data Very few staff Few staff 1 Few staff 2 Non

-restricted

Upper bound (priority) 2261 2179 2124 2244 2179
GA (30, 100) [5] 1796/1628 1633/1629 1589/1641 1706/1721 1644/1699
MA (30, 100) [5] 1832/2064 1678/2054 1617/2129 1769/2254 1698/2133
Hyper-GA PPPN [5] 1959/1456 1780/1387 1749/1404 1858/1496 1742/1422
Hyper-GA PPPA [5] 1939/1448 1754/1461 1712/1306 1854/1475 1814/1571
Hyper-GA FTPN [5] 1943/1411 1770/1437 1673/1436 1803/1422 1774/1434
Hyper-GA FTPA [5] 1951/1420 1731/1424 1738/1436 1769/1427 1770/1419
ALCHyper-GA PPPN [14] 1961/1357 1788/1250 1816/1163 1831/1591 1822/1437
ALCHyper-GA PPPA [14] 1933/1638 1757/1644 1795/1325 1862/1506 1804/1638
ALCHyper-GA FTPN[14] 1949/1450 1780/1365 1781/1277 1821/1638 1813/1488

ALCHyper-GA FTPA1[14] 1954/1526 1764/1496 1766/1364 1799/1583 1799/1419

Guided Hyper-GA PPPN 1972/1184 1792/1139 1819/1087 1869/1257 1826/1194

Guided Hyper-GA PPPA 1960/1208 1780/1158 1796/1135 1849/1306 1814/1270

Guided Hyper-GA FTPN 1964/1223 1786/1164 1802/1158 1852/2286 1811/1248

Guided Hyper-GA FTPA 1969/1215 1785/1162 1807/1143 1865/1324 1816/1186

Hyper-TGA PPPN [15] 1966/972 1789/911 1820/834 1866/1004 1824/941

Hyper-TGA PPPA [15] 1959/958 1782/931 1804/864 1852/996 1809/970

Hyper-TGA FTPN [15] 1960/963 1784/933 1799/856 1852/1012 1814/982

Hyper-TGA FTPA [15] 1965/985 1782/942 1811/892 1857/997 1804/930

7. Student Project Presentation Scheduling Problem

Table 2. Comparison of Guided Operator Hyper-GA with Other Algorithms (Objective (maximise)/Time)

From table 2 it is apparent that the guided-operator hyper-GA outperforms other
algorithms across all problem instances for the trainer scheduling problem. In order
to further demonstrate the effectiveness of the guided-operator hyper-GA, and to
test the robustness and generality of our hyper-GAs, we applied the hyper-heuristic
to a student project presentation scheduling problem, which was solved by Cowling
et al [8].

7.1 Problem Description

 Every final year BSc student in the School of Computer Science and IT at the
University of Nottingham has to give a 15-minute presentation to describe his/her
project. A 4-week time slot is allocated for all presentations. Each student chooses
a project topic and works under the supervision of an assigned staff member.
Project presentations are then organised and each student must present his work in
front of a panel of three staff members (a first marker, a second marker and an
observer), who will mark the presentation. Ideally, the project’s supervisor should
be involved in the presentation (as the first marker or the observer) but this is rarely
the case in practice. Once every student has been assigned a project supervisor, the
problem is to schedule all individual presentations, i.e. determine a panel of three
staff members for each presentation, and allocate both a room and a timeslot to the
presentation. The presentations are organised in sessions, each of which contains up
to six presentations. Typically the same markers and observers will see all
presentations in a particular session. So the problem can be seen as the search of
(student, 1st marker, 2nd marker, observer, room, timeslot) tuples, and has the to
following constraints:
(1) Each presentation must be scheduled exactly once;
(2) No more than 6 presentations in each session;
(3) Only one session in one room at one time;
(4) No marker can be scheduled to be in 2 different rooms within the same session.
 Moreover, presentations can only be scheduled in a given session when both the
academic members of staff and the room assigned to those presentations are
available during that session. There are four objectives to be achieved:
(A) Fair distribution of the total number of presentations per staff member;
(B) Fair distribution of the total number of sessions per staff member;
(C) Fair distribution of the number of inconvenient sessions (before 10 am and
after 4 pm) per staff member.
(D) Optimise the match between staff research interest and project themes, and try
to ensure that supervisors attend presentations for projects they supervise.
 There are 151 students, 26 staff members, 60 sessions and 2 rooms involved in
this problem. For further details of the problem and its formulation please refer to
[8].

7.2 Application of Hyper-GAs to The Problem

Cowling et al [8] designed a hyper-heuristic choice function to select 8 low-level
heuristics to solve the problem. They ran their algorithm for 600 CPU seconds. In
our application, we use the same objective function and same low-level heuristics.
The choice function, however, is replaced by the hyper-GAs. The initial length of
each chromosome is 8. The same parameter rates and population size as for the
trainer scheduling problem were used. We ran our program over 200 generations.
All experimental results were averaged over 10 runs. Table 3 presents the result.

 A B C D Obj (E) Time

(CPU sec)
Choice Function 344.40 14.60 17.70 -1637.00 -1444.99 600
Hyper-GA 360.50 19.10 10.90 -1622.00 -1419.38 984
ALCHyper-GA 347.20 15.10 9.40 -1631.80 -1440.28 975
Guided Operator Hyper-GA 325.00 14.80 5.60 -1632.30 -1453.32 924

 The A, B, C, D in table 3 represent the evaluation results of A, B, C and D in 7.1.
The objective function is try to minimise E(x) = 0.5A + B + 0.3C – D.
 From table 3 we find that the guided operator hyper-GA gives the best result,
though it takes longer time than Cowling et al’ hyper-heuristic choice function. The
result also demonstrates that the guided operator hyper-GA is superior to our other
versions of hyper-GA.

8. Conclusion

The guided adaptive length chromosome hyper-GA is a further improvement of our
previous work. It is a promising approach for solving personnel scheduling
problems and other optimisation problems. The removal of poorly performing
heuristics and the injection of promising heuristics as a guiding strategy appears to
help the search. The strategy presented in this paper also helps to reduce the CPU
time. We have tried many combinations of guiding rates. However, trying to find
suitable parameters is computationally expensive. Therefore, we designed a new
strategy that is able to evolve the removal/injection rates. The use of this strategy
can evolve good quality solutions on all our testing data sets, and it improves upon
our previous work. The comparison of hyper-GAs to the hyper-heuristic choice
function further shows that the guided operator hyper-GA can achieve better results
than other versions of hyper-GA, and hyper-GAs are robust across a range of
problem instances.

References
[1] Aickelin, U, Dowsland, K, Exploiting Problem structure In A Genetic Algorithm

Approach To A Nurse Rostering Problem, 2000, Journal Of Scheduling, vol 3, pp.139-
153.

[2] Bremermann, H.J. 1958. The Evolution of Intelligence. The Nervous System as a
Model of its Environment. Technical Report No. 1, Contract No. 477(17), Dept. of
Mathematics, Univ. of Washington, Seattle.

[3] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S.,
Handbook of metaheuristics, chapter 16, Hyper-heuristics: an emerging
direction in modern search technology, pp. 457–474. Kluwer Academic
Publishers, 2003.

[4] Corne, D, Ogden, J, Evolutionary Optimisation of Methodist Preaching Timetables,
Lecture Notes in Computer Science, PATAT1995: 142-155.

[5] Cowling, P.I., Kendall, G., and Han, L.. An investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling problem. Proceedings of the Congress on
Evolutionary Computation 2002, CEC 2002. Morgan Kaufman, pp. 1185-1190, 2002.

[6] Cowling, P.I., Kendall, G., Soubeiga, E., Hyperheuristic Approach to Scheduling a
Sales Summit, Selected papers of Proceedings of the Third International Conference of
Practice And Theory of Automated Timetabling, Springer LNCS vol 2079, pp. 176-190.

Table 3. Application of hyper-GAs to the student project presentation scheduling problem

[7] Cowling, P.I., Kendall, G., Soubeiga, E., A Parameter-free Hyperheuristic for
Scheduling a Sales Summit, 2001,Proceedings of the Third Metaheuristic International
Conference (MIC 2001), pp. 127-131

[8] Cowling, P.I., Kendall, G., Soubeiga, E., Hyperheuristics: A Tool for Rapid Prototyping
in Scheduling and Optimisation, 2002, European Conference on Evolutionary
Computation (EvoCop 2002), Springer LNCS.

[9] Cowling, P.I., Kendall, G., and Soubeiga, E., Hyperheuristics: A robust optimisation
method applied to nurse scheduling, 2002, Seventh International Conference on Parallel
Problem Solving from Nature, PPSN2002, Springer LNCS, pp. 851-860.

[10] Easton, F, Mansour, N, A Distributed Genetic Algorithm For Deterministic And
Stochastic Labor Scheduling Problems, 1999,European Journal of Operational
Research, pp. 505-523.

[11] Falkenauer, E., A Hybrid Grouping Genetic Algorithm for Bin Packing, 1996, Journal
of Heuristics, vol 2, No. 1, pp. 5-30.

[12] Fraser, A.S., Simulation of genetic systems by automatic digital computers. II, 1957,
Effects of linkage on rates under selection. Australian J. of Biol Sci, vol 10, pp 492-499

[13] Gratch, J., Chien, S., Adaptive Problem-Solving for Large-Scale Scheduling Problems:
A Case Study, 1996, Journal of Artificial Intelligence Research, vol. 4, pp. 365-396.

[14] Han, L., Kendall, G., and Cowling, P., An adaptive length chromosome hyperheuristic
genetic algorithm for a trainer scheduling problem, SEAL2002: 267-271.

[15] Han, L., Kendall, G., Investigation of a Tabu Assisted Hyper-Heuristic Genetic
Algorithm, 2003, accepted by CEC’03, Perth, Australia.

[16] Hart, E, Ross, P, Nelson, J, Solving a Real-World Problem Using an Evolving
Heuristically Driven Schedule Builder, 1998, Evolutionary Computation vol. 6, No.1,
pp. 61-80.

[17] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, Ann Arbor, MI:
University of Michigan Press.

[18] Martello, S., Toth, P., Knapsack Problems Algorithms and Computer Implementations,
1990, John Wiley & Son Ltd, Chichester, England.

[19] Mitchell, M.. An introduction to genetic algorithms, 1996, MIT Press, Cambridge.
[20] Moscato, P., 1989, On Evolution, Search, Optimisation, Genetic Algorithms and

Martial Arts: Towards Memetic Algorithms, report 826, Caltech Concurrent
Computation Program, California Institute of Technology, Pasadena, California, USA.

[21] Nareyek, A., Choosing Search Heuristics by Non-Stationary Reinforcement Learning,
2001, in Resende, M.G.C., and de Sousa, J.P. (eds.), Metaheuristics: Computer
Decision-Making, Kluwer Academic Publishers, pp.523-544.

[22] Randall, M, Abramson, D, A General Meta-Heuristic Based Solver for Combinatorial
Optimisation Problems, 2001,Computational Optimisation and Applications, vol. 20,
pp.185-210.

[23] Syswerda, G., Schedule Optimisation Using Genetic Algorithm, 1991, Handbook of
Genetic Algorithms, Edited by Davis, L., International Thomson Computer Press.

[24] Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M., Evolution of Constraint
Satisfaction Strategies in Examination Timetabling, 1999, Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO99). pp. 635-642.

[25] Whitley, D., Starkweather, T., and Shaner, D., The Travelling Salesman and Sequence
Scheduling: Quality Solutions Using Genetic Edge Recombination, 1991,, Handbook of
Genetic Algorithm, Edited by Davis, L., International Thomson Computer Press.

[26] Wren, A. Scheduling, Timetabling and Rostering - a Special Relationship? 1995, in:
ICPTAT'95- Proceedings of the International Conference on the Practice and Theory of
Automate Timetabling, pp. 475-495 Napier University

