
Scripting the Game ofLemmings with a Genetic
Algorithm

Graham Kendall
School of Computer Science & IT

University of Nottingham
Nottingham NG8 1BB, UK
Email: gxk@cs.nott.ac.uk

Kristian Spoerer
School of Computer Science & IT

University of Nottingham
Nottingham NG8 1BB, UK

Email: kts@cs.nott.ac.uk

Abstract— The game ofLemmings has been offered as a new
Drosophila for AI research. Yet the authors have no knowledge
of any efforts to create a computer player for Lemmings. This
paper presents a scaled down version ofLemmings and offers an
evolutionary approach to solving maps. Scripts are evolved using
a genetic algorithm. Results show that this approach is able to
solve increasingly complex maps.

I. I NTRODUCTION

John McCarthy [1] states that “The computer game Lemm-
ings can serve as a new Drosophila for AI research”. The
game of chess is traditionally referred to as the Drosophila1 of
artificial intelligence research; a test bed for the development
of ideas in computer game playing programs. It has received
decades of research effort leading eventually to the creation of
Deep Blue [2] that defeated World Champion Garry Kasparov
in 1997. Yet, despite McCarthy’s introduction ofLemmings as
a new problem, the authors have no knowledge of any efforts
to create a computer player for this game.

This paper presents a scaled down version ofLemmings and
offers an evolutionary approach to solving maps. Section II
introduces the originalLemmings game, section III provides a
background of prior efforts to make computers play games,
section IV describes the experimental method and section
V discusses the results. These results demonstrate that an
evolutionary approach is a suitable method for developing a
computer program to playLemmings. Finally, section VI offers
suggestions for future research.

The work presented is a first attempt at creating a computer
player for the game ofLemmings.

II. T HE GAME OF LEMMINGS

The computer gameLemmings2 is a 1-player game dis-
played on a screen as a 2-dimensional image. It consists of
entities called lemmings that move around an environment.

The environment contains an entrance that admits the lemm-
ings and an exit that offers their only safe means of escape.
Static platforms and walls are arranged to make navigation
from entry to exit difficult for the lemmings. Hazards exist in

1A fruit-fly much used as an experimental subject in the study of genetics,
Oxford English Dictionary.

2LemmingsTM is a trademark of Psygnosis Limited.

the form of fire, water and rotating blades, which kill lemmings
that touch them.

Lemmings are walkers by default. Walker lemmings on a
platform move by default to the right, theycannot stand still,
and will swap direction if their path is blocked. If a walker
lemming approaches the end of a platform, it will continue
over the edge and fall. A walker lemming that falls too far
will die when it lands on another platform.

There are eight special types that can be assigned to the
lemmings. For each map there are a set number of each type
available.

1) A bashermakes a hole in a vertical wall and turns back
into a walker once it has passed through.

2) A blocker stands still and blocks the path for other
lemmings, making them change direction. It remains a
blocker until the end of the game, and is assumed to be
sacrificed.

3) A bomber counts down five seconds then explodes and
dies, destroying the environment immediately surround-
ing it. It is assumed to be sacrificed.

4) A builder lemming builds a diagonally upward bridge
for a set count of units or until a solid object blocks the
way, at which point it turns back into a walker.

5) A climber moves in the same manner as a walker
lemming but climbs up vertical walls. It remains a
climber until the end of the game (climbing any wall
it comes into contact with) and can also be made into
any of the other seven special lemming types.

6) A digger makes a hole in a floor (similar to a basher)
and turns back into a walker once it has passed through.

7) A floater moves in the same manner as a walker
lemming but can survive drops of any height. It remains
a floater until the end of the game (surviving all drops)
and can also be made into any of the other seven special
lemming types3.

8) A miner makes a diagonally downward hole (similar to
a basher and a digger) and turns back into a walker once
it has passed through.

Lemmings that are still active in a map can be nuked to blow
them all up. Nuking is necessary to clear lemmings from the

3A lemming that is both aclimber andfloater is called anathlete.



map, for example lemmings that are blocking, since a game
will not end until the map is empty of all lemmings.

The lemmings possess a number of subtle behaviours that a
human player learns through experience. For example, a miner
can be used to mine the ground under a blocker lemming
causing the blocker to fall and change back into a walker,
multiple builder lemmings can be used to build a zig-zag
staircase up a hole, and a lemming can be blocked before
setting it to a bomber in order to increase accuracy. These
subtle behaviours, that make the game more challenging, are
not discussed in this paper.

Further complexity is introduced to the game with walls and
platforms that cannot be destroyed (by basher, digger, miner or
bomber lemmings) and walls that can only be bashed through
in one direction.

The objective of the game is for a specified number of the
lemmings that enter the map to safely navigate to the exit
before a predefined time limit. If the player forms a strategy
to successfully complete a map then they advance to the next
map, which requires a more complex strategy to save the
required number of lemmings.

A. Problems posed by Lemmings

John McCarthy [1] highlights various phenomena of the
game of Lemmings that liken it to real world problems. It
runs too fast and contains too much information to be fully
formalised by the player, so only part of the information is
extracted from the map. Moreover, maps are typically larger
than the screen, so hidden areas exist off-screen and knowledge
of the game state is partial. The player’s appreciation of
the number of pixels a lemming moves per second is no
more than an approximation, and groups of lemmings are not
individualised, but formalised by the player as groups.

The game ofLemmings also raises game-playing issues. It
is deterministic: the same actions in identical situations will
always lead to the same outcome. A strict time limit is set for
each map so navigation needs to be quick. The authors have
observed human players and noted that strategies were formed
before the game was started. This suggests that aplanned
approach is used rather than areactive one, most likely a result
of the static nature of the environment. If there were dynamics
to the environment, for example a randomly moving exit, then
this might not necessarily be the case.

The game updates inreal time so strategies need to be timed
correctly. In fact, an action made a pixel out of place might
ultimately result in failure. A program to playLemmings must
therefore be fast enough to make actions in real time. Also, it
is often better for the player to do nothing and allow events to
unfold automatically whilst awaiting the opportunity to employ
a strategy.

Game playing programs are afruitful area for artificial
intelligence research and the issues described makeLemmings
an interesting game to use. Yet the authors have no knowledge
of a computer program to playLemmings. The following
section describes important research into programs to play
other games.

III. C OMPUTERS PLAYINGGAMES

Considerable effort has been spent developing computer
programs that play games of skill. Chess has received the
most interest and there has been a sustained effort since Turing
[3] and Shannon [4] pioneered work in the 1950’s. Work on
Chess continued through to the 1980’s [5], [6], [7] and the
1990’s when Hsu et al [8] gained success with Deep Thought.
Eventually Deep Blue [2] defeated World Champion Garry
Kasparov in 1997. Despite Deep Blue’s success, the program
did not improve through learning.

Checkers has also received a large amount of interest
from the research community. Samuel [9], [10] layed the
groundwork in 1959. Later Schaeffer et al [11], [12] developed
an automated Checkers player called Chinook that took the
world title from Marion Tinsley who had been champion for
over forty years. Chellapilla and Fogel [13], [14] and Fogel
[15] co-evolved a checkers program in the late 1990’s that
was able to defeat expert players. In contrast to Deep Blue and
Chinook, that both used large opening and endgame databases,
Chellapilla and Fogel’s program started with no knowledge of
the game and learned strategies through co-evolution. This ap-
proach is particularly attractive to programmers because of the
time saved by not having to incorporate domain knowledge.

Other games have also received the attention of researchers.
Müller [16] details the many difficulties and challenges of
computer Go, which has an even larger search space than
Chess. Billings et al [17] combined several abstraction tech-
niques to develop an improved poker-playing program that was
competitive against a world-class opponent. While Kendall and
Willdig [18] have shown that an adaptive poker player is a
promising research direction. Backgammon has been tackled
by Tesauro [19] who applied Temporal Difference Learning to
create a program that was able to beat human players. Moriarty
and Miikkulainen [20] evolved Artificial Neural Networks to
develop a game playing strategy for Othello, and Sheppard
[21] used simulations of likely game scenarios in Scrabble,
both of which yielded excellent results. A survey of games
solved and receiving interest can be found in Schaeffer [22]
and Jaap van den Herik [23].

It is the authors’ intention to develop a program to play
Lemmings to a level where simple, yet non-trivial, maps can
be solved.

IV. EXPERIMENTAL METHOD

A. Game

If experiments are to be conducted on the game ofLemm-
ings then a method is required to obtain data from it at each
frame. This data shall be used as the input to a program that
will output a strategy. This strategy will then be used to play
theLemmings game. The authors have developed a graphically
simpler version of the game ofLemmings. This will provide
direct access to both the output displayed by the game and the
input required by the game at each frame.

The game includes most of the elements from the orig-
inal game ofLemmings so that the research issues can be



addressed. The graphical simplification means it has a few
differences. The original has movement and collision detection
at the pixel level, whereas the version used for the experiments
has movement and collision detection within a grid. Each grid
cell is approximately 10 pixels square. The original game
was most likely updated approximately 30 times per second,
whereas the version used for the experiments is updated once
per second, which results in jerky movement. Gradients do not
exist. For this reason theminer lemming type is omited from
the list of eight special lemming types. The seven remaining
types are all implemented.

These differences comprise a scaling-down of map resol-
ution by approximately 10:1 and also of the game update-
frequency by approximately 30:1. Also, some complexity is
lost because the platforms canall be destroyed, from all
directions, and there is no variation to the width of the
platforms. Regardless, the scaled-down game is governed by
the same rules that were imposed upon the originalLemmings
game. The game can be scaled-up to match the complexity of
the original game ofLemmings once a computer player has
been developed to play the scaled-down version.

The authors have also developed a map editor, which is used
to create, edit and save the test-case maps.

B. Test Set

Figures 1 to 7 show the seven test case maps used in the
experiments. ’E’ represents the entrance. ’X’ represents the
exit. Lemmings that drop onto the bottom of the map die.
The time-limit for each map is set to 300 seconds. The first
map requires the use of only one special lemming type (i.e.
a basher). Each successive map requires the use of all those
lemming types used so far, plus an additional type. The final
map requires the use of all seven special lemming types.

 

Fig. 1. Showing map1. Bashers are available.

C. Genetic Algorithm

Genetic Algorithms (GAs) [24], [25], [26], [27] are search
and optimisation algorithms based on the natural process

 

Fig. 2. Showing map2. Bashers and blockers are available.

 

Fig. 3. Showing map3. Bashers, blockers and bombers are available.

of evolution. Alliot and Durand [28] evolved an evaluation
function for an Othello program using an enhanced GA and
Donelly [29] applied a GA to evolve neural networks used to
evaluate Go positions.

The authors use a GA to evolve a strategy that can solve
Lemmings maps using the following representation.

1) Representation: A strategy can be represented as a
script. This script is accessed by a controller. The controller
knows only the current time-stept of the game. It has no
knowledge of the map or of the lemmings. The controller
references the script each time-step and relays an order back to
the lemmings. The controller is ignorant of orders that cannot
possibly be completed, or are sent to lemmings that do not
exist.

The lemmings have no knowledge of the environment
around them or any of the other lemmings. They simply listen
to the controller. If the controller sends an order to a lemming
then it is completed by that lemming alone. A lemming with
no order continues on its current path. Lemmings are identified



 

Fig. 4. Showing map4. Bashers, blockers, bombers and builders are available.

 

Fig. 5. Showing map5. Bashers, blockers, bombers, builders and climbers
are available.

by a unique ID. A lemming’s ID is its index into the array of
lemmings that have entered the map.

The script can be represented by a vector of lengthT. The
valueT is equal to the time-limit imposed by the map. Each
component in the vector contains a pair of genes. This pair is a
lemming ID,l, and a command,c. Commands are represented
by integers so that

0 = basher 1 = blocker 2 = bomber 3 = builder
4 = climber 5 = digger 6 = floater

The set of alleles for a gene is defined as the set of all of its
possible values. The set of alleles for thel genes includes an
ID for each lemming entering the map, and also the value -1
indicating a null index. For example, if there are 10 lemmings
entering the map then the set of alleles for thel genes is

lSet = {−1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
The set of alleles for thec genes includes all the special

lemming types available for the map and also the value -1

 

Fig. 6. Showing map6. Bashers, blockers, bombers, builders, climbers and
diggers are available.

 

Fig. 7. Showing map7. Bashers, blockers, bombers, builders, climbers,
diggers and floaters are available.

indicating that the selected lemming should continue with its
current command, and the value 256 indicating a nuke of all
lemmings. For example, if the blocker and climber special
lemming types are available for the map, then the set of alleles
for the c genes is

cSet = {−1, 256, 1, 4}
The controller examines the script at each time-stept of the

game and extracts an(l, c) gene pair. The lemming with ID
l is given commandc. In this way, there exists a gene pair
for all time-steps of a game. For example, a map with a time
limit of 5 frames might have the following script

Script = (1, 2) (4, 1) (2, 5) (2, 1) (3, 1)

In the first time step, the lemming with ID 1 is ordered
to turn into a bomber lemming, in the second time step, the
lemming with ID 4 is ordered to turn into a blocker lemming,



and so on. Individuals representing a strategy in this way are
placed into a population. Each individual is tested on the test-
case map, evaluated and assigned a score. This evaluation takes
the form(α+β + δ+γ)/10. A higher score indicates a better
strategy.

α = (numStartingLemmings ∗ T) ∗ numLemmingsSaved ∗ 10

β = (numStartingLemmings ∗ timeRemaining) ∗ 10

α rewards every lemming that reaches the exit point.β gives
a higher reward if the map is solved in less time.β is set to
0 if the map is not solved.α + β is the most intuitive way
to reward success. However, it does not reward any lemmings
that do not reach the exit.

δ =
∑

i

(lemming[i].life)

δ rewards lemmings that remain active in the map for longer.
Here i is an index for each lemming that entered the map.
δ sums the total life of all lemmings. A lemming’s life is
incremented once for every time step that it is active in the
map.δ is never more than (numStartingLemmings * T). α is
deliberately set so that if a single lemming reaches the exit,
then the evaluation ofα is more than the evaluation ofδ if all
of the lemmings were to remain in the map for the duration
of the game.

γ =
∑
x,y

(explored[x][y]) ∗ 10

γ rewards a more diversely explored map with an emphasis
on horizontal platform exploration. Herex and y are the
coordinates of the map grid. Each cell in the map initially
has an explored score of 0. At the end of the game each cell
is scored according to the following

explored[x][y] =




0 if no lemming enteredcell[x][y]
during the game

1 if any lemming enteredcell[x][y]
during the game

2 if any lemming enteredcell[x][y]
during the game and ifcell[x][y]
is also a horizontal platform

After evaluation parents are selected from the population
with probability according to their score. Offspring are then
produced using one-point crossover. For example, the scripts
of parent chromosomesp1 and p2 produce the scripts of
offspring c1 andc2.

ScriptP1 = (1, 2) (4, 1)
∥∥ (2, 5) (2, 1) (3, 2)

ScriptP2 = (7, 1) (5, 2)
∥∥ (8, 0) (1, 2) (4, 1)

ScriptC1 = (1, 2) (4, 1) (8, 0) (1, 2) (4, 1)

ScriptC2 = (7, 1) (5, 2) (2, 5) (2, 1) (3, 2)

Offspring are then mutated using flip mutation. Random
gene pairs are replaced with a random selection from the

appropriate allele set. For example, the third gene pair of the
script for c1 is mutated.

ScriptC1(pre-mut) =(1, 2) (4, 1) (8,0) (1, 2) (4, 1)

ScriptC1(post-mut) =(1, 2) (4, 1) (6,1) (1, 2) (4, 1)

It is the authors’ hope that the best evolved chromosome
will have the optimal number of lemmings being selected for
commands. So crossover and mutation are also applied to the
set of alleles for thel genes. For example

lSetP1 = {−1, 0,
∥∥2, 6, 8}

lSetP2 = {−1, 2,
∥∥7, 8, 9}

lSetC1 = {−1, 0, 7, 8, 9}

lSetC2 = {−1, 2, 2, 6, 8}
lSetC1(pre-mut) ={−1, 0, 7, 8, 9}
lSetC1(post-mut) ={−1, 4, 7, 8, 9}

It should be noted that there is a single, static set of alleles
for the c genes, that is shared by the entire population of
chromosomes. On the other hand, each chromosome has it’s
own, dynamic, set of alleles for thel genes.

Offspring are placed into the population to form the next
generation and the process is iterated. The chromosome with
the highest score when every generation has evolved is used
as the script for the test-case map.

2) Initialisation: Four different initialisation schemes are
implemented. TYPEA chromosomes are all initialised to lists
of null gene pairs, for example

(−1,−1) (−1,−1) (−1,−1) (−1,−1) (−1,−1) . . .

TYPEB chromosomes are all initialised to lists of random
gene pairs, for example

(8,−1) (4, 256) (−1, 4) (0,−1) (−1,−1) . . .

TYPEC and TYPED chromosomes are all initialised in the
same way as TYPEA and TYPEB chromosomes respectively,
but for their first runs only. For the second, and subsequent,
runs TYPEC and TYPED chromosomes are initialised to the
best evolved strategy from the previous run. Each run attempts
to solve one of the seven test case maps. The best chromosome
that solved the previous map is used to initialise the population
of chromosomes to solve the next map. It is the authors’
hope that strategies learned whilst solving earlier simple maps
would be remembered and would help to solve later, more
complex, maps.

3) Parameters: Roulette wheel selection is employed with
a crossover rate of 0.6 and a mutation rate of 0.001. These
values are standard for GAs [24]. The GA was run for 2000
generations. Population size is set to 250 in an attempt to avoid
premature convergence of the population [30].



V. RESULTS

All seven test case maps were solved using each of the four
initialisation schemes. Figure 8 shows the scores of the best
evolved strategies. Closer analysis of the results provides some
interesting findings concerning the speed of evolution and the
quality of the evolved strategy.

Fig. 8. Showing best scores for each of TYPEA, TYPEB, TYPEC and
TYPED initialised chromosomes evolved to solve each of the seven test case
maps.

A. Speed of evolution vs. quality of evolved strategy

Figures 9 to 15 show the generation number against eval-
uation of the best evolved strategies. The bold markers on the
y-axis of each graph depicts the highest score achieved by the
authors when playing the game.

Fig. 9. Showing generations vs. score for map1 run.

Fig. 10. Showing generations vs. score for map2 run.

 
Fig. 11. Showing generations vs. score for map3 run.

 

Fig. 12. Showing generations vs. score for map4 run.

TYPEC and TYPED chromosomes generally evolved to a
successful strategy faster than the other chromosomes. TYPEB
chromosomes typically evolved to a strategy slower than the
other chromosomes. Figure 10 and figure 14 show TYPEC
chromosomes evolving to a successful strategy 1812 and 1822
generations quicker than TYPEB chromosomes respectively.

TYPEB, TYPEC and TYPED chromosomes consistently
evolved to equally high scores. Figure 8 shows TYPEA
chromosomes evolving to a strategy to solve map4 with a
score visibly lower than the strategies emerging from the other
chromosomes. Figure 8 also shows TYPEA chromosomes
evolving to a strategy to solve map5 and map6 with a score
visibly higher than the strategies emerging from the other
chromosomes. In fact, figure 13 shows a strategy emerging
from TYPEA chromosomes that is better than the strategy
that was formed by the authors.

In summary, populations initialised with TYPEC or TYPED
chromosomes are more likely to evolve to a successful strategy
more quickly, whereas populations initialised with TYPEA
chromosomes will offer a greater diversity in the final score. To
understand why these patterns emerge we analysed the evolved
scripts used to solve the maps.

1) Speed of evolution: TYPEB chromosomes consistently
evolved the slowest. This is intuitive to understand. To play
Lemmings well, it is often better to do nothing and allow
events to unfold automatically. To solve map7 it is necessary to
apply the correct commands at only 18 time-steps and remain



Fig. 13. Showing generations vs. score for map5 run.

Fig. 14. Showing generations vs. score for map6 run.

inactive for the other 282 possible time-steps. A successful
strategy will therefore consist mostly of NULL commands.
Chromosomes initialised as lists of random gene pairs will
most likely be at a disadvantage. The GA is effectively
spending time NULLifying gene pairs that, at least in other
initialisation schemes, might be initialised to NULL in the first
place.

TYPEC and TYPED chromosomes evolved the quickest.
It is less trivial to explain this phenomenon. We analysed
map5, map6 and map7 and the best evolved strategy that
emerged from the TYPEC chromosomes to solve these maps.
The first sections of map5, map6 and map7 are identical (see
Figures 5 to 7). The lemmings drop from the entrance at grid
co-ordinate (P,13). The first lemming needs to block before
falling off the platform at (S,14). The remaining lemmings
need to be turned into climbers so that they make it over
the small turret at (P,14). The first one over the small turret
needs to build a bridge over the gap at (M,14) and up to the
platform in the middle of the map at (J,12). Figure 16 shows
the commands that change the lemmings’ states to navigate
them to (J,12). There are six commands for map5. Five of the
six commands are remembered and used for map6. All five
of these commands from map6 are remembered and used for
map7. The strategy to solve map7 consists of 18 commands
in total. In this case nearly a third of the required commands
were inherited. A chromosome with such a head-start is likely
to require less time to evolve.

 
Fig. 15. Showing generations vs. score for map7 run.

 

Fig. 16. Showing(l, c) gene pairs for the first 17 time steps of map5,
map6 and map7.(l, c) pairs responsible for a change in lemming state are
highlighted, all other(l, c) pairs were ignored. A pairis ignored if either the
lemming l does not exist, or if the commandc cannot possibly be completed.

2) Quality of evolved strategy: TYPEA chromosomes were
the only ones to offer diversity in their final score. We again
analysed map5, map6 and map7. Figure 13 shows a sub-
optimal strategy resulting from TYPEC chromosomes. TYPEC
and TYPED chromosomes inherit bad genes along with good
ones. Consequently, figure 14 and figure 15 show sub-optimal
solutions for map6 and map7 resulting from TYPEC chromo-
somes. TYPEA chromosomes do not inherit genes. Figure 12
shows a solution resulting from TYPEA chromosomes that is
worse than the other solutions for that map. Figure 13 shows
a solution resulting from TYPEA chromosomes that is better
than the other solutions for that map. TYPEA chromosomes
are not effected by the success or failure of previous runs and
are more likely to offer diversity.

B. General strategy

Ideally, a strategy should be general enough to solve
multiple maps. We tested the best evolved strategies from
TYPEC and TYPED chromosomes that were able to solve
map7, against map1 through map6 to see if they displayed
any backward-compatibility. The best evolved strategy from
TYPEC chromosomes was able to solve map1 along with
map7. The best evolved strategy from TYPED chromosomes
was able to solve map2 along with map7. Each strategy
successfully solved its test-case map, but was not general
enough to solve other maps.



VI. FUTURE WORK

There are two main issues for future work. We aim to
improve the representation ofLemmings maps so that a more
general strategy can be evolved. We also aim to co-evolve the
Lemmings maps against the strategy that solves them.

A. Representation

The representation described in this paper breaks theLemm-
ings map into nothing more than time-steps. Generalisation is
not achievable with such a basic representation. A strategy that
uses this representation relies on a blind sampling and does
not scale well. We would like to improve the representation of
Lemmings maps so that a more general strategy can be evolved.
The geography of theLemmings maps and the lemmings
needs to be encoded. This representation can then be applied
to a strategy evolved using an approach such as genetic
programming.

The Genetic Programming (GP) [31] paradigm is similar to
a genetic algorithm. In GP each chromosome in the population
forms a computer program. John Koza [31] used GP to
successfully evolve S-expressions to navigate an ant along
a trail of food. Luke et al [32] successfully applied GP to
behaviour-based team coordination for RoboCup Soccer.

It is the authors’ intention to apply GP toLemmings so that
a more general, scalable, strategy can be evolved. The strategy
should at least be backwards-compatible for the maps it has
previously solved. Once a scalable strategy is obtained, it is
the authors’ intention to gradually scale-up the complexity of
the game until it matches that of the originalLemmings game.

B. Co-evolution: environment vs. strategy

Chellapilla and Fogel [13], [14] and Fogel [15] successfully
co-evolved a program to play a game of checkers. Members
of the population played against each other to compete for
survival into the next generation.

Further research will aim to automate the process of map
creation so that there is co-evolution between theLemmings
maps and the strategy that solves them. This might lead to an
open ended game where a more complex strategy evolves as
the maps evolve in complexity.

VII. C ONCLUSION

An evolutionary approach is a promising direction for
developing a computer program to play the game ofLemmings.
We present initial work, where scripts are evolved to success-
fully navigate lemmings through increasingly difficult maps.
Populations that inherited genes from the best evolved strategy
of the previous run evolved in the shortest time. Populations
that were initialised for every run as NULL commands offered
more diversity in their final score.

REFERENCES

[1] McCarthy J. Partial formalizations and the lemmings game. Technical
report, Stanford University, Formal Reasoning Group, 1995.

[2] Campbell M, Joseph Hoane Jr A, and Hsu F-h. Deep blue.Artificial
Intelligence, 134:57–83, 2002. Also in Schaeffer J and Jaap van den
Herik H, editors,Chips challenging champions, pages 97-123. Elsevier
Science, 2001.

[3] Turing A, Strachey C, Bates M, and Bowden B. Digital computers
applied to games. In Bowden B, editor,Faster than thought, pages
286–310. Pitman, 1953.

[4] Shannon C. Programming a computer for playing chess.Philosophical
Magazine, 41(4):256–275, 1950.

[5] Berliner H and Ebeling C. Hitech. In Marsland T and Schaeffer J,
editors,Computers, chess and cognition, pages 79–109. Springer-Verlag,
1990.

[6] Condon J and Thompson K. Belle. In Frey P, editor,Chess skill in man
and Machine, pages 201–210. Springer-Verlag, 1982.

[7] Hyatt R, Gower A, and Nelson H. Cray blitz. In Marsland T and
Schaeffer J, editors,Computers, chess and cognition, pages 111–130.
Springer-Verlag, 1990.

[8] Hsu F-h, Anantharaman T, Campbell M, and Nowatzyk A. Deep thought.
In Marsland T and Schaeffer J, editors,Computers, chess and cognition,
pages 55–78. Springer-Verlag, 1990.

[9] Samuel A. Some studies in machine learning using the game of checkers.
IBM Journal of research and development, 3:211–229, 1959.

[10] Samuel A. Some studies in machine learning using the game of checkers
- recent progress.IBM Journal of research and development, 11:601–
617, 1967.

[11] Schaeffer J, Culberson J, Treloar N, Knight B, Lu P, and Szafron D.
A world championship caliber checkers program.Artificial Intelligence,
53:273–289, 1992.

[12] Schaeffer J. One Jump Ahead: Challenging Human Supremacy in
Checkers. Springer-Verlag, 1997.

[13] Chellapilla K and Fogel D. Evolution, neural networks, games and
intelligence. Proc. IEEE, 87(9):1471–1496, 1999.

[14] Chellapilla K and Fogel D. Evolving neural networks to play checkers
without relying on expert knowledge.IEEE Trans. Neural Networks,
10(6):1382–1391, 1999.

[15] Fogel D.Blondie24 playing at the edge of AI. Morgan Kaufmann, 2002.
[16] Müller M. Computer go.Artificial Intelligence, 134:145–179, 2002.
[17] Billings D, Burch N, Davidson A, Holte R, Schaeffer J, Schauenberg

T, and Szafron D. Approximating game-theoretic optimal strategies for
full-scale poker. InProceedings of IJCAI-03, 2003.

[18] Kendall G and Willdig M. An investigation of an adaptive poker player.
Proc of the 14th Australian Joint Conference on Artificial Intelligence,
pages 189–200, 2001.

[19] Tesauro G. Programming backgammon using self-teaching neural nets.
Artificial Intelligence, 134:181–199, 2002.

[20] Moriarty D and Miikkulainen R. Discovering complex othello strategies
through evolutionary neural networks.Connection Science, 7(3):195–
209, 1995.

[21] Sheppard B. World-championship-caliber scrabble. In Schaeffer J and
Jaap van den Herik H, editors,Chips challenging champions, pages 283–
317. Elsevier Science, 2001. Reprinted from Artificial Intelligence 134
(2002) 241-275.

[22] Schaeffer J. The games computers (and people) play. InAAAI/IAAI,
page 1179, 2000.

[23] Jaap van den Herik H, Jos W Uiterwijk, and Jack van Rijswijck. Games
solved: Now and in the future.Artificial Intelligence, 134:277–311,
2002.

[24] Beasley D, Bull D, and Martin R. An overview of genetic algorithms:
Part 1, fundamentals.University Computing, 15(2):58–69, 1993.

[25] Goldberg D.Genetic Algorithms in search, Optimization, and Machine
Learning. Addison Wesley, 1989.

[26] Holland J.Adaption in Natural and Artificial Systems. MIT Press, 1975.
[27] Man K, Tang K, and Kwong S.Genetic Algorithms. Springer, 1999.
[28] Alliot J and Durand N. A genetic algorithm to improve an othello

program.Artificial Evolution, pages 307–319, 1995.
[29] Donelly P. Evolving go playing strategy in neural networks, 1994. AISB

Workshop on Evolutionary Computing.
[30] Leung Y, Gao Y, and Xu Z. Degree of population diversity - a perspective

on premature convergence in genetic algorithms and its markov chain
analysis.IEEE Transactions on Neural Networks, 8(5):1165–1171, 1997.

[31] Koza J. Genetic Programming: On the programming of computers
by means of Natural Selection, chapter Four introductory examples of
Genetic Programming, pages 147–162.The MIT Press, Cambridge,
Massachusetts, 1992.

[32] Luke S, Hohn C, Farris J, Jackson G, and Hendler J. Co-evolving
soccer softbot team coordination with genetic programming.RoboCup-
97: Robot Soccer World Cup I (Lecture Notes in Artificial Intelligence
No. 1395), pages 398–411, 1997.


