
Enumerating Knight’s Tours using an Ant Colony Algorithm

Philip Hingston
Edith Cowan University

2 Bradford St, Mt Lawley, 6050
Australia

p.hingston@ecu.edu.au

Graham Kendall
The University of Nottingham

Nottingham
UK

gxk@cs.nott.ac.uk

Abstract- In this paper we show how an ant colony
optimisation algorithm may be used to enumerate
knight’s tours for variously sized chessboards. We
have used the algorithm to enumerate all tours on 5x5
and 6x6 boards, and, while the number of tours on an
8x8 board is too large for a full enumeration, our
experiments suggest that the algorithm is able to
uniformly sample tours at a constant, fast rate for as
long as is desired.

1 Introduction

A Knight’s Tour is a Hamiltonian path in a graph defined
by the legal moves for a knight on a chessboard. That is, a
knight must make a sequence of 63 legal moves such that
it visits each square of an 8x8 chessboard exactly once.
Murray (Murray 1913) traces the earliest solutions to this
problem back to an Arabic text in 840 ad. The text
describes two tours, one by Ali C. Mani (Figure 1) and
the other by al-Adli ar-Rumi (Figure 2). The second is
called a closed tour, as the knight could complete a circuit
with one more move, while the first one is merely an open
tour. The problem has been much studied since that time.
Leonhard Euler carried out the first mathematical analysis
of the problem, presenting his work to the Academy of
Sciences in Berlin in 1759 (Euler 1766). Other well-
known mathematicians to work on the problem include
Taylor, de Moivre and Lagrange.

McKay calculated the number of closed tours on a
standard 8x8 chessboard to be 13,267,364,410,532
(McKay 1997). An upper bound of the number of open
tours was found to be approximately 1.305x1035

(Mordecki 2001). The search space is even larger. For
example, if we were to define a tour using a pair of
integers between 1 and 8 for the position of the start
square, and a sequence of 63 such integers to choose
which of the possible 8 knight’s move to take for each
move, we would be searching a space of size 865, or
approximately 5x1058.

It is not surprising, given its long history, that there are
many approaches for producing knight’s tours. A depth-
first search, with backtracking, is perhaps the most
obvious, though rather slow. A heuristic approach due to
Warnsdorff, although dating back to 1823, is perhaps the
most widely known approach (Warnsdorff 1823). Using
Warnsdorff’s heuristic, at each move, the knight moves to
a square that has the lowest number of next moves

available. The idea is that towards the end of the tour the
knight will visit squares that have more moves available.
Using the heuristic greatly increases the likelihood of
finding a complete tour, but obviously tours that do not
satisfy the heuristic cannot be discovered.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Figure 1 - Open tour due to Ali C. Mani

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Figure 2 - Closed tour due to al-Adli ar-Rumi

When only one or a few Knight’s tours are wanted, a
number of efficient methods exist, for example, using
divide and conquer methods (Parberry 1997), or neural
networks (Takefuji and Lee 1994).

A recent approach to finding many knight’s tours
utilised a genetic algorithm (Gordon and Slocum 2004).
The authors used a simple genetic algorithm (Goldberg
1989), encoding an attempted knight’s tour as a sequence
of 64x3 bits. Each triple represents a single move by the
knight, with the fitness being defined as the number of
legal moves (maximum = 63) before the knight jumps off
the board or revisits a square. The last 3 bits were ignored
as the authors were not concerned with finding closed
tours. If a candidate tour led to an illegal move, a repair
operator was used to check the other seven possible
knight’s moves and replace the illegal move with a legal
move if there is one, and then attempt to continue the
tour, doing more repairs if needed. Without this repair
operator, the genetic algorithm found no complete tours.
Adding repair functionality allowed tours to be
discovered. The maximum number of tours they reported
in a single run, which consisted of 1,000,000 evaluations,
was 642, a rate of 0.000642 tours per attempt. By
contrast, a naïve depth first search yields approximately
0.000003 tours per attempt.

In (Hingston and Kendall 2004), the current authors
introduced an ant colony optimisation algorithm for
generating knight’s tours, which produced about 0.076
tours per attempt. In this paper, we improve on the
algorithm, and also investigate its performance on smaller
boards, where a complete enumeration is possible,
making analysis easier.

2 The Ant Colony Optimisation Algorithm

In this section, we describe the ant colony optimisation
algorithm that we designed to enumerate knight’s tours.
We first review the basics of ant colony optimisation
(ACO), and present the ACO algorithm that we
introduced in (Hingston and Kendall 2004). It is similar to
the well-known Ant Systems algorithm introduced by
Dorigo et al. (Dorigo, Maniezzo et al. 1996). We then
describe a new modification utilising multiple restarts of
the earlier algorithm.

2.1 Ant Colony Algorithms
Ant colony optimisation algorithms are based on the
natural phenomenon that ants, despite being almost blind
and having very simple brains, are able to find their way
to a food source and back to their nest, using the shortest
route. Ant colony optimisation (ACO) algorithms were
introduced by Marco Dorigo in his PhD thesis (Dorigo
1992) and later in the seminal paper in this area (Dorigo,
Maniezzo et al. 1996). In (Dorigo, Maniezzo et al. 1996)
the algorithm is introduced by considering what happens
when an ant comes across an obstacle and has to decide
the best route to take around the obstacle. Initially, there
is equal probability as to which way the ant will turn in

order to negotiate the obstacle. Now consider a colony of
ants making many trips around the obstacle and back to
the nest. As they move, ants deposit a chemical (a
pheromone) along their trail. If we assume that one route
around the obstacle is shorter than the alternative route,
then in a given period of time, a greater proportion of
trips can be made over the shorter route. Thus, over time,
there will be more pheromone deposited on the shorter
route. Ants can increase their chance of finding the
shorter route by preferentially choosing the one with more
pheromone. There is positive feedback, in that the more
successful a behaviour proves to be, the more desirable it
becomes. This form of behaviour is known as stigmergy
or autocatalytic behaviour.

This idea has been transformed into various search
algorithms, by augmenting the probabilistic nature of ant
movements following pheromone trails, with a problem
specific heuristic. See (Cordon, Herrera et al. 2002) for a
review of algorithms based on this idea. In the most
famous example, ants can be used to search for solutions
for the traveling salesman problem. Each ant in the colony
traverses the city graph, depositing pheromone on edges
between cities. High levels of pheromone on an edge
indicate that it is part of relatively shorter tours found by
previous ants. When deciding when to move from one
vertex (city) to another, ants take into account the level of
pheromone on the candidate edges along with a heuristic
value (distance to the next city for the TSP). The
combination of pheromone and heuristic probabilistically
determines which city an ant moves to next.

2.2 One-shot Ant Colony Algorithm for Enumerating
Knight’s Tours

In this section, we describe the ant colony optimisation
algorithm introduced in [Error! Bookmark not defined.]
to discover knight’s tours. We will call this algorithm the
ant colony enumeration (ACE) algorithm. As for the TSP,
ants traverse a graph, depositing pheromones as they do
so. The vertices of the graph correspond to the squares on
a chessboard, and edges correspond to legal knight’s
moves between the squares. Each ant starts on some
square and moves from square to square by choosing an
edge to follow, always making sure that the destination
square has not been visited before. An ant that
successfully visits all the squares on the board will have
discovered a knight’s tour. Here is a pseudo-code of the
algorithm:
Initialise the chessboard
For each cycle
 Evaporate pheromones
 For each starting square
 Start an ant
 While not finished
 Choose next move
 Move to a new square
 If tour is complete, save it
 Lay pheromone
 Update pheromones

Note that we found it advantageous to search for
solutions from all starting squares simultaneously, rather

than running the algorithm multiple times, once for each
starting square. We hypothesise that there is information
sharing between ants starting on different squares. That is,
an ant starting on one square can utilise the knowledge
gained by ants starting on more remote squares –
knowledge that is more difficult to obtain from other ants
starting on the same square.

We need some notation to describe the algorithm in
detail. First, we define kcolrowT ,, to be the amount of
pheromone on the kth edge from the square in row row
and column col. Note that for squares near the edge of the
chessboard, some moves would take the knight off the
board and are illegal. We set 0,, =kcolrowT for the
corresponding edges. We use kcolrowdest ,, to denote the
square we would reach if we followed edge k from square
()colrow, .

Initialising the chessboard
Initially, a small amount of pheromone is laid on each
edge. In our simulations we used 6

,, 10−=kcolrowT for all
edges corresponding to legal moves.

Evaporating pheromones
Pheromones evaporate over time. This prevents the level
of pheromone becoming unbounded, and allows the ant
colony to “forget” old information. In our algorithm, we
implemented this by reducing the amount of pheromone
on each edge once per cycle, using the update formula:

kcolrowkcolrow TT ,,,,)1(×−→ ρ
where 10 << ρ is called the evaporation rate. After
some experimentation, we set this to 0.25.

Starting an ant
Each ant has a current square ()colrow, and a tabu list,
which is the set of squares that the ant has visited so far.
Initially, (){ }startColstartRowtabu ,= . Each ant also
remembers its start square, and its sequence of moves.
Initially, =<>moves , an empty list.

Choosing the next move
To choose its next move, an ant computes, for each edge
leading to a square not in its tabu list, the following
quantity:

α)(,, kcolrowk Tp =
where 0≥α , the strength, is a constant that determines
how closely the ant follows the pheromone. It then
chooses edge k with probability:

∑
∉

=

tabudestj
j

k
k

jcolrow

p
pprob

,,:

Thus the ant is more likely to choose moves whose edges
have more pheromone.

Moving to the new square

In some ACO’s, ants deposit pheromone as they traverse
each edge. Another alternative, which we use in our
algorithm, is to deposit pheromone only after the ant has
completed an attempted tour. Hence, having chosen edge
k, the ant simply moves to kcolrowdest ,, , and sets:

{ }kcolrowdesttabutabu ,,∪→ , and
><+→ kmovesmoves

Keep going until finished
Eventually, the ant will find itself on a square where all
potential moves lead to a square in her tabu list. If it has
visited all the squares on the chessboard, it has succeeded
in finding a valid knight’s tour. If not, it has completed a
partial tour.

Lay pheromone
When she has finished her attempted tour, the ant retraces
its steps and adds pheromone to the edges that it traverses.
In order to reinforce more successful attempts, more
pheromone is added for longer tours. We have found that
we obtain slightly better results by reinforcing moves at
the start of the tour more than those towards the end of it.
Specifically, we define, for each ant a, for each row and
column, and each edge k:

)63(
)(

,,, i
imoves

QT kcolrowa −
−

×=Δ , if ant a’s ith move

used edge k from row, col, and

0,,, =Δ kcolrowaT , otherwise
where the parameter Q is the update rate, and the value

63 here represents the length of a complete open tour.
Thus, each ant contributes an amount of pheromone
between 0 and Q. Actually, it is never 0 for an edge that is
used. For example, the shortest possible failed attempt has
three moves. In these experiments, we set Q to 1.0. Once
all the ants have completed their attempted tours, we then
update the pheromone trails using the formula:

∑Δ+→
a

kcolrowakcolrowkcolrow TTT ,,,,,,, .

2.3 Ant colony algorithm with multiple restarts
In our previous work (Hingston and Kendall 2004), we
ran the ACE for only 100,000 cycles at a time, i.e.
6,400,000 attempted tours. We noted that the rate of
production of new tours initially rises as the colony learns
a good arrangement of pheromone levels, then starts to
drop away when learning stops and the ants start to repeat
tours found earlier. We speculated that this problem might
be overcome by periodically resetting the pheromone
levels, so that the ants would explore different areas of the
search space. We call this multiple-restart version of the
algorithm MACE. Pseudo-code for MACE is just
For each repeat
 Initialise the chessboard
 Execute the one-shot algorithm

We have since found that performing multiple restarts
is essential when working on smaller board sizes, because

the one-shot algorithm quickly converges and covers only
a limited portion of the search space.

An idea similar to mutiple restarts has been used
before in the context of optimisation. The MACO
algorithm (multiple ant colony optimization) proposed by
Sim et al. (Sim and Sun 2003) uses multiple ant colonies,
each with their own type pheromone. Ants are repulsed
by the pheromone of ants from different colonies. This is
applied in networking applications, where several routes
through a network are sought and the desire is to
minimise interference. It is doubtful if this method would
scale to our situation, where thousands of restarts are
used. Multi-colony ant algorithms have also been studied
as a way to parallelize ACOs (see e.g. (Middendorf,
Reischle et al. 2000)).

3 Choosing alpha and the number of cycles

To implement the multiple restart algorithm, we must
decide how often to restart – i.e. how many cycles to use
within each repeat. In this section we describe the method
we used to make this choice. The method also allows us
to choose a suitable value for α , the strength parameter.

For a given value of α , we plot the number of
attempted tours against the average production rate up to
that number of attempts. This average increases as the
ants learn a good pattern of pheromones, and then starts
to drop once the pheromone levels have converged and
ants begin to repeat earlier tours. We choose the number
of attempts that gives the peak value of average
production rate. Finally, we select the value of α for
which this peak average production rate is greatest.

0

2

4

6

8

10

12

14

16

0 2000 4000 6000 8000 10000 12000 14000

attempted tours

10
00

xt
ou

rs
 fo

un
d/

at
te

m
pt

ed
 to

ur

alpha = 0.8
alpha = 0.9
alpha = 1
alpha = 1.1

Figure 3 - Mean production rates for 5x5 knight's

tours

Figure 3 illustrates the method for a 5x5 chessboard,

where the best rate was approximately 0.0138 tours per
attempted tour, which occurs with an α value of 1.0, after
2100 attempts (about 84 cycles). Note that each data point
on the graph is actually an average value over 10 runs of
the one-shot algorithm. The obvious extension of this
method could be used to select values for other algorithm
parameters – the evaporation rate and update rate.

4 Experiments

In this section, we report on experiments comparing the
efficiency and effectiveness of MACE with that of
alternative methods. While we are most interested in the
traditional 8x8 chessboard, we begin with 5x5 and 6x6
boards, as these are small enough to make complete
enumeration practical, affording an opportunity to analyse
the performance of the algorithm more completely. (Note
that there are no knight’s tours for 3x3 or 4x4 boards.)
We then extrapolate to the 8x8 case. We have not
considered the 7x7 case, as it is too large for complete
enumeration, and not of much interest of itself.

4.1 The 5x5 board
Table 1 shows the results from running a full enumeration
by depth-first search on a 5x5 board. In total 1,728 tours
were found (none of which is a closed tour) from
14,897,808 attempts. This is a production rate of about
0.000116. Table 2 shows the number of “Warnsdorff”
tours on a 5x5 board (320 in total). Using the heuristic,
only 856 attempts are needed to find these 320 tours – a
much higher production rate (0.374) - but less than 20%
of the existing tours can be found this way. For larger
board sizes, this proportion is much smaller.

As expected, the tables have several symmetries, so we
can determine all the table entries from those in a triangle
in the top left of the table. For larger boards, we will only
show that triangle.

Using α = 1.0 and 84 cycles per restart, we ran the
multiple restart ant colony algorithm until all 1,728 tours
were found. We repeated this procedure for 20 runs,
recording the number of attempted tours needed for each
run. The mean number of attempted tours required was
1,734,370, with a minimum of 1,231,451 and a maximum
of 2,521,101. Thus, the average production rate was 0.001
tours per attempt, nearly 10 times the rate achieved by
depth-first search. This is less than the rate for one repeat
(0.0138), because the sets of tours found in each repeat
are not disjoint sets, so some of the tours found later in
the search will have already been found in earlier repeats.
Nevertheless, the ant algorithm requires far less attempts
than depth–first search does. However, the computational
time is longer for the ant algorithm as each tour carries
more computational overhead: each ant must calculate the
probabilities needed to choose each move; the pheromone
levels need to be updated after a tour has been completed
by 25 ants (i.e. one in each square) and so on.

Figure 4 shows the number of tours found versus the
number of attempts for a single run of various algorithms.
The ant algorithm is initially very fast, but tails off later.
The first 1,700 solutions are found in about the same time
it takes to find the last 28. We picture each repeat as
exploring a randomly chosen patch of the search space.
Patches explored by later repeats overlap with earlier
ones. We can use this picture to develop an empirical
model of the performance of the algorithm: let us assume
that each patch is randomly placed, that within each
patch, each tour is equally likely to occur. Then at each

attempt, the algorithm is equally likely to discover any
tour (in this case, the probability of discovering a
particular tour on a particular attempt would be p =
0.0138/1728). The probability that a particular tour has
not been disovered by the nth attempt would therefore be

()p
n

−1 . Hence, the expected number of tours found

by n attempts would be () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−× p

n
N 11 , where N is

the total number of tours. This is plotted in Figure 4 as the
dotted line labelled “formula”. While the fit is quite good,
we shall see in the 6x6 case that it is not quite correct –
the assumption of equal probabilities for all tours must be
wrong.

Table 1 Exhaustive depth-first search on a 5x5 board

Total tours found = 1,728. None of the tours is closed. The table
entries are tours tried/tours found

625,308
304

727,156
0

595,892
56

727,156
0

625,308
304

727,156
0

601,036
56

384,804
0

601,036
56

727,156
0

595,892
56

384,804
0

252,400
64

384,804
0

595,892
56

727,156
0

601,036
56

384,804
0

601,036
56

727,156
0

625,308
304

727,156
0

595,892
56

727,156
0

625,308
304

Table 2 Warnsdorff tours on a 5x5 board
The number of Warnsdorff tours is 320. The table entries are tours

tried/tours found

32
32

72
0

20
16

72
0

32
32

72
0

20
16

2
0

20
16

72
0

20
16

2
0

64
64

2
0

20
16

72
0

20
16

2
0

20
16

72
0

32
32

72
0

20
16

72
0

32
32

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Millions

Attempted tours

To
ur

s
fo

un
d

depth-first
Warnsdorff
random
formula
ants

Figure 4 - Tours found on a 5x5 chessboard using
various algorithms

We have also included another line on the plot,

labelled “random”. This was obtained by running the ant
colony algorithm with learning (i.e. pheromone update)
disabled. This corresponds roughly to making random
choices at each move, and it does surprisingly well on 5x5
boards, at least compared to a full depth-first search. The
effect of learning by the ant colony is clearly shown in the
comparison between ants with learning and ants without.
For larger board sizes, this random variant is not able to
find tours at a reasonable rate.

4.2 The 6x6 board
We now turn to the case of a 6x6 chessboard. This is

more challenging than the 5x5 one, but it is still possible
to completely enumerate all the tours.

Table 3 shows the number of tours found in an
exhaustive enumeration on a 6x6 board. Just the top-left
corner of the table is shown – the rest can by filled in
using symmetries. Depth first search required
210,036,568,392 attempts, giving a production rate of
0.0000316. We have not shown the table for Warnsdorff
tours, but there are 1,984, of which 360 are closed,
requiring 2,914 attempts to find them. This is such a tiny
proportion of the total number of tours that we will not
consider the Warnsdorff heuristic further.

Using the technique described in Section 3, we
determined to use α = 1.0 (with a mean production rate
of 0.0467), and 260 cycles per repeat for the ant
algorithm.

Figure 5 shows the performance of the various
algorithms. Note that we have switched to a log-scale on
the x-axis so that the performance of all the algorithms
can be seen together. The plot clearly shows the
superiority of the ant colony algorithm over depth-first
search. The ant colony requires roughly 1% of the number
of attempts that depth-first search does. The Warnsdorff
and random algorithms would barely climb above the x-
axis were we to include them in this plot. Also shown is
the predicted performance on the ant colony algorithm
based on the formula developed above. The formula gives
a fairly good fit up until around 30,000,000 attempts, or
850,000 tours found, after which the actual production

rate drops below the prediction. We hypothesise that this
is because some tours are actually harder to find than
others, so the production rates drops after most of the
“easy” tours have been found.

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

7,000,000

1 100 10,000 1,000,000

Attempted tours

To
ur

s
fo

un
d

depth-first
ants
formula

Figure 5 - Tours found on a 6x6 chessboard using

various algorithms

We should also mention at this point an
implementation problem that we encountered. For boards
of 6x6 and larger, actually storing the tours as they are
found, so that we can check whether the tour has already
been found, becomes an issue. Note that uniqueness is
guaranteed for the depth-first search, so there is no need
to store the tours, but we need to check for uniqueness
with the ant algorithm. We found that there were too
many tours to be kept in memory, even with some
compression, and storing, retrieving and checking them
from file is a considerable performance penalty. We
therefore switched to a hashing scheme to check
uniqueness.

Table 3 Exhaustive depth-first search on 6x6 board
Total tours found = 6,637,920. 19,724 are closed tours.
The table entries are tours tried/tours found. Note that

the 6x6 table can be completed using symmetry.
7,083,683,400
524,486

7,294,926,164
289,050

6,543,995,877
173,402

6,284,771,475
115,837

4,394,081,182
49,578

2,933,905,179
52,662

The scheme used is as follows: we created H distinct

hash functions, over an address space of size
12x1024x1024. We created H bitmaps of this size. When

a tour was found, we set the corresponding bits in the H
bitmaps as determined by the hash functions. When a
candidate new tour was found, we checked to see whether
the H bits for the candidate tour were already set. If any
bit was not set, then the candidate is guaranteed to be a
new tour. If all bits were already set, then it is likely that
the tour has already been found. Assuming the hash
functions are independent and generate uniformly
distributed values, the chance of a collision even when
nearly all the tours have been found is less than roughly
2-H. We set H to 25, sufficient to make the chance of a
collision around 1 in 33,000,000. In practice, this means
that we should expect very few, if any, collisions. Some
testing confirmed that this was the case. Note that, even if
there were a few collisions, this would make our
performance measurement for the ant colony algorithm a
conservative one.

4.3 The 8x8 board
Finally, we return to the original problem, enumerating
knight’s tours on an 8x8 chessboard. As mentioned at the
start, the number of tours here is enormous, and we
cannot even consider attempting to enumerate them all.
Hence we can do no better than to run the algorithms for a
certain number of attempted tours or for a certain amount
of time, and examine the performance up to that point.

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

16,000,000

18,000,000

0 20 40 60 80 100 120 140 160 180 200
Millions

Attempted tours

To
ur

s
fo

un
d

ants
formula

Figure 6 - Tours found on an 8x8 chessboard

Figure 6 shows the number of tours found by MACE

on an 8x8 chessboard on one such run. We used the
method of Section 3 to determine settings of α = 1.0, and
27,000 cycles per repeat (mean production rate of
0.0926). At the end of this run, MACE had found
13,124,464 tours from 172,800,000 attempts, a rate of
0.076. The formula predicts 16,000,000 solutions from
this number of attempts. We believe that the reason for
the discrepancy in this case is that the method of Section
3 yields a biased estimate of the production rate (since we
are choosing the maximum value from a set of samples).
The effect due to non-uniform probabilities that we saw in
the 5x5 case and 6x6 case would not be apparent here as
we have only enumerated a tiny fraction of the existing
tours. The rate of 0.076 agrees with the earlier value
found in (Hingston and Kendall 2004).

By contrast, after the same number of attempts, depth-
first search had found 6 tours. This is why we haven’t

included depth-first search in the plot. After
6,129,510,000 attempts, the total number of tours found
was 5,728. Recall that the genetic algorithm approach had
a production rate of only 0.000642, supposing that this
could be maintanied over longer runs. Warnsdorff’s
heuristic has already been discounted because of its lack
of coverage.

For interest, Table 4 shows the percentage of tours
found for each starting point. It can be seen that the
corners and the centre are the easiest places to start. The
corners might be expected to be relatively easy, because
there are only two ways to move into or out of these
squares, so getting them out of the way early should help
(an application of Warnsdorff’s heuristic). We have no
explanation as to why the centre squares are relatively
easy. The hardest are the squares that are a knight’s move
from the corners. This may be because a tour starting
from one of these squares must either jump straight to the
corner or end in the corner, so the other 5 choices for the
first move make completing the tour difficult.

Table 4 - Percentage of tours found for each starting

square on an 8x8 board
1.93 1.66 1.49 1.80 1.79 1.55 1.72 1.93

1.69 1.52 0.93 1.45 1.48 1.03 1.51 1.64

1.51 1.06 1.47 1.65 1.70 1.44 1.00 1.47

1.76 1.42 1.63 1.93 1.95 1.69 1.41 1.81

1.79 1.50 1.63 1.90 1.97 1.65 1.46 1.79

1.49 1.09 1.43 1.63 1.68 1.46 1.05 1.48

1.77 1.51 0.93 1.44 1.45 0.93 1.53 1.70

1.92 1.66 1.41 1.82 1.77 1.50 1.67 1.94

5 Conclusions

We have shown how an ant colony optimisation
algorithm can be employed to enumerate knight’s tours on
variously sized chessboards. The method is able to
generate nearly uniform samples of the solution space
using several orders of magnitude fewer attempts than
other methods.

This is an unusual application for ant colony
optimisation algorithms, which are usually used to search
for a single (optimum) solution. With the knight’s tour,
we are interested in finding all the (equally) optimal
solutions. There is always a tension in stochastic search
methods like ACO, evolutionary algorithms, simulated

annealing etc between exploration and exploitation. In
this kind of application, while the exploitation component
is present (compare MACE with random search as in
Figure 4) the exploration component of the search is
emphasised. It would be interesting to know what other
problems exist where all solutions are required.

There are various ways in which MACE might be
further enhanced. For example, depth-first search can be
sped up by recognising partial tours as hopeless earlier,
and we could do the same with MACE. We could add a
local search component, or try some of the other
enhancements and variations developed for other ant
colony optimisation algorithms. We experimented with
adding a heuristic component to the move selection rule
(based on the Warnsdorff heuristic), as is normally done
in ant colony optimsation. Though this increased the
production rate, we abandoned it because it biased the
distribution of tours found. We could have spent more
effort to optimise learning rate and evaporation rate.

In future work, we intend to explore some of these
options in order to tackle several related problems: large
boards and magic tours. Large boards are interesting
because Warnsdorff’s heuristic becomes very slow and
fails on some board sizes. There are other heuristics, but
the problem is far from solved. The problem of finding
magic tours is also difficult. A tour is magic if the table of
numbers formed as in Figure 1 and Figure 2 forms a
magic square (i.e. the row, column and diagonal sums are
all equal). A tour is semi-magic if just the row and
column sums are equal. For example, there are no magic
tours on an 8x8 board, and there are only 2,240 semi-
magic ones. Magic tours are rare and difficult to find.
Perhaps MACE can be used as the basis for an efficient
search for magic square

References

Cordon, O., F. Herrera, et al. (2002). "A Review on the
Ant Colony Optimization Metaheuristic: Basis,
Models and New Trends." Mathware and Soft
Computing 9(2-3): 141-175.

Dorigo, M. (1992). Optimization, Learning and Natural
Algorithms. Milan, Politecnico di Milano.

Dorigo, M., V. Maniezzo, et al. (1996). "The Ant System:
Optimization by a Colony of Cooperating
Agents." IEEE Transactions on Systems, Man,
and Cybernetics-Part B 26(1): 29-41.

Euler, L. (1766). "Solution d'une question curieuse qui ne
paroit soumise a aucune analyse." Mémoires de
l'Académie Royale des Sciences et Belles Lettres
de Berlin 15: 310-337.

Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley.

Gordon, V. S. and T. J. Slocum (2004). The Knight's
Tour - Evolutionary vs. Depth-First Search.
IEEE Congress on Evolutionary Computation
(CEC'04), Portland, Oregon.

Hingston, P. and G. Kendall (2004). Ant Colonies
Discover Knight's Tours. AI 2004: Advances in
Artificial Intelligence: The 18th Australian Joint
Conference on Artificial Intelligence, Cairns,
Springer.

McKay, B. D. (1997). Knight's tours of an 8x8
chessboard, Department of Computer Science,
Australian National University.

Middendorf, M., F. Reischle, et al. (2000). Information
Exchange in Multi Colony Ant Algorithms.
IPDPS 2000 Workshops.

Mordecki, E. (2001). "On the number of Knight's tours."
Pre-publicaciones de Matematica de la
Universidad de la Republica, Uraguay 2001/57.

Murray, H. J. R. (1913). History of Chess, Clarendon
Press.

Parberry, I. (1997). "An efficient algorithm for the
Knight's tour problem." Discrete and Applied
Mathematics 73: 251-260.

Sim, K. M. and W. H. Sun (2003). " Ant Colony
Optimization for Routing and Load Balancing:
Survey and New Directions." IEEE Transactions
on Systems, Man and Cybernetics - Part A:
Systems and Humans 33(5): 560-572.

Takefuji, Y. and K.-C. Lee (1994). "Finding knight's tours
on an M×N chessboard with O(MN) hysteresis
McCulloch-Pitts neurons." IEEE Transactions on
Systems, Man and Cybernetics 24(2): 300-306.

Warnsdorff, H. C. v. (1823). "Des Rösselsprungs
einfachste und allgemeinste Lösung."
Schmalkalden.

