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Abstract- In this paper we show how an ant colony 
optimisation algorithm may be used to enumerate 
knight’s tours for variously sized chessboards.  We 
have used the algorithm to enumerate all tours on 5x5 
and 6x6 boards, and, while the number of tours on an 
8x8 board is too large for a full enumeration, our 
experiments suggest that the algorithm is able to 
uniformly sample tours at a constant, fast rate for as 
long as is desired.  

1 Introduction 

A Knight’s Tour is a Hamiltonian path in a graph defined 
by the legal moves for a knight on a chessboard. That is, a 
knight must make a sequence of 63 legal moves such that 
it visits each square of an 8x8 chessboard exactly once. 
Murray (Murray 1913) traces the earliest solutions to this 
problem back to an Arabic text in 840 ad. The text 
describes two tours, one by Ali C. Mani (Figure 1) and 
the other by al-Adli ar-Rumi (Figure 2). The second is 
called a closed tour, as the knight could complete a circuit 
with one more move, while the first one is merely an open 
tour. The problem has been much studied since that time. 
Leonhard Euler carried out the first mathematical analysis 
of the problem, presenting his work to the Academy of 
Sciences in Berlin in 1759 (Euler 1766). Other well-
known mathematicians to work on the problem include 
Taylor, de Moivre and Lagrange. 

McKay calculated the number of closed tours on a 
standard 8x8 chessboard to be 13,267,364,410,532 
(McKay 1997). An upper bound of the number of open 
tours was found to be approximately 1.305x1035 

(Mordecki 2001). The search space is even larger. For 
example, if we were to define a tour using a pair of 
integers between 1 and 8 for the position of the start 
square, and a sequence of 63 such integers to choose 
which of the possible 8 knight’s move to take for each 
move, we would be searching a space of size 865, or 
approximately 5x1058. 

It is not surprising, given its long history, that there are 
many approaches for producing knight’s tours. A depth-
first search, with backtracking, is perhaps the most 
obvious, though rather slow. A heuristic approach due to 
Warnsdorff, although dating back to 1823, is perhaps the 
most widely known approach (Warnsdorff 1823). Using 
Warnsdorff’s heuristic, at each move, the knight moves to 
a square that has the lowest number of next moves 

available. The idea is that towards the end of the tour the 
knight will visit squares that have more moves available. 
Using the heuristic greatly increases the likelihood of 
finding a complete tour, but obviously tours that do not 
satisfy the heuristic cannot be discovered. 
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Figure 1 - Open tour due to Ali C. Mani 
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Figure 2 - Closed tour due to al-Adli ar-Rumi 



When only one or a few Knight’s tours are wanted, a 
number of efficient methods exist, for example, using 
divide and conquer methods (Parberry 1997), or neural 
networks (Takefuji and Lee 1994). 

A recent approach to finding many knight’s tours 
utilised a genetic algorithm (Gordon and Slocum 2004). 
The authors used a simple genetic algorithm (Goldberg 
1989), encoding an attempted knight’s tour as a sequence 
of 64x3 bits. Each triple represents a single move by the 
knight, with the fitness being defined as the number of 
legal moves (maximum = 63) before the knight jumps off 
the board or revisits a square. The last 3 bits were ignored 
as the authors were not concerned with finding closed 
tours. If a candidate tour led to an illegal move, a repair 
operator was used to check the other seven possible 
knight’s moves and replace the illegal move with a legal 
move if there is one, and then attempt to continue the 
tour, doing more repairs if needed. Without this repair 
operator, the genetic algorithm found no complete tours. 
Adding repair functionality allowed tours to be 
discovered. The maximum number of tours they reported 
in a single run, which consisted of 1,000,000 evaluations, 
was 642, a rate of 0.000642 tours per attempt. By 
contrast, a naïve depth first search yields approximately 
0.000003 tours per attempt. 

In (Hingston and Kendall 2004), the current authors 
introduced an ant colony optimisation algorithm for 
generating knight’s tours, which produced about 0.076 
tours per attempt. In this paper, we improve on the 
algorithm, and also investigate its performance on smaller 
boards, where a complete enumeration is possible, 
making analysis easier. 

2 The Ant Colony Optimisation Algorithm 

In this section, we describe the ant colony optimisation 
algorithm that we designed to enumerate knight’s tours. 
We first review the basics of ant colony optimisation 
(ACO), and present the ACO algorithm that we 
introduced in (Hingston and Kendall 2004). It is similar to 
the well-known Ant Systems algorithm introduced by 
Dorigo et al. (Dorigo, Maniezzo et al. 1996). We then 
describe a new modification utilising multiple restarts of 
the earlier algorithm. 

2.1 Ant Colony Algorithms 
Ant colony optimisation algorithms are based on the 
natural phenomenon that ants, despite being almost blind 
and having very simple brains, are able to find their way 
to a food source and back to their nest, using the shortest 
route. Ant colony optimisation (ACO) algorithms were 
introduced by Marco Dorigo in his PhD thesis (Dorigo 
1992) and later in the seminal paper in this area (Dorigo, 
Maniezzo et al. 1996). In (Dorigo, Maniezzo et al. 1996) 
the algorithm is introduced by considering what happens 
when an ant comes across an obstacle and has to decide 
the best route to take around the obstacle. Initially, there 
is equal probability as to which way the ant will turn in 

order to negotiate the obstacle. Now consider a colony of 
ants making many trips around the obstacle and back to 
the nest. As they move, ants deposit a chemical (a 
pheromone) along their trail. If we assume that one route 
around the obstacle is shorter than the alternative route, 
then in a given period of time, a greater proportion of 
trips can be made over the shorter route. Thus, over time, 
there will be more pheromone deposited on the shorter 
route. Ants can increase their chance of finding the 
shorter route by preferentially choosing the one with more 
pheromone. There is positive feedback, in that the more 
successful a behaviour proves to be, the more desirable it 
becomes. This form of behaviour is known as stigmergy 
or autocatalytic behaviour. 

This idea has been transformed into various search 
algorithms, by augmenting the probabilistic nature of ant 
movements following pheromone trails, with a problem 
specific heuristic. See (Cordon, Herrera et al. 2002) for a 
review of algorithms based on this idea. In the most 
famous example, ants can be used to search for solutions 
for the traveling salesman problem. Each ant in the colony 
traverses the city graph, depositing pheromone on edges 
between cities. High levels of pheromone on an edge 
indicate that it is part of relatively shorter tours found by 
previous ants. When deciding when to move from one 
vertex (city) to another, ants take into account the level of 
pheromone on the candidate edges along with a heuristic 
value (distance to the next city for the TSP). The 
combination of pheromone and heuristic probabilistically 
determines which city an ant moves to next. 

2.2 One-shot Ant Colony Algorithm for Enumerating 
Knight’s Tours 

In this section, we describe the ant colony optimisation 
algorithm introduced in [Error! Bookmark not defined.] 
to discover knight’s tours. We will call this algorithm the 
ant colony enumeration (ACE) algorithm. As for the TSP, 
ants traverse a graph, depositing pheromones as they do 
so. The vertices of the graph correspond to the squares on 
a chessboard, and edges correspond to legal knight’s 
moves between the squares. Each ant starts on some 
square and moves from square to square by choosing an 
edge to follow, always making sure that the destination 
square has not been visited before. An ant that 
successfully visits all the squares on the board will have 
discovered a knight’s tour. Here is a pseudo-code of the 
algorithm: 
Initialise the chessboard 
For each cycle 
  Evaporate pheromones 
  For each starting square 
    Start an ant 
    While not finished 
      Choose next move  
      Move to a new square 
    If tour is complete, save it 
    Lay pheromone 
  Update pheromones 

Note that we found it advantageous to search for 
solutions from all starting squares simultaneously, rather 



than running the algorithm multiple times, once for each 
starting square. We hypothesise that there is information 
sharing between ants starting on different squares. That is, 
an ant starting on one square can utilise the knowledge 
gained by ants starting on more remote squares – 
knowledge that is more difficult to obtain from other ants 
starting on the same square. 

We need some notation to describe the algorithm in 
detail. First, we define kcolrowT ,,  to be the amount of 
pheromone on the kth edge from the square in row row 
and column col. Note that for squares near the edge of the 
chessboard, some moves would take the knight off the 
board and are illegal. We set 0,, =kcolrowT  for the 
corresponding edges. We use kcolrowdest ,, to denote the 
square we would reach if we followed edge k from square 
( )colrow, . 
 
Initialising the chessboard 
Initially, a small amount of pheromone is laid on each 
edge. In our simulations we used 6

,, 10−=kcolrowT for all 
edges corresponding to legal moves. 
 
Evaporating pheromones 
Pheromones evaporate over time. This prevents the level 
of pheromone becoming unbounded, and allows the ant 
colony to “forget” old information. In our algorithm, we 
implemented this by reducing the amount of pheromone 
on each edge once per cycle, using the update formula: 

kcolrowkcolrow TT ,,,, )1( ×−→ ρ  
where 10 << ρ  is called the evaporation rate. After 
some experimentation, we set this to 0.25. 
 
Starting an ant 
Each ant has a current square ( )colrow,  and a tabu list, 
which is the set of squares that the ant has visited so far. 
Initially, ( ){ }startColstartRowtabu ,= . Each ant also 
remembers its start square, and its sequence of moves. 
Initially, =<>moves , an empty list. 

 
Choosing the next move 
To choose its next move, an ant computes, for each edge 
leading to a square not in its tabu list, the following 
quantity: 

α)( ,, kcolrowk Tp =  
where 0≥α , the strength, is a constant that determines 
how closely the ant follows the pheromone. It then 
chooses edge k with probability: 

∑
∉

=

tabudestj
j

k
k

jcolrow

p
pprob

,,:

 

Thus the ant is more likely to choose moves whose edges 
have more pheromone. 

 
Moving to the new square 

In some ACO’s, ants deposit pheromone as they traverse 
each edge. Another alternative, which we use in our 
algorithm, is to deposit pheromone only after the ant has 
completed an attempted tour. Hence, having chosen edge 
k, the ant simply moves to kcolrowdest ,, , and sets: 

{ }kcolrowdesttabutabu ,,∪→ , and 
><+→ kmovesmoves  

Keep going until finished 
Eventually, the ant will find itself on a square where all 
potential moves lead to a square in her tabu list. If it has 
visited all the squares on the chessboard, it has succeeded 
in finding a valid knight’s tour. If not, it has completed a 
partial tour. 
 
Lay pheromone 
When she has finished her attempted tour, the ant retraces 
its steps and adds pheromone to the edges that it traverses. 
In order to reinforce more successful attempts, more 
pheromone is added for longer tours. We have found that 
we obtain slightly better results by reinforcing moves at 
the start of the tour more than those towards the end of it. 
Specifically, we define, for each ant a, for each row and 
column, and each edge k: 

)63(
)(

,,, i
imoves

QT kcolrowa −
−

×=Δ , if ant a’s ith move 

used edge k from row, col, and 
 

0,,, =Δ kcolrowaT , otherwise 
where the parameter Q is the update rate, and the value 

63 here represents the length of a complete open tour. 
Thus, each ant contributes an amount of pheromone 
between 0 and Q. Actually, it is never 0 for an edge that is 
used. For example, the shortest possible failed attempt has 
three moves. In these experiments, we set Q to 1.0. Once 
all the ants have completed their attempted tours, we then 
update the pheromone trails using the formula: 

∑Δ+→
a

kcolrowakcolrowkcolrow TTT ,,,,,,, . 

2.3 Ant colony algorithm with multiple restarts 
In our previous work (Hingston and Kendall 2004), we 
ran the ACE for only 100,000 cycles at a time, i.e. 
6,400,000 attempted tours. We noted that the rate of 
production of new tours initially rises as the colony learns 
a good arrangement of pheromone levels, then starts to 
drop away when learning stops and the ants start to repeat 
tours found earlier. We speculated that this problem might 
be overcome by periodically resetting the pheromone 
levels, so that the ants would explore different areas of the 
search space. We call this multiple-restart version of the 
algorithm MACE. Pseudo-code for MACE is just 
For each repeat 
  Initialise the chessboard 
  Execute the one-shot algorithm 

We have since found that performing multiple restarts 
is essential when working on smaller board sizes, because 



the one-shot algorithm quickly converges and covers only 
a limited portion of the search space. 

An idea similar to mutiple restarts has been used 
before in the context of optimisation. The MACO 
algorithm (multiple ant colony optimization) proposed by 
Sim et al. (Sim and Sun 2003) uses multiple ant colonies, 
each with their own type pheromone. Ants are repulsed 
by the pheromone of ants from different colonies.  This is 
applied in networking applications, where several routes 
through a network are sought and the desire is to 
minimise interference. It is doubtful if this method would 
scale to our situation, where thousands of restarts are 
used. Multi-colony ant algorithms have also been studied 
as a way to parallelize ACOs (see e.g. (Middendorf, 
Reischle et al. 2000)).  

3 Choosing alpha and the number of cycles 

To implement the multiple restart algorithm, we must 
decide how often to restart – i.e. how many cycles to use 
within each repeat. In this section we describe the method 
we used to make this choice. The method also allows us 
to choose a suitable value for α , the strength parameter.  

For a given value of α , we plot the number of 
attempted tours against the average production rate up to 
that number of attempts. This average increases as the 
ants learn a good pattern of pheromones,  and then starts 
to drop once the pheromone levels have converged and 
ants begin to repeat earlier tours. We choose the number 
of attempts that gives the peak value of average 
production rate. Finally, we select the value of α for 
which this peak average production rate is greatest. 
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Figure 3 - Mean production rates for 5x5 knight's 

tours 
 
Figure 3 illustrates the method for a 5x5 chessboard, 

where the best rate was approximately 0.0138 tours per 
attempted tour, which occurs with an α value of 1.0, after 
2100 attempts (about 84 cycles). Note that each data point 
on the graph is actually an average value over 10 runs of 
the one-shot algorithm. The obvious extension of this 
method could be used to select values for other algorithm 
parameters – the evaporation rate and update rate. 

4 Experiments 

In this section, we report on experiments comparing the 
efficiency and effectiveness of MACE with that of 
alternative methods. While we are most interested in the 
traditional 8x8 chessboard, we begin with 5x5 and 6x6 
boards, as these are small enough to make complete 
enumeration practical, affording an opportunity to analyse 
the performance of the algorithm more completely. (Note 
that there are no knight’s tours for 3x3 or 4x4 boards.) 
We then extrapolate to the 8x8 case. We have not 
considered the 7x7 case, as it is too large for complete 
enumeration, and not of much interest of itself. 

4.1 The 5x5 board 
Table 1 shows the results from running a full enumeration 
by depth-first search on a 5x5 board. In total 1,728 tours 
were found (none of which is a closed tour) from 
14,897,808 attempts. This is a production rate of about 
0.000116. Table 2 shows the number of “Warnsdorff” 
tours on a 5x5 board (320 in total).  Using the heuristic, 
only 856 attempts are needed to find these 320 tours – a 
much higher production rate (0.374) - but less than 20% 
of the existing tours can be found this way. For larger 
board sizes, this proportion is much smaller. 

As expected, the tables have several symmetries, so we 
can determine all the table entries from those in a triangle 
in the top left of the table. For larger boards, we will only 
show that triangle. 

Using α = 1.0 and 84 cycles per restart, we ran the 
multiple restart ant colony algorithm until all 1,728 tours 
were found. We repeated this procedure for 20 runs, 
recording the number of attempted tours needed for each 
run. The mean number of attempted tours required was 
1,734,370, with a minimum of 1,231,451 and a maximum 
of 2,521,101. Thus, the average production rate was 0.001 
tours per attempt, nearly 10 times the rate achieved by 
depth-first search. This is less than the rate for one repeat 
(0.0138), because the sets of tours found in each repeat 
are not disjoint sets, so some of the tours found later in 
the search will have already been found in earlier repeats. 
Nevertheless, the ant algorithm requires far less attempts 
than depth–first search does. However, the computational 
time is longer for the ant algorithm as each tour carries 
more computational overhead: each ant must calculate the 
probabilities needed to choose each move; the pheromone 
levels need to be updated after a tour has been completed 
by 25 ants (i.e. one in each square) and so on.  

Figure 4 shows the number of tours found versus the 
number of attempts for a single run of various algorithms. 
The ant algorithm is initially very fast, but tails off later. 
The first 1,700 solutions are found in about the same time 
it takes to find the last 28. We picture each repeat as 
exploring a randomly chosen patch of the search space. 
Patches explored by later repeats overlap with earlier 
ones. We can use this picture to develop an empirical 
model of the performance of the algorithm: let us assume 
that each patch is randomly placed, that within each 
patch, each tour is equally likely to occur. Then at each 



attempt, the algorithm is equally likely to discover any 
tour (in this case, the probability of discovering a 
particular tour on a particular attempt would be p = 
0.0138/1728).  The probability that a particular tour has 
not been disovered by the nth attempt would therefore be 

( )p
n

−1 . Hence, the expected number of tours found 

by n attempts would be ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−× p

n
N 11 , where N is 

the total number of tours. This is plotted in Figure 4 as the 
dotted line labelled “formula”. While the fit is quite good, 
we shall see in the 6x6 case that it is not quite correct – 
the assumption of equal probabilities for all tours must be 
wrong. 
 
Table 1 Exhaustive depth-first search on a 5x5 board 

Total tours found = 1,728. None of the tours is closed. The table 
entries are tours tried/tours found 
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Table 2 Warnsdorff tours on a 5x5 board 
The number of Warnsdorff tours is 320. The table entries are tours 

tried/tours found 
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Figure 4 - Tours found on a 5x5 chessboard using 
various algorithms 

 
We have also included another line on the plot, 

labelled “random”. This was obtained by running the ant 
colony algorithm with learning (i.e. pheromone update) 
disabled. This corresponds roughly to making random 
choices at each move, and it does surprisingly well on 5x5 
boards, at least compared to a full depth-first search. The 
effect of learning by the ant colony is clearly shown in the 
comparison between ants with learning and ants without. 
For larger board sizes, this random variant is not able to 
find tours at a reasonable rate. 

4.2 The 6x6 board 
We now turn to the case of a 6x6 chessboard. This is 

more challenging than the 5x5 one, but it is still possible 
to completely enumerate all the tours. 

Table 3 shows the number of tours found in an 
exhaustive enumeration on a 6x6 board. Just the top-left 
corner of the table is shown – the rest can by filled in 
using symmetries. Depth first search required 
210,036,568,392 attempts, giving a production rate of  
0.0000316. We have not shown the table for Warnsdorff 
tours, but there are 1,984, of which 360 are closed, 
requiring 2,914 attempts to find them. This is such a tiny 
proportion of the total number of tours that we will not 
consider the Warnsdorff heuristic further. 

Using the technique described in Section 3, we 
determined to use α = 1.0 (with a mean production rate 
of 0.0467), and 260 cycles per repeat for the ant 
algorithm. 

Figure 5 shows the performance of the various 
algorithms. Note that we have switched to a log-scale on 
the x-axis so that the performance of all the algorithms 
can be seen together. The plot clearly shows the 
superiority of the ant colony algorithm over depth-first 
search. The ant colony requires roughly 1% of the number 
of  attempts that depth-first search does. The Warnsdorff 
and random algorithms would barely climb above the x-
axis were we to include them in this plot. Also shown is 
the predicted performance on the ant colony algorithm 
based on the formula developed above. The formula gives 
a fairly good fit up until around 30,000,000 attempts, or 
850,000 tours found, after which the actual production 



rate drops below the prediction. We hypothesise that this 
is because some tours are actually harder to find than 
others, so the production rates drops after most of the 
“easy” tours have been found. 
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Figure 5 - Tours found on a 6x6 chessboard using 

various algorithms 
 

We should also mention at this point an 
implementation problem that we encountered. For boards 
of 6x6 and larger, actually storing the tours as they are 
found, so that we can check whether the tour has already 
been found, becomes an issue. Note that uniqueness is 
guaranteed for the depth-first search, so there is no need 
to store the tours, but we need to check for uniqueness 
with the ant algorithm. We found that there were too 
many  tours to be kept in memory, even with some 
compression, and storing, retrieving and checking them 
from file is a considerable performance penalty. We 
therefore switched to a hashing scheme to check 
uniqueness. 

 
Table 3 Exhaustive depth-first search on 6x6 board 
Total tours found  = 6,637,920. 19,724 are closed tours. 
The table entries are tours tried/tours found. Note that 

the 6x6 table can be completed using symmetry. 
7,083,683,400 
524,486 

  

7,294,926,164 
289,050 

6,543,995,877 
173,402 

 

6,284,771,475 
115,837 

4,394,081,182 
49,578 

2,933,905,179 
52,662 

 
The scheme used is as follows: we created H distinct 

hash functions, over an address space of size 
12x1024x1024. We created H bitmaps of this size.  When 

a tour was found, we set the corresponding bits in the H 
bitmaps as determined by the hash functions. When a 
candidate new tour was found, we checked to see whether 
the H bits for the candidate tour were already set. If any 
bit was not set, then the candidate is guaranteed to be a 
new tour. If all bits were already set, then it is likely that 
the tour has already been found. Assuming the hash 
functions are independent and generate uniformly 
distributed values, the chance of a collision even when 
nearly all the tours have been found is less  than  roughly 
2-H. We set H to 25, sufficient to make the chance of a 
collision around 1 in 33,000,000.  In practice, this means 
that we should expect very few, if any, collisions. Some 
testing confirmed that this was the case. Note that, even if 
there were a few collisions, this would make our 
performance measurement for the ant colony algorithm a 
conservative one. 

4.3 The 8x8 board 
Finally, we return to the original problem, enumerating 
knight’s tours on an 8x8 chessboard. As mentioned at the 
start, the number of tours here is enormous, and we 
cannot even consider attempting to enumerate them all. 
Hence we can do no better than to run the algorithms for a 
certain number of attempted tours or for a certain amount 
of time, and examine the performance up to that point. 
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Figure 6 - Tours found on an 8x8 chessboard 

 
Figure 6 shows the number of tours found by MACE 

on an 8x8 chessboard on one such run. We used the 
method of Section 3 to determine settings of  α = 1.0, and 
27,000 cycles per repeat (mean production rate of  
0.0926). At the end of this run, MACE had found 
13,124,464 tours from 172,800,000 attempts, a rate of 
0.076. The formula predicts 16,000,000 solutions from 
this number of attempts. We believe that the reason for 
the discrepancy in this case is that the method of Section 
3 yields a biased estimate of the production rate (since we 
are choosing the maximum value from a set of samples). 
The effect due to non-uniform probabilities that we saw in 
the 5x5 case and 6x6 case would not be apparent here as 
we have only enumerated a tiny fraction of the existing 
tours. The rate of 0.076 agrees with the earlier value 
found in (Hingston and Kendall 2004). 

By contrast, after the same number of attempts, depth-
first search had found 6 tours. This is why we haven’t 



included depth-first search in the plot. After 
6,129,510,000 attempts, the total number of tours found 
was 5,728. Recall that the genetic algorithm approach had 
a production rate of only 0.000642, supposing that this 
could be maintanied over longer runs. Warnsdorff’s 
heuristic has already been discounted because of its lack 
of coverage. 

For interest, Table 4 shows the percentage of tours 
found for each starting point. It can be seen that the 
corners and the centre are the easiest places to start. The 
corners might be expected to be relatively easy, because 
there are only two ways to move into or out of these 
squares, so getting them out of the way early should help 
(an application of Warnsdorff’s heuristic). We have no 
explanation as to why the centre squares are relatively 
easy. The hardest are the squares that are a knight’s move 
from the corners. This may be because a tour starting 
from one of these squares must either jump straight to the 
corner or end in the corner, so the other 5 choices for the 
first move make completing the tour difficult. 

 
Table 4 - Percentage of tours found for each starting 

square on an 8x8 board 
1.93 1.66 1.49 1.80 1.79 1.55 1.72 1.93 

1.69 1.52 0.93 1.45 1.48 1.03 1.51 1.64 

1.51 1.06 1.47 1.65 1.70 1.44 1.00 1.47 

1.76 1.42 1.63 1.93 1.95 1.69 1.41 1.81 

1.79 1.50 1.63 1.90 1.97 1.65 1.46 1.79 

1.49 1.09 1.43 1.63 1.68 1.46 1.05 1.48 

1.77 1.51 0.93 1.44 1.45 0.93 1.53 1.70 

1.92 1.66 1.41 1.82 1.77 1.50 1.67 1.94 

5 Conclusions 

We have shown how an ant colony optimisation 
algorithm can be employed to enumerate knight’s tours on 
variously sized chessboards. The method is able to 
generate nearly uniform samples of the solution space 
using several orders of magnitude fewer attempts than 
other methods.  

This is an unusual application for ant colony 
optimisation algorithms, which are usually used to search 
for a single (optimum) solution. With the knight’s tour, 
we are interested in finding all the (equally) optimal 
solutions. There is always a tension in stochastic search 
methods like ACO, evolutionary algorithms, simulated 

annealing etc between exploration and exploitation. In 
this kind of application, while the exploitation component 
is present (compare MACE with random search as in 
Figure 4) the exploration component of the search is 
emphasised. It would be interesting to know what other 
problems exist where all solutions are required. 

There are various ways in which MACE might be 
further enhanced. For example, depth-first search can be 
sped up by recognising partial tours as hopeless earlier, 
and we could do the same with MACE. We could add a 
local search component, or try some of the other 
enhancements and variations developed for other ant 
colony optimisation algorithms. We experimented with 
adding a heuristic component to the move selection rule 
(based on the Warnsdorff heuristic), as is normally done 
in ant colony optimsation. Though this increased the 
production rate, we abandoned it because it biased the 
distribution of tours found. We could have spent more 
effort to optimise learning rate and evaporation rate. 

In future work, we intend to explore some of these 
options in order to tackle several related problems: large 
boards and magic tours. Large boards are interesting 
because Warnsdorff’s heuristic becomes very slow and 
fails on some board sizes. There are other heuristics, but 
the problem is far from solved. The problem of finding 
magic tours is also difficult. A tour is magic if the table of 
numbers formed as in Figure 1 and Figure 2 forms a 
magic square (i.e. the row, column and diagonal sums are 
all equal). A tour is semi-magic if just the row and 
column sums are equal. For example, there are no magic 
tours on an 8x8 board, and there are only 2,240 semi-
magic ones. Magic tours are rare and difficult to find. 
Perhaps MACE can be used as the basis for an efficient 
search for magic square 
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