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Abstract- In Evolutionary Multiobjective Optimisation
(EMO), the diversity of the set of non-dominated solu-
tions used to be handled by the niching and fitness shar-
ing technique. The main downside of this technique is
the need to set the niche radius.
Quite recently, new techniques have emerged and
proved to be more successful. The grid-based density
of the Adaptive Grid Algorithm (AGA), the crowding-
distance technique of the Nondominated Sorting Ge-
netic Algorithm (NSGA-II), and the archive truncation
procedure of the Strength Pareto Evolutionary Algo-
rithm (SPEA2) are the latest successful methods that en-
sure a better diversity than the traditional less effective
and computationally expensive niching method. In this
work, a crowding-dispersion technique which is based
on the Pareto Potential Regions (PPR), is proposed and
compared to three recent techniques.

1 Introduction

The objectives in a Multiobjective Optimisation Problem
(MOP) (e.g., cost, performance, quality of service, etc.)
are often contradictory and/or conflicting with each other,
and are supposed to be optimised (minimised and/or max-
imised) simultaneously. Techniques and algorithms that
solve MOPs constitute a class of optimisation methods that
has its root in the seminal work of Edgeworth and Pareto
[Pareto 1896].

Mutli-Objective Evolutionary Algorithms (MOEAs), a
metaphor of natural evolution, have established themselves
as amongst the successful methods for solving MOPs.
In fact, MOEAs had, interestingly through the past two
decades, evolved and gone through a sophistication process
and emerged as thede factoMOP solver. The most attrac-
tive feature of these algorithms is their capability to hunt for
a set of solutions in a single run by considering a population
of potential solutions. At the end of the execution, a MOEA
is supposed to detect an effective set of solutions (known
as the non-dominated set - usually an approximation of the
Pareto set) which is presented to the Decision Maker (DM).
The DM, in turn, will have to choose among the solutions
of this non-dominated set, or may refine the original MOP
so that the non-dominated set is reduced which will ease the
process of decision making.

Therefore, a diverse set is primordial. The diversity
brings crucial knowledge to the DM- the more diverse the
solutions are, the better informed the DM is about the range
and the spectrum of the possible solutions. This is because

if the solutions in the non-dominated set are concentrated in
one part of the search space (absence of diversity), the unex-
plored parts of this search space may well contain efficient
solutions that might very well be of interest to the DM.

Traditionally, this diversity was maintained by using the
fitness sharing[Goldbreg 89 ; Goldbreg and Richardson
1987 ; Horn 1997 ; Mahfoud 1995]. More recently, it has
been shifted to density-based methods that work on a grid-
like subdivided objective space [Knowles and Corne 2000,
2003 ; Lu 2002]. The AGA [Knowles and Corne 2003], a
grid-based method, ensures (in a simpler and efficient way)
the diversity of the set of solutions.

The crowding-distance, a slightly better method than
AGA with regard to diversity, was proposed in NSGA-II
[Deb et al 2002]. The archive truncation procedure, a more
optimal technique but computationally expensive, has been
proposed in SPEA2 [Zitzler et al. 2001].

The aim of this study is to present a new method and to
compare the different diversity preserving methods.

In the next section, the theoretical background is re-
viewed. Section 3 presents the most popular diversity-
handling techniques. Their shortcomings are also discussed.
Section 4 is devoted to a new archiving approach (PPR),
where a specific technique from this approach that deals
with diversity (called crowding-dispersion) is presented.

The empirical study, (experimental methodology, re-
sults, and inferences), is presented in section 5. Finally the
last section concludes this work.

2 Theoretical Foundation

An optimisation problem includes a set of decision variables
or design variables, a set of objective functions, and a set of
constraints.

The set of decision variables are those parameters the de-
signer might tune in order to adjust or optimise the overall
performance of a given system. The set of objective func-
tions are those mathematical expressions that combine the
set of decision variables in, possibly, different ways, each
denoting a characteristic of the system. The set of con-
straints delimit the space of the decision variables.

In the following, we assume, without loss of generality,
a minimisation problem.

2.1 Concepts and Definitions

Let Ω be the space of the decision variables,F the set of
objective functions, andC the set of constraints.



The objective and constraint functions are functions of
the decision variablex in Ω.

Let y be the image ofx in the objective space induced
by F . Let Λ, called the objective space, be the image ofΩ
by F .
Definition 1 MOP’s purpose is:




minimise F (x) = (f1(x) , ..., fk(x)) ∈ Λ.
Subject to C = (c1(x) , c2(x), ..., cl(x)) ≤ 0
Such that x = (x1, x2 , ... , xn) ∈ Ω.

(1)
wherefi(x), i = 1..k, are thek objective functions,

k ≥ 2, andx = (x1, ..., xn) is then-dimensional decision
vector, for which eachxi will be optimised.

Let X = {x ∈ Ω, C(x) ≤ 0} denotes the feasible
decision space. Similarly, letY = F (X) = {y ∈
Λ , C(F−1(y)) ≤ 0} be the feasible objective space.

2.1.1 To Dominate or not to dominate

Let u = (u1, u2, ..., uk) and v = (v1, v2, ..., vk) be two
k-dimensional objective vectors inRk.

If compared to each other, one of the following situations
may apply:





u = v iff ui = vi ∀i = 1..k
u ¹ v iff ui ≤ vi ∀i = 1..k
u ≺ v iff (u ¹ v) ∧ (u 6= v)
u ∼ v iff (u 6¹ v) ∧ (v 6¹ u)

(2)

2.1.2 Pareto-optimal Set

The Pareto-optimal Set,P ∗, is constituted of those deci-
sion variables whose corresponding objective vectors are
not dominated by any other vector in the objective space.

P ∗ = {x1 ∈ X| 6 ∃ x2 ∈ X s.t y1 = F (x1) ,
y2 = F (x2) and (y2 ≺ y1)} (3)

These vectors are also known as efficient, non-
admissible, or non-inferior solutions.

2.1.3 Pareto-optimal Front

The Pareto-optimal front,PF ∗, is the image of the Pareto-
optimal setP ∗. PF ∗ contains all those objective vectors
that are not dominated by any vector in the objective space.

PF ∗ = {y ∈ Y |6 ∃y′ ∈ Y s.t y′ ≺ y} (4)

Members ofPF ∗ are often termed non-dominated ob-
jective vectors.

2.1.4 Non Dominated Set Filter

For each set of objective vectorsA ∈ Y , a special subset
can be derived by filtering non dominated objective vectors.

ND(A) = {a ∈ A | 6 ∃b ∈ A, b ≺ a}. (5)

The Pareto FrontPF ∗ is exactlyND(Y ).

2.1.5 Local Pareto Front

Given a population at iterationt, Popt, its corresponding
Local Pareto Front,PF t, consists of those non-dominated
objective vectors, i.e.,PF t = ND(Popt).

2.1.6 Archive

An (unbounded) archive at iterationt, denoted byAt, con-
tains all the non-dominated objective vectors found so far,
up to iterationt.

At ⊆ Y , At = ND(
t⋃

i=1

PF i)

However, in practice, an archive is of limited size and there-
fore, a procedure that selects which extra non-dominated
objective vectors must be chosen for deletion .

3 Density Handling in MOEA

Diversity has been traditionally implemented by techniques
based on Pareto Niching and Fitness Sharing ([Goldberg
1989], [Horn 1997]).
In the last five years, more efficient techniques have
emerged. [Knowles and Corne 2003] developed a grid-
based density technique that is more attractive than Niching
and Sharing technique. One of the improvement brought to
NSGA [Srinivas and Deb 1995] was the proposal of a new
technique calledcrowding-distance. Similarly, the earlier
SPEA [Zitzler and Thiele 1999] has also been upgraded by
fixing, among other problems, the diversity issue.

In this section, these techniques are briefly explained and
some of the noticeable shortcomings are highlighted. A
more detailed discussion can be found in [Hallam 2004].

3.1 Pareto Niching and Fitness Sharing

A premature convergence is the Achille’s heel of an ’elitist’
evolutionary algorithm. To curb such drawbacks, Goldberg
introduced a new technique that favours unexplored regions
of the search space by penalising the crowded regions and
rewarding the scarce regions.

Those individuals that are crowded in a region, hence
the term niche, will each have its original fitness reduced by
dividing it by the number of neighbours in the same niche.
In this way, those individuals that are isolated have a better
chance of being selected in future generations since their
fitness has not been reduced, and consequently exploration
is set in this isolated region. The shared fitness of a solution
i is its old fitness divided by the niche count:

F (i) =
F old(i)∑

j∈Pop s(d(i, j))

The sharing functions(d(i, j)) is zero if the distance of
a j solution to thei solution is bigger than the niche radius
(σshare), otherwise a value in]0, 1] is returned.

While the technique of Niching and Fitness Sharing is
used for maintaining multiple optima in a SOP, it has been



used in MOP to diversify the set of Pareto solutions. As
stated by [Horn 1997] and other researchers ([Fonseca and
Fleming 1995],[Coello 1999], etc...), the main difficulty
with this technique is the setting of the parameterσshare.
How large the niche should be? i.e., what is the best value
for the niche radius? To answer this question, practitioners
often conduct a set of test experiments just to determine the
value for the niche radius, after which, they continue with
their main experiments.

3.2 The Adaptive Grid Approach: Analysis and Short-
comings

Recently, [Knowles and Corne 2003] have developed an
alternative technique, Archiving Grid Algorithms, that is
based on subdividing the objective space into equal poly-
topes that constitute a hyper grid. Each polytope can be
seen as a region within which lay objective vector solu-
tions. From a computational point of view, this technique
is attractive in the sense that the grid can be implemented
as a k-dimension array matrix, where each array element
represents a region and the value in each array element rep-
resents the number of objective vectors that reside in the
corresponding region, i.e. the density of the region.

In this way, it would be much easier and more efficient
to direct the search process to explore less crowded regions
thus promoting diversity. It is worth noting that this tech-
nique has also been adopted by other researchers (Lu 2002;
Coello et al 2004). However, serious drawbacks have re-
cently been discovered (see [Hallam 2004]).

3.2.1 The Adaptive Grid Diversity-Preserving Tech-
nique: How It Works

As mentioned earlier, the objective space is subdivided into
equal regions (polytopes). The vector solutions, generated
over time, that are non-dominated are admitted into the
archive as long as the size of the archive is less than the max-
imum size allowed,arcsize. Each region, however, updates
its count any time a vector is inserted into it (or removed ).

The interesting situation, which occurs quite frequently,
is whenever the archive becomes full and a new non-
dominated solution is discovered. In this case, the new vec-
tor solution will be inserted in the archive replacing one that
is located in the most crowded (dense) region. This replace-
ment greatly increases the well-spread distribution of the
solutions throughout the Pareto front.

For instance, consider the illustrative example depicted
in Figure 1.

The arcsize is set to 8 and the archive is already full.
It can be seen that the most crowded region isR2,3 =
{b, c, d}. Therefore once the new (non-dominated) vector
solutiong is generated, one random vector is chosen from
regionR2,3to be removed from the archive and the new vec-
tor solutiong is admitted.
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Figure 1: AGA based Diversity: An Example.

3.2.2 The Adaptive Grid Diversity-Preserving Tech-
nique: Shortcomings

The previous illustrative example ”exercised” to some ex-
tent the strength of the Adaptive Grid. However, a deeper
look suggests that the judgement of a good spread is as ef-
fective as the judicious choice of the region size. It can
further be argued that no matter how good the granularity
of the grid is, it can always be the case that the most dense
region is overlooked no matter what size of grid is used!

These shortcomings can be revealed through the simple
illustrative example depicted in the following two figures,
Figure 2 and Figure 3.

According to the simple definition of density (number
of individuals in a given area). The top-left regionR1,4 of
Figure 2 is the most dense region. Therefore if a new non-
dominated vector candidate is generated, the exiting victim
should be picked randomly from this crowded regionR1,4.

However, with exactly the same Pareto front, if the grid
is further subdivided , for instance into an 8x8 regions (see
Figure 2.b), the most crowded region isR5,4 which is a sub-
region of the regionR3,2 of Figure2.a.

Notice that in Figure 2.a, regionR3,2 is totally different
from the earlier supposed-to-be dense regionR1,4.

There was a gain of finer insight of the crowding and
spreading of Pareto vectors with the increase of grid granu-
larity. This means that we might actually overlook the most
crowded region and as a result either the diversity is not well
guaranteed or the spread velocity is slow.

Another more problematic situation arises when some
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Figure 2: AGA based Diversity: Anolmaly 1.

Pareto points are crowded along the extreme common cor-
ners of two or more neighbouring regions. This interest-
ing crowding, which might be the one sought for (the most
crowded one), is simply overlooked no matter how many
times the grid resolution is refined.

In Figure 3, none of the regions 1, 2, and 3 are the most
crowded since they contain three vector solutions each.
However, it can be seen that the non-apparent region be-
tween R2 and R3 harbour the most crowded subset of the
solution vectors. Hence, the concept of crowding/density is
just overstepped.
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Figure 3: AGA based Diversity: Anomaly 2.

3.3 Crowding-distance technique (NSGA-II)

This technique was proposed in NSGA-II [Deb et al. 2002].
It sorts (in ascending order) the set of solutions according to
each objective function. The extreme solutions (the solution
with the smallest value and the one with the highest value)
are assigned an infinite distance value. The remaining so-
lutions are assigned distance values equal to the absolute
difference of the objective values of two adjacent solutions.
The same process is repeated for all other objectives, and
the distances are accumulated.

The crowding-distance of a solution is simply the cumu-
lative sum of the solution distances corresponding to each
objective. As example, solutioni in Figure 4 is assigned a
crowding-distance equal tod1 + d2.

Then the most crowded solution is the one with the
smallest crowding-distance value. Therefore in the case
where the size of a set of non-dominated solutions exceeds

the size of the archive, the right solutions to remove from
the set are the ones with the smallest values of the crowding-
distance.
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Figure 4: an Example of Crowding-Distance in NSGA2.

The main problem with this technique can be illustrated
in Figure 5. Assume that we can keep at most 5 individuals
in our population, and after the addition of the pointnp into
the temporary population, the pointa seems to be wrapped
inside the smallest cuboid. Since all the points have the
same level of dominance, the pointa, which has the smallest
crowding distance, would be removed.

A closer look would suggest that eitherc or d should be
removed in order to have a better spacing.

A point in a large (or worse the largest) cuboid (but very
close to one of its neighbour) can be the actual cause of a
bad diversity than a point (equidistantly positioned) in the
smallest cuboid. This fact is a key factor in the simulation
results reported later in section 5.
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Figure 5: NSGA2 Crowding-Distance Truncation.

3.4 Archive Truncation Procedure (SPEA2)

In this technique, the archive for the next generation is re-
ferred to asP ′t+1, and its size|P ′t+1| = N is fixed. Non-
dominated solutions are copied into the archive. Three cases
may arise. If the non-dominated solutions exactly fit the
archive, then the process of filling the archive is terminated.
If the non-dominated set is smaller than the archive, then
the remaining slots of the archive are filled with the best
solutions from the rest of the population.

The interesting case is when the number of non-
dominated solutions exceeds the size of the archive. In this



case some non-dominated solutions must be removed. This
is done by invoking thearchive truncation procedurewhich
iteratively removes one solution at a time until the size of
|P ′t+1| = N . The individuali to be removed is the one
that,∀j ∈ P ′t+1, i ≤d j.

i ≤d j :⇔ ∀ 0 < k < |P ′t+1| : σk
i = σk

j ∨
∃ 0 < k < |P ′t+1| :

[(∀ 0 < l < k : σl
i = σl

j) ∧ σk
i < σk

j ]
(6)

whereσk
i denotes the distance ofi to its k-th nearest

neighbour inP ′t+1.
The main difficulty with this method is the need to com-

pute all the inter-distances between all the individuals of the
archive. This will later be seen in the experimental section.

4 PPR: Potential Pareto Regions

These are dynamic regions within which any generated
vector solution is automatically non-dominated with re-
gard to all the current non-dominated solutions. The non-
dominated set is sorted according to one objective and each
two immediate neighbours delimit one PPR (see Figure 6).
The idea is to maintain a set of dynamic regions (PPRs).
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Figure 6: An Example of a PPR.

Definition 2 A PPR is a hyper-area delimited by two imme-
diate neighbouring non-dominated points of the archive.

Let M t be the archive, i.e., the set of current Pareto so-
lutions.

Let zt+1 = Gen(t + 1) be a solution generated by the
functionGen at iterationt + 1.

Let PPRxy be a Potential Pareto Region delimited by
two (neighbouring) non-dominated solutionsx andy.

4.1 How to construct a 2-D PPR

Arrange thezi, i = 1, |M t| − 1, such thatzi,k > zi+1,k for
a givenk. Without loss of generality we setk to 1.

Definition 3 SPPR is the set of the PPRs ordered according
to ”neighbourhood” order.
SPPR = {PPRzizi+1 | zi,k > zi+1,k , i = 1..|M t| − 1}

WherePPRzizi+1

ub1,t
= zi,1, PPRzizi+1

lb1,t
= zi+1,1,

PPRzizi+1

ub2,t
= zi+1,2, and PPRzizi+1

lb2,t
= zi,2, and

ubk,t , lbk,t respectively denote the upper and lower bounds
of thek-th objective.
/* 1 is the chosen reference dimension, 2 is the other dimen-
sion.*/

Note that at any point in time, the size of the list of
PPRs,|SPPR|, is always equal to the size of the archive
minus 1. In Other words,|SPPR| = |M t| − 1.

Lemma 1 If there exists a PPR which containszt+1, then
zt+1 is incomparable to any point in the archive.
More formally,zt ∈ PPRxy ⇒ ∀a ∈ M t , zt+1 ∼ a.

Proof of Lemma 1 Assume∃ PPRxy , zt+1 ∈ PPRxy.
The purpose is to prove that∀a ∈ M t , zt+1 ∼ a.
Assume that∃a ∈ M t and thata is NOT incomparable

to zt+1, i.e.,(zt+1 Â a) ∨ (zt+1 ≺ a).
Assume without loss of generality thaty1 < x1 and

x2 < y2.
Now PPRxy is defined by all pointsz, (y1 < z1 < x1)

and(x2 < z2 < y2).
There are two cases as to whethera is a neighbour ofx

or a neighbour ofy.

1 . Assume the pointa is a neighbour ofy, (a1 < y1)
and(y2 < a2).

i ) a dominateszt+1 means thata1 < zt
1 and

a2 < zt
2 → a2 < zt

2 < y2, a contradiction.
Thereforea cannot dominatezt+1.

ii ) a is dominated byzt+1 means thatzt
1 < a1

andzt
2a2 → y1 < zt

1 < a1, a contradiction.
Thereforezt+1 cannot dominatea.

2 . Assume the pointa is a neighbour ofx, (x1 < a1)
and(a2 < x2).

i ) a dominateszt+1 means thata1 < zt
1 and

a2 < zt
2 → a1 < zt

1 < x1, a contradiction.
Thereforea cannot dominatezt+1.

ii ) a is dominated byzt+1 means thatzt
1 < a1

andzt
2a2 → x2 < zt

2 < a2, a contradiction.
Thereforezt+1 cannot dominatea.

4.2 Diversity With Two Indicators: Crowding and Dis-
persion

Given the current archive at timet, we compute thede-
gree of crowding and theextent of distribution of each
non-dominated solution. For the sake of an efficient com-
putation, we maintain a matrix that stores, for each non-
dominated vector, two distances (Euclidian distance) to its
immediate neighbours. Recall that vectors in the archive are
ordered according to one objective dimension and hence the
immediate neighbourhood is based on this order.

If the size of the archive isn, there is a need to compute
n− 1 distances. Remember that the non-dominated vectors



Table 1: PPR

Efficient Solution DistanceNeighbour1 DistanceNeighbour2

1 : first - dfirst2nd

... ... ...
h ... dhi

i dhi dij

j dij djk

... ... ...
n : last d1last last -

are (in the matrix) ordered according to one of thek objec-
tives. Based on this matrix, the two important indicators,
namelycrowdinganddispersionare computed as follows:

crowding(i) = min(dhi, dij) (7)

dispersion(i) = max(dhi, dij) (8)

It is obvious that the set{i, mini∈Mt(crowding(i))}
contains at least two elements. Assume thati is the vec-
tor with the minimum crowding value and thatdhi > dij ,
then the vectorj, the neighbour ofi, has also the minimum
crowding. In this situation, which happens all the time,
the most crowded among these two vectors is the one with
the minimum dispersion. This is intuitively plausible since
the closer the point to its immediate neighbours the more
crowded the region encompassing all of them is.

4.3 How to find the most crowded vector solution

Simply get a vector solutioni such thatcrowding(i) is the
minimum among the rest of the vector solutions (see Table
1). This will return at least two vector solutions (the neigh-
bours). Then the one with the minimum dispersion value is
selected as the most crowded one.

IndexCrowded = min (DistanceNeighbour2(1..n− 1))
if IndexCrowded = 1 then IndexCrowded + + ;
else if DistanceNeighbour2[IndexCrowded− 1] >

DistanceNeighbour2[IndexCrowded + 1]
then IndexCrowded + + ; endif

endif
(9)

Note that the extremums are not included in the above pro-
cess.

5 Empirical Experiment

5.1 Measuring The Diversity

For these experiments, we use the Schott Spacing Measure
[Schott 1995]. Schott proposed a metric calledSpacingthat
measures the range variance of neighbouring vectors in the
archive.

S =

√√√√ 1
n− 1

n∑

i+1

(d− di)2 (10)

wheredi = minj(|f1
i − f1

j |+ |f2
i − f2

j |).
d: The mean of alldi , 1

n

∑n
i=1(di).

n = |PF t|. i.e., the number of objective vectors inPF t

.
S = 0 means that all members of the archive are equidis-

tantly spaced. However, as noted by [Van Veldhuizen 1999],
the landscape of some MOP can inherently be not uniformly
spaced, or composed of two or more ”distant” from-each-
other Pareto front curves.

Nevertheless, our experiments are to compare few meth-
ods, therefore, this metric is reasonably justifiable, since we
are not interested in how close the metric value is to zero,
but on the values of this metric returned by each method.
The lowest value would mean a better method.

5.2 Testing Methodology

An archive of 100 non-dominated points is randomly gen-
erated from. Then, 100 sets of 20 non-dominated points (2,
000 candidates) are randomly generated. Each point is non-
dominated with regard to the archive. All points are taken
from the real domain[0, 100]2 with a precision of 4 decimal
points.

The points in each set are presented one by one to the
archive (which means 20 spacing values are computed for
each set). For the purpose of plotting the results, we take the
average spacing1 from each set. Thus this amounts to hun-
dred averages for the whole testing. We have conducted 100
experiments of this type (100 random archives with their
2000 non-dominated candidates). This means that 200, 000
spacing values have been computed. Since all the results
were of the same pattern, only one experiment is plotted in
Figure 7.

It must be noted that, although possible, there is no need
to consider the different shapes of the fronts (convexity, dis-
crete, non-uniformity of the solutions,...) since the random
nature of these (100) archives by default ensures a generic
treatment of this issue.

1The experimental data, their results, and the codes can be freely down-
loaded from http://sepang.nottingham.edu.my/˜ hnasreddin/emo/diversity
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Figure 7: Density Handling Using PPR compared to NSGA2 and AGA

5.3 Results and Discussion

Figure 7 has been scaled up in order to clearly show the
difference between the three methods. From that particular
random test data, the difference between PPR and NSGA2
was less significant than the difference between PPR and
AGA. However, in each of the 2000 attempts, PPR returned
a better Spacing value.

The main reason why the NSGA2 crowding-distance
technique has failed to better space between the non-
dominated points can be traced back to its shortcoming in
handling situations similar to the one illustrated in Figure
5, section 3.2.2. Points in small cuboid were chosen to be
removed instead of other points in larger cuboids, but very
much more closer to one of their neighbours. This is ex-
actly what happened when we analysed the behaviour of
NSGA2 crowding-distance based truncation against those
of PPR and SPEA2.

Figure 8 shows that both the SPEA2 archive truncation
procedure and the PPR diversity-preservation technique re-
turned exactly (though not surprisingly) the same results.
This can simply be explained that they are doing the same
work.

However, according to Figure 9, PPR diversity-
preservation technique is much faster. Both were executed
on the same machine.

6 Conclusions

A new non-dominated objective vector solution would com-
pete with the elements of the archive and not with the whole
population. Therefore, it is trivial to build a list of neigh-
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Figure 8: Density Handling Using PPR Compared to
SPEA2

bouring regions whose end-points are the non-dominated
objective vectors themselves. As a result, the ”factor-
contribution-to-density” of a point is a matter of how large
is the corresponding smallest region (cropwding), and even-
tually how evenly positioned this point is with regards to its
corresponding two regions (dispersion). This is the basis of
the PPR diversity preservation method.

We have also presented the state-of-the-art diversity pre-
serving techniques used by the most popular MOEAs.

Some shortcomings inherent to the AGA and NSGA-2
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Figure 9: Execution Time- PPR Compared to SPEA2

diversity based techniques are pinpointed and examplified.
Then simulation tests were conducted and confirmed these
shortcomings.

The proposed method works as well as the SPEA2
archive truncation procedure. However it is much faster.
Our future work will further investigate these two methods
in order to construct a better method.
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