An Investigation of a Tabu Assisted Hyper-Heuristic Genetic
Algorithm

Limin Han, Graham Kendall
Automated Scheduling, Optimisation and Planning Research Group, School of Computer Science and I T,
University of Nottingham NG8 1BB, UK, Email: Ixh/gxk@cs.nott.ac.uk

Abstract-This paper investigates a tabu assisted genetic
algorithm based hyper-heuristic (hyper-TGA) for
personnel scheduling problems. We recently introduced
a hyper-heuristic genetic algorithm (hyper-GA) with an
adaptive length chromosome which aims to evolve an
ordering of low-level heuristics in order to find good
quality solutions to given problems. The addition of a
tabu method, the focus of this paper, extends that work.
The aim of adding a tabu list to the hyper-GA is to
indicate the efficiency of each gene within the
chromosome. We apply the algorithm to a
geographically distributed training staff and course
scheduling problem and compare the computational
resultswith our previous hyper-GA.

1. Introduction

Metaheuristic approaches have been successfully applied to
a range of personnel scheduling problems, which involve
the alocation of staff to timeslots and possibly locations
[22]. For example, Burke et a [2] and Dowsland [12] used
tabu search to solve nurse rostering problems. Aickelin and
Dowsland [1] solved a nurse rostering problem in a large
UK hospital utilising a genetic algorithm. Their approach
gave fast and robust results which proved flexible and able
to solve the large rostering problems within hospitals,
coping with a range of objectives and constraints. Easton
and Mansour [13] conducted an experiment on a distributed
genetic agorithm to solve deterministic and stochastic
labour scheduling problems. Their procedure was run in
paralel, on a network of workstations. In order to maintain
the search close to the feasible region, they used a
combination of feasibility and penaty methods to help
exploit favourable adaptations in infeasible offspring. Their
approach was applied to three different sets of published
test suites of labour scheduling problems. Their results were
compared to those problems which had been solved by
other metaheuristics and conventional heuristics. The
comparison found that their results outperformed other
methods, on average.

Indirect genetic algorithms have also been studied
widely. For example, TerashimaMarin, Ross and
Valenzuela-Rendon [21] designed an indirect GA to solve
an examination timetabling problem. They design strategies
which are encoded along with the parameters for guiding
the search, into a 10-position array. Their chromosome
represents how to construct a timetable rather than
representing the timetable itself. The indirect chromosome
representation can help avoid the limitation of a direct
chromosome, which is known as the coordination failure
between different parts of a solution when solving
examination timetabling problems. Corne and Ogden [11]
compared their indirect and direct GA for a Methodist

preaching timetabling problem and found the former is
more efficient.

Although genetic algorithms have been shown to be
effective in solving a range of problems, they are usualy
computationally expensive and require domain knowledge
to be present. Normaly the chromosome of a genetic
algorithm is either the solution of the given problem or a
structure of the solution. This makes problem specific
knowledge essential in the design of a chromosome. This
results in the algorithm being difficult to reuse for different
problems because of the heavy dependence of domain
knowledge. In order to overcome this disadvantage, and
have a reusable, robust and fast-to-implement approach,
applicable to a wide range of problems and instances, we
have designed genetic algorithms which use an indirect
chromosome representation based on evolving a sequence
of heuristics for a trainer scheduling problem, which is a
type of personnel scheduling problem that can be regarded
as the alocation of staff to timeslots and possibly locations
[22]. The idea behind this approach is a hyper-heuristic,
which we introduce in the next section.

2. Hyper-Heuristics

Hyper-heuristics [3] are an approach that operate at a higher
level of abstraction than a meta-heuristic. Cowling et al
described them [7] as follows: “The hyper-heuristics
manage the choice of which lower-level heuristic method
should be applied at any given time, depending upon the
characteristics of the heuristics and the region of the
solution space currently under exploration.” A set of low
level heuristics and a high level heuristic selector define
their hyper-heuristic. They present a general framework for
the hyper-heuristic to select which low-level heuristic to
apply at a given choice point. The hyper-heuristic has to
maintain a state to record the amount of time each low-level
heuristic takes and also record the change in the evaluation
function. The hyper-heuristic only knows whether the
objective function is to be maximised or minimised and has
no information as to what the objective function represents.
No domain knowledge is present in the hyper-heuristic.
Each low level heuristic communicates with the hyper-
heuristic using a common, problem independent, interface
architecture [7]. In order to improve the performance of the
general framework, Cowling et a designed a choice
function. The choice function is caculated using
information from the recently called low-level heuristics:
the improvement of each individua heuristic, the
improvement of each pair of heuristics, and the CPU time
of each heuristic. They applied the approach to a sales
summit scheduling problem [8], a project presentation
scheduling problem [9] and a nurse scheduling problem

[10], and found that those problems can be solved
effectively.

Burke and his colleagues have designed a tabu search
based hyper-heuristics to solve timetabling and rostering
problems[4, 5]. In the framework of their hyper-heuristic,
heuristics compete using rules based on the principles of
reinforcement learning. A tabu list of heuristics is
maintained which prevents certain heuristics from being
chosen at certain times during the search. The basic idea of
the tabu list is to prevent a poorly performing heuristic
from being chosen again too soon. The approach
successfully has solved a university course timetabling
problem and a nurse rostering problem in a major UK
hospital.

A hyper-heuristic method was also developed by Hart,
Ross and Nelson [17]. They developed an evolving,
heuristically driven schedule builder to solve a real-life
chicken catching and transportation problem. They divided
the problem into two sub-problems and solved each using a
Separate genetic algorithm. The result of the two genetic
algorithms is a strategy for producing schedules, rather than
producing a schedule itself. All the information collected
from the company is summarised as a set of rules, which
were combined into a schedule builder by exploiting the
searching capabilities of the genetic algorithm. A sequence
of heuristics was evolved to dictate which heuristic to use
to place atask onto the schedule. The approach successfully
solved a highly constrained real-life scheduling problem of
a Scottish company that must produce daily schedules for
the catching and transportation of a large number of live
chickens. They compared the performance of their approach
to hill-climbing and simulated annealing, and found their
approach to be superior.

Randall and Abramson [20] designed a general purpose
metaheuristic based solver for combinatorial optimisation
problems. They used linked list modelling to represent a
problem, and then the problem was specified in a textual
format and solved directly using meta-heuristic search
engines. The solver worked efficiently and returned good
quality results when being applied to severa traditional
combinatorial optimisation problems. Nareyek [19]
provided an approach that was able to learn how to select
promising heuristics during the search process. The
learning was based on weight adaptation. In addition, the
configuration of heuristics was constantly updated during
the search according to the performance of each heuristic
under different phases of the search. The results showed
that the adaptive approach could improve upon static
strategies when applied to the same problems. Gratch and
Chien [14] developed an adaptive problem solving system
to select proper heuristic methods from a space of heuristics
after a period of adaptation and applied it successfully to a
network scheduling problem.

We have designed an indirect genetic algorithm hyper-
heuristic approach, hyper-GA, which may be regarded as a
hyper-heuristic that uses a GA to select low-level heuristics
to solve a problem [6] and further improved this approach
to an adaptive length chromosome hyper-GA (AL Chyper-
GA), which is more parameter-adaptive [15] than the fixed
length version. We observe the performance of the
algorithms for atrainer scheduling problem and believe that

given an appropriate set of low-level heuristics and an
evaluation function the hyper-GA approach may be applied
to awide range of scheduling and optimisation problems.

In this paper, we add a tabu method to our hyper-GA.
This addition will help prevent the hyper-GA from calling
those inefficient low-level heuristics in one specific
chromosome, where each chromosome is a sequence of
low-level heuristics which are applied, in the given order, to
the problem at hand.

3. Problem Description

The problem we tackle is to schedule geographicaly
distributed trainers to deliver geographically-distributed
courses over a period of several weeks, where each course
is given a priority which indicates how important it is that
the course is delivered. We wish to maximise the total
priority of courses which are delivered in the period, whilst
minimising the amount of travel time for each trainer. We
have 25 saff, 10 training centres (or locations) and 60
timeslots. Each course is to be delivered by one member of
staff from a number of staff members who are competent to
deliver that course. Each staff member can only work up to
60% of higher working time (i.e. 36 timeslots). Each
course is to be scheduled for one location from a limited list
of possible locations. Each location, however, can only be
used by alimited number of eventsin each timedot because
of the limited number of rooms at each site. The starting
time of each course must be within a given time window.
The duration of each event varies from 1 to 5 time dots.
Each course has a numerical priority value. Each member
of staff has a home location and a penalty is associated with
a staff member who must travel to deliver a course. The
objective function is to maximise the total priority for
scheduled courses minus the total travel penalty for trainers.
A mathematical model for the problem is shown in figure 1:

Obijective

MaxVE Y W+ Y>> Y) =D > A, >y,

sSOL iCEDT

Subj ect

;;ﬂz& Yo <1 (i0E) D
223 %a sl (sD9 @)
éé; Xg <G (10L) 3
Xa <= Z; Yo (OE)sOSOT)(OL) (4)
;S;DIZ:: Ko =SSy (0E) ®)
Xa <= J; Yo (OE)sOS)EOT)(IOL) ©)

0<=t-j<dur;

Figure 1. Mathematical model for the geographically
distributed trainer scheduling problem

E: the set of courses; S: the set of staff members;

T: the set of timedlots;

L: the set of locations; dur;. theduration of courseg .

dy: the distance penalty for staff member s delivering a
course at location I;

w;: the priority of course e,

¢;: the number of roomat location |

Variabley,yy = 1 when course g is delivered by staff s at
location | commencing at timeslot t, or O otherwise.
Variable x4 = 1 when course g is delivered by staff s at
location | at timeslot t, or O otherwise. Constraint (1)
ensures that one course can happen at most once. Constraint
(2) ensures that each staff member is only required to
deliver at most one course in each timeslot. Congtraint (3)
ensures that each location has sufficient room capacity for
the scheduled course. Congtraints (4), (5), and (6) link the
Xig and Vg Variables, which ensures that if one course is
delivered, its duration must be consecutive.

4. Low-Leve Heuristics

As stated in section 2, a hyper-heuristic consists of a set of
low-level heuristics and a high level selector. In our
approach we have designed fourteen problem-specific low-
level heuristics, which accept a current solution, and
modify it locally. At each generation the hyper-GA can call
upon the set of low-level heuristics and apply them in any
sequence. These low-level heuristics are grouped into: add,
add-swap, add-remove and remove. The first group
comprise five heurigtics that can be sub-divided into two
sub-groups. Add-first, add-random and add-best try to add
unscheduled courses by descending priority, and add-first
improvement and add-best-improvement consider the
unscheduled list in a random order. There are four add-
swap heuristics: add-swap-first and add-swap-randomly try
to swap courses in the timetable in order to schedule one
more course, which is selected from the unscheduled list by
descending priority; add-swap-first-improvement and add-
swap-best-improvement do the same but consider the
unscheduled list in a random order. The third group (add-
remove-first, add-remove-random, and add-remove-worst)
select one course from the unscheduled course list by
descending priority, if the course is in conflict with
course(s) in the timetable (none of the course's possible
staff members are able to work in the possible timedots),
and the course's fitness is higher than the fitness(es) of the
conflicting course(s), delete the conflicting course(s) and
add the unscheduled course. Remove-first and remove-
random comprise the last group. These two heuristics try to
remove courses from the schedule. They are likely to return
a worse solution but will hopefully lead to an improvement
later on, after other heuristics have been applied.

We list al our 14 low-level problem specific heuristics
asfollows:

0. Add-first,

1. Add-random

2. Add-best

3. Add-swap-first

4. Add-swap-randomly

5. Add-remove-first
6. Add-remove-random,
7. Add-remove-worst
8. Add-first-improvement
9. Add-best-improvement
Add-swap-first-improvement
. Add-swap-best-improvement
Remove-first

13. Remove-random

The integer in front of each heurigtic is the integer used
in the chromosome.

5. Hyper-GA and Adaptive
Hyper-GA (AL Chyper-GA)

5.1 Hyper-GA

Hyper-GA and the adaptive length chromosome hyper-GA
(ALChyper-GA) are hyper-heuristics that use a GA to
select low-level heuristics so as to produce high quality
solutions for the given problem. The GA uses an indirect
representation. This is a sequence of integers each of which
represents a single low-level heuristic. Each individual
chromosome in a GA population gives a sequence of
heuristic choices that tell us which low-level heuristics to
use and in what order they are applied. Figure 2 is an
example of hyper-GA, where integer 0 in the chromosome
represents the low-level heuristic add-first, 1 means add-
random, up to 13 which refers to remove-random and so
on.

Length

‘2‘3‘ 1‘5‘0‘7‘9‘8‘11‘ 1‘ 10‘9‘12‘ 13‘

Figure 2. Example of hyper-GA

5.2 Adaptive Length Chromosome Hyper-GA

The adaptive length chromosome hyper-GA [15] assumes
that a fixed length chromosome is not always the optimal
length and it aims to evolve good combinations of low-level
heuristics without explicit consideration of the chromosome
length. The behaviour of a particular low-level heuristic
combination could be very promising, while another low-
level heurigtic (or combination) could perform poorly
within the same chromosome. Thus, we suggest that if we
remove the poor-performing heuristics from a chromosome
or inject efficient heuristics from one chromosome to
another, the quality of solution can be improved. As a
result, the length of chromosomes in each generation
changes as genes are inserted or removed. A new crossover
operator and two new mutation operators were designed to
cary out the removal/injection operations. The new
crossover, called best-best crossover, will select the best
group of genes (the call of low-level heuristics by these
genes that gives the most improvement to the objective
function) from either selected parent chromosome, and
exchange them. One new mutation, removing-worst
mutation, will remove the worst group of genes (the call of
low-level heuristics by these genes which gives the larges
decrease in the objective function, or which is the longest
group giving no improvement to the objective function) in
the selected chromosome. Another mutation, inserting-good
mutation, inserts the best group of genes from a randomly
selected chromosome to a random point of the desired

chromosome. An example of the best-best crossover is
shown in figure 3. The grey area in parent 1 is the best
group of genes in the chromosome, while the black areain
parent 2 is the best group of genes in this chromosome. The
two groups of genes are selected and exchanged to form
child 1 and 2.

Parent 1

= e |

Child 1

Child 2

Figure 3 best-best crossover

The results from utilising this approach are reported in
[15].

6. Addition of Tabu Method to Hyper-
GAs

In the hyper-GA, presented in section 5, the processing
involved in determining good/bad gene combination is
computationally expensive. In this paper we aim to develop
a cheaper and easier method to improve the efficiency of
each low level heuristic call. Instead of removing or
injecting genes, we aim to observe the performance of each
gene and make tabu poorly performing genes for a period
of time. To implement this idea, we add a tabu method to
the hyper-GA.

The way we use tabu is to penalise genes which do not
change the objective function. For example, if gene 2 (add-
best) does not make any change to the objective function, it
will not be allowed to call its low level heuristic during
following n generations. Thus, we add an additional
parameter to each gene, and the representation of each
chromosome becomes (figure 4):

‘ 23| 3°| 11| 50‘ 00‘ 70‘ 91‘ 80‘ 110‘ 11‘ 102‘ 90‘ 120‘ 130‘

Figure 4. Hyper-TGA representation

The super script (or tabu tenure) of each heuristic in figure
4 shows how many generations the gene will be forbidden
from calling the low level heuristic it represents. For
example, gene 2°in figure 4 means that the gene cannot call
add-best (heuristic 2) for 3 generations. We can see from
figure 4 that the same gene may have different value for its
super script (Such as 9° and 9" in figure 4). This could be
because the calling of a low-level heuristic (heuristic 9)
changes the value of objective function, whilst the calling
the same heuristic later in the chromosome did not alter the
objective function n-1 generations ago.

To use the tabu method, we have to decide the length of
the tabu list. We have experimented with lengths between 1
and 10, and found that a list length between 3 and 6 gives
good results.

Pseudo-code of the tabu assisted hyper-GA (hyper-TGA)
is presented as follows:

1. Generate an initia solution (S) randomly.

2. Generate 30 initial chromosomes; initialise the tabu
tenure ; (j is the position of the gene) for each gene
to 0. Store these chromosomes into a pool

3. For each chromosome k (0 < k<30),

i. Apply low-level heuristics to S according to the
order of the chromosome, when the script of
corresponding gene equalsto 0.

ii. Record the solution S (k is the position of the
chromosome in the pooal).

iii. Record the change each applied low-level
heuristic makes to the objective function: C;,

iv. Foreacht>0, tj =t -1,

v. If G=0thent=n. (nisthe length of the tabu list).

4. Compareeach S to S if S>S, then S=S..

5. Apply one-point crossover and mutation (see section
7) to current chromosomes

6. Add new chromosomes and 10 best chromosomes in
current pool to a new pool. If the stopping criteriais
met, stop the evolution, else, go to step 3.

7. Results

All agorithms were implemented in C++ and the
experiments were conducted on an AMD 800MHZ with
128MB RAM running under Windows 2000. We used five
data sets to test the suitability of the algorithm, which
describe readlistic problem instances having differing
degrees of difficulty [6]. Each data set contains more than
500 events. The events in each data set are generated
randomly, based on the characteristics of area staff trainer
scheduling problem at alarge financial institution. For more
details of the problem please refer to [6].

There are 4 versions of hyper-GA, two with adaptive
mutation and crossover rate and two without. In the
adaptive versions, the mutation rate and crossover rate
adapt according to the change in fitness in each generation.
When there is no improvement in average fitness over 3
generations, the mutation rate will be increased as follows:

New Mutation Rate = (Old Mutation Rate + 1)/2 @)
and the crossover rate will be decreased as follows :
New Crossover Rate =0ld Crossover Rate/2. (8

If the average fitness has improved over 3 generations,
the mutation rate will be decreased using:

New Mutation Rate =Old MutationRrate/2 9
and the crossover rate will be increased using:
New Crossover Rate = (Old Crossover Rate + 1)/2 (10)

There are two types of objective function in our
algorithm. One uses total priority minus total travelling
penalty resulting from applying the heuristics given by the
chromosome to the best solution found so far. The formula
is.

D Priority - Travelling Penalty (11)

The other uses total priority minus tota travelling
penalty divided by the CPU time of the application of that
chromosome, so that improvement per unit time is the
fitness. The formula for this objective function is:

(Q_ Priority=> TravellingPenalty)/((CPU Time in Chromosome)
(12)

The consideration of CPU time is so that we can easily
compare the efficiency of each individual sequence of low-
level heuristic.

The four versions of hyper-GA, according to the
objective function and the context of parameters for
mutation and crossover réte, are as follows:

w PPPN uses (11) asthe objective function.

w PPPA uses same objective function as PPPN, and the
crossover and mutation rate are adapted using (7)-
(10).

FTPN, uses (12) as the objective function.

FTPA, whose objective function is the same as
FTPN, and the crossover and mutation rate is adapted
using (7)-(10).

PPPN, PPPA, FTPN, and FTPA are simply mnemonic

names we give to each of the four version of hyper-GA.

The comparison of these four versions test the robustness
of hyper-GA under arange of conditions.

Thirty individuals are generated for the initial population
by randomly selecting integers ranged from O to 13 for each
gene of the chromosome. The length of each chromosome
is 14. After empirical testing over a range of parameter
rates [6], we use 0.6 for the crossover rate (one-point
crossover is used in experiments), 0.1 for the mutation rate

s =

(the mutation randomly selects some positions in one
chromosome and mutates integers at these positions to
other values ranging from 0 to 13), a population size of 30
and we run for 200 generations (100 generations gives
equally good results, but we use 200 to see the further
change of low-level heuristics' distribution).

We compare each of the four versions of hyper-TGA
over five problem instances (each result is the average of 5
runs). The results of the hyper-TGA tests on the 5 data sets
is shown in table 1. The results of our previous work:
application of hyper-GA and ALChyper-GA to the same
data is aso shown. We also compare with the results of a
genetic algorithm and a memetic algorithm. The upper
bound is calculated by solving a relaxed knapsack problem
[18] where we ignore travel penaties. The length of the
tabu list is 5 for hyper-TGA's results in table 3. (If the tabu
list length is too short, those poor-performing low-level
heuristics are not blocked for long enough, and the
efficiency of the algorithm is not improved. If the length is
too long, only a few heuristics are available in each
generation, and the effectiveness of the algorithm is
reduced.) We can see again, from the table that most of our
new algorithms are superior to previous results.

Results from our guided-operator hyper-GA [16] are also
included in table 1. Although the guided-operator hyper-
GA produces superior results, the hyper-TGA is
competitive whilst using about 20% less processing time.
We suspect this is due to the increased computation
required to identify the best/worst genes in each
chromosome by the guided-operator hyper-GA. In addition,
the hyper-TGA is a lot easer to implement as the
identification of best/worst genes is not easy to implement
and it is open to a number of interpretations. Thus, we can
use the hyper-TGA to find a quick promising solution, or
use the guided-operator hyper-GA to achieve better quality
solutions.

Heuristics Basic data Very few staff Few staff 1 Few staff 2 Non
-restricted
Upper bound (priority) 2261 2179 2124 2244 2179
GA 1796/1628 1633/1629 1589/1641 1706/1721 1644/1699
MA 1832/2064 1678/2054 1617/2129 1769/2254 1698/2133
Hyper-GA PPPN 1959/1456 1780/1387 1749/1404 1858/1496 1742/1422
Hyper-GA PPPA 1939/1448 1754/1461 1712/1306 1854/1475 1814/1571
Hyper-GA FTPN 1943/1411 1770/1437 1673/1436 1803/1422 1774/1434
Hyper-GA FTPA 1951/1420 1731/1424 1738/1436 1769/1427 1770/1419
ALCHyper-GA PPPN 1961/1357 1788/1250 1816/1163 1831/1591 1822/1437
ALCHyper-GA PPPA 1933/1638 1757/1644 1795/1325 1862/1506 1804/1638
ALCHyper-GA FTPN 1949/1450 1780/1365 17811277 1821/1638 1813/1488
ALCHyper-GA FTPA 1954/1526 1764/1496 1766/1364 1799/1583 1799/1419
Hyper-TGA PPPN 1966/972 1789/911 1820/834 1866/1004 1824/941
Hyper-TGA PPPA 1959/958 1782/931 1804/864 1852/996 1809/970
Hyper-TGA FTPN 1960/963 1784/933 1799/856 1852/1012 1814/982
Hyper-TGA FTPA 1965/985 1782/942 1811/892 1857/997 1804/930
Guided Hyper-GA PPPN 1972/1184 1792/1139 1819/1087 1869/1257 1826/1194
Guided Hyper-GA PPPA 1960/1208 1780/1158 1796/1135 1849/1306 1814/1270
Guided Hyper-GA FTPN 1964/1223 1786/1164 1802/1158 1852/2286 1811/1248
Guided Hyper-GA FTPA 1969/1215 1785/1162 1807/1143 1865/1324 1816/1186
Table 1. Comparison of Guided Operator Hyper-GA with Other Algorithms (Objective (maximise)/Time)
heuristic distribution

add first

add random

add best

swap first

swap random

add remove first

add remove random

add remove worst
add first improvement

frequency

add random improvement

add swap first improvement

add swap best improvement
remove first

T 7 T 7 T 7 T remove random

1 21 41 61 81 101 121 141 161 181

generation

Figure 5. Digtribution of low-level heuristic for PPPN

Figure 5 presents the frequency of hyper-TGA calling evolution. All calls settle at generation 47 when the search
each low-level heuristic. We can see from the figure that reaches its best value of objective function (1966).
the frequency changes randomly at the beginning of the

Hyper-TGA cals some low-level heuristics often
during the whole evolution, such as add-best (gene 2) in
the figure. This is because these low-level heuristics work
actively to make changes to the objective function. Thus,
cals to them are rarely forbidden by the tabu method in
the algorithm. Some low-level heuristics' call frequencies
change from very low to high. For example, add-random
(gene 1) and swap-random (gene 4). The reason for this
phenomenon is the effect of these heuristics alters from
being unable to change the objective function to providing
changes. The call to some heuristics, such as add-first-
improvement (gene 8), remains low during the whole
process. The reluctance to make change to the objective
function forces them be tabued for most of the time
during the evolution.

8. Conclusion

We introduced a tabu method assisted hyper-GA, which is
a further improvement, with respect to computational time,
of our previous work. It is a promising approach for
solving personnel scheduling problems and other
optimisation problems. The use of a tabu method to forbid
poorly performing genes appears to help the search.
Making calls to some heuristics also helps to reduce the
CPU time. We have tried different lengths of tabu list, and
find that a list which is too long or too short provides an
ineffective search. Therefore, we decide to use 5 as the
length of the list in this work, and find it improves the
objective function and reduces the CPU time. The
comparison of hyper-GAs to the hyper-heuristic choice
function further shows that the guided operator hyper-GA
can achieve better results than other versions of hyper-GA,
and hyper-GAs are robust across a range of problem
instances.

References

[1] Aickelin, U, Dowsland, K, Exploiting Problem
structure In A Genetic Algorithm Approach To A
Nurse Rostering Problem, 2000, Journal Of
Scheduling, vol. 3, pp.139-153.

[2] Burke, E.K., De Causmaecker, P., Vanden Berghe, G.,
A Hybrid Tabu Search Algorithm For The Nurse
Rostering Problem, 1998, Proceedings of the Second
Asia-Pacific Conference on Smulated Evolution and
Learning, vol. 1, Applications IV. pp. 187-194

[3] Burke, E., Kendal, G., Newal, J., Hart, E., Ross, P.,
and Schulenburg, S., Handbook of metaheuristics,
chapter 16, Hyper-heuristics: an emerging direction in
modern search technology, pp. 457-474. Kluwer
Academic Publishers, 2003.

[4] Burke, E.K., Kendall, G., and Soubeiga, E., A Tabu-
Search Hyperheuristic for Timetabling and Rostering,
2003, to appear in Journal of Heuristics.

[5] Burke, E.K., Soubeiga, E., Scheduling nurses using a
tabu-search hyperheuristic, 2003, Proceedings of the
1% M ultidisciplinary International Conference on
Scheduling: Theory and Applications, MISTA 2003,
Nottingham, UK, pp. 197-218.

[6] Cowling, P.., Kendall, G. and Han, L., An
investigation of a hyperheuristic genetic agorithm

applied to a trainer scheduling problem. Proceedings
of the Congress on Evolutionary Computation 2002,
CEC 2002. Morgan Kaufman, pp. 1185-1190, 2002.

[71 Cowling, P.I., Kendal, G. Soubeiga, E.,
Hyperheuristic Approach to Scheduling a Saes
Summit, 2001, Selected papers of Proceedings of the
Third International Conference of Practice And
Theory of Automated Timetabling, Springer LNCS vol
2079, pp. 176-190.

[8] Cowling, P.I., Kendall, G., Soubeiga, E., A Parameter-
free Hyperheuristic for Scheduling a Sales Summit,
2001, Proceedings of the Third Metaheuristic
International Conference (MIC 2001), pp. 127-131

[9] Cowling, P.I.,, Kendal, G. Soubeiga, E.,
Hyperheuristics: A Tool for Rapid Prototyping in
Scheduling and Optimisation, 2002, European
Conference on Evolutionary Computation (EvoCop
2002), Springer LNCS.

[10] Cowling, P.I., Kendal, G., and Soubeiga, E.,
Hyperheuristics: A robust optimisation method applied
to nurse scheduling, 2002, Seventh International
Conference on Parallel Problem Solving from Nature,
PPSN2002, Springer LNCS, pp. 851-860.

[11] Corne, D, Ogden, J, Evolutionary Optimisation of
Methodist Preaching Timetables, Lecture Notes in
Computer Science: Selected papers of the Second
International Conference of Practice And Theory of
Automated Timetabling, LNCS:1408, pp. 142-155.

[12] Dowsland, K., Nurse scheduling with tabu search and
strategic oscillation, 1998, European Journal of
Operational Research 106, pp. 393-407.

[13] Easton, F, Mansour, N, A Distributed Genetic
Algorithm For Deterministic And Stochastic Labor
Scheduling Problems, 1999,European Journal of
Operational Research, pp. 505-523.

[14] Gratch, J., Chien, S., Adaptive Problem-Solving for
Large-Scale Scheduling Problems. A Case Study,
1996, Journal of Artificial Intelligence Research, vol.
4, pp. 365-396.

[15] Han, L., Kendall, G., and Cowling, P., An adaptive
length chromosome hyperheuristic genetic algorithm
for a trainer scheduling problem, Proceedings of the
fourth AsiaPacific Conference on Simulated
Evolution And Learning, (SEAL'02), Orchid Country
Club, Singapore, 18-22 Nov 2002, pp 267-271.

[16] Han, L., Kendall, G., Guided Operators for a Hyper-
Heuristic GA, 2003, accepted to Al'03, Dec 2003,
Perth, Australia.

[17]Hart, E, Ross, P, Nelson, J, Solving a Rea-World
Problem Using an Evolving Heuristically Driven
Schedule Builder, 1998, Evolutionary Computation,
vol. 6, No.1(6) pp. 61-80.

[18] Martello, S., Toth, P., Knapsack Problems Algorithms
and Computer Implementations, 1990, John Wiley &
Son Ltd, Chichester, England.

[19] Nareyek, A., Choosing Search Heuristics by Non-
Stationary Reinforcement Learning, 2001, in Resende,
M.G.C., and de Sousa, J.P. (eds), Metaheuristics:
Computer Decision-Making, Kluwer Academic
Publishers, pp.523-544.

[20] Randall, M, Abramson, D, A General Meta-Heuristic
Based Solver for Combinatorial Optimisation
Problems, 2001,Computational Optimisation and
Applications, vol. 20, pp.185-210.

[21] Terashima-Marin, H., Ross, P., Vaenzuela-Rendon,
M., Evolution of Constraint Satisfaction Strategies in
Examination Timetabling, 1999, Proceedings of the
Genetic and Evolutionary Computation Conference
(GECCO099). pp. 635-642.

[22] Wren, A. Scheduling, Timetabling and Rostering - a
Special Relationship? 1995, in: ICPTAT95-
Proceedings of the International Conference on the
Practice and Theory of Automate Timetabling, pp.
475-495 Napier University.

