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Abstract- In this paper, we explore interactions in a co-
evolving population of model-based adaptive agents and fixed 
non-adaptive agents playing the Iterated Prisoner’s Dilemma 
(IPD). The IPD is much studied in the game theory, machine 
learning and evolutionary computation communities as a 
model of emergent cooperation between self-interested 
individuals. Each field poses the players’ task in its own way, 
making different assumptions about the degree of rationality 
of the players and their knowledge of the structure of the 
game, and whether learning takes place at the group 
(evolutionary) level or at the individual level. In this paper, 
we report on a simulation study that attempts to bridge these 
gaps. In our simulations, we find that a kind of equilibrium 
emerges, with a smaller number of adaptive agents surviving 
by exploiting a larger number of non-adaptive ones. 

I. INTRODUCTION 

Two topics of great interest in evolutionary computation 
are the interaction of learning and evolution, and 
evolutionary game theory. Both are important in 
application areas such as multi-agent systems, economics, 
politics, and biological modelling [1]. In each of these, the 
common thread is the study of systems of interacting 
autonomous individuals in a population, whether the 
individuals are artificially created intelligent agents, 
human beings and human institutions, or other biological 
organisms. How does such a collection of individuals 
“learn” to come to some accomodation with each other? 
What will be the equilibrium set of behaviours? Will there 
be any equilibrium? How can cooperative behaviours 
evolve? 

Previous approaches to answering these questions have 
concentrated either on adaptive agents, using modified 
machine learning techniques, or non-adaptive agents 
evolving under selection pressures determined by game 
payoffs. In each of the application areas listed above, both 
the evolutionary and learning aspects are important. This 
study is a first step in the direction of combining the two. 
We report on a simulation study that concerns both topics, 
which explores what happens when learning and evolution 

interact in an evolutionary game scenario. In the spirit of 
Axelrod’s well-known simulation study, we explore 
interactions in a co-evolving population of model-based 
adaptive agents and fixed non-adaptive agents playing 
Iterated Prisoner’s Dilemma (IPD). 

In the remainder of the paper, we first introduce the 
Iterated Prisoner’s Dilemma and review previous learning 
and evolution-based approaches to its study. We then 
describe the model we have designed for a combined study 
of learning and evolution. Experimental results are then 
presented and discussed, and we conclude with some 
comments on possibilities for future work. 

II. ITERATED PRISONER’S DILEMMA 

Imagine yourself in a situation where you must choose 
either to cooperate with another agent or try to exploit him, 
knowing that he may get a chance to retaliate later. The 
Iterated Prisoner’s Dilemma is an elegant model invented 
to study cooperation between self-interested individuals in 
such a situation. It is wonderfully simple to describe and 
yet capable of demonstrating surprisingly complex and 
subtle phenomena. Here is an informal description of the 
“one-shot” Prisoner’s Dilemma game [2]: 

 
(T)wo prisoners suspected of a serious crime are held 

in different cells, and each is offered the following deal 
by the district attourney: “If you confess and the other 
prisoner does not confess, you will be let free; if the other 
prisoner confesses too, you will receive a moderate 
sentence. If neither of you confess, you will receive a 
smaller sentence than if you both confess; if the other 
confesses but you do not, you will receive the maximum 
sentence.” 

 
While this description casts the problem as an 

entertaining puzzle, the reasons for studying this game are 
more serious. It is a model used to study human and 
natural systems in which cooperation between self-
interested individuals is observed or desired. It was 
introduced by Flood and Dresher in the early 1950’s in 



studies applying game theory to global nuclear strategies 
[3]. It has also been applied to problems in psychology, 
economics,  politics, and biology. 

A more formal definition of the game follows: in a game 
of Prisoner’s Dilemma (PD), two players simultaneously 
choose a move, either cooperate (c) or defect (d). There are 
thus four possible outcomes for each encounter: both 
cooperate (cc), the first player cooperates, while the 
second defects (cd), vice versa (dc), and both players 
defect (dd). We denote this set of outcomes 

{ }dddccdccE ,,,= . Each player receives a payoff after 
each encounter, as shown in the table: 
 
TABLE 1 - PAYOFFS FOR PRISONER'S DILEMMA 

  Second player 

  c d 

c R,R S,T 
First player 

d T,S P,P 

 
In the table, the first player’s move determines the row, 

the second player’s move determines the column, and the 
pair (X, Y) in the corresponding cell indicates that the first 
player’s payoff is X and the second player’s payoff is Y. 

In defining a Prisoner’s Dilemma game, certain 
conditions have to hold. Firstly, the order of the payoffs is 
important. The best a player can do is T (Temptation to 
Defect). The worst a player can do is to get the Sucker 
payoff, S. If the two players cooperate then the Reward for 
that Mutual Cooperation, R, should be better than the 
Punishment for Mutual Defection, P. Therefore, the 
following must hold. 

T > R > P > S 

Secondly, players should not be allowed to get out of 
the dilemma by taking it in turns to exploit each other. 
That is, taking turns should not be as good an outcome as 
mutual cooperation. Therefore, the reward for mutual 
cooperation should be greater than the average of the 
payoff for the temptation and the sucker: 

 
R > (S + T) / 2 

 
To be definite, we will choose the commonly used 

values T = 5, R = 3, P = 1, and S = 0. 
What a game theorist asks is: as a perfectly rational 

player, playing another perfectly rational player, what 
should you do in such a game? 

 
• Suppose you think the other player will cooperate. 

If you cooperate then you will receive a Reward of 
3 for mutual cooperation. If you defect then you 
will receive a payoff of 5 for the Temptation to 
defect payoff. Therefore, if you think the other 

player will cooperate, you should defect, to give 
you a payoff of 5. 

• But what if you think the other player will defect? 
If you cooperate, then you get the Sucker payoff of 
zero. If you defect then you would both receive the 
Punishment for mutual defection of 1 point. 
Therefore, if you think the other player will defect, 
you should defect as well. 

 
So, you should defect, no matter what option your 

opponent chooses (the strategy d dominates the strategy c). 
Of course, the same logic holds for your opponent. And, if 
you both defect you receive a payoff of 1 each, whereas, 
the better outcome would have been mutual cooperation 
with a payoff of 3 each. This is the dilemma and the reason 
for interest in models that promote mutual cooperation. 

In other games, there may not be a dominant strategy, 
and other notions of “solving” the game are used. One 
such notion is that of a Nash equilibrium, in which the two 
players adopt a pair of strategies such that neither player 
can get a better payoff by deviating from their strategy. In 
other words, each strategy is a best response to the other. 
Depending on the game, there may be no Nash 
equilibrium, a unique one, or many equilibria.  

Aside from the strategies c and d, there is another kind 
of strategy that can be considered, in which players are 
allowed to use randomness (e.g. a roll of a die) to decide 
their moves. In game theory these are called mixed 
strategies or stochastic strategies, whereas those without 
randomness are called pure strategies. 

In contrast to the rational conclusion of mutual 
defection, in real-life instances of Prisoner’s Dilemma, 
cooperation is often observed. Why is it so? One suggested 
explanation is that in real life, the players would have an 
expectation that they may meet the same opponent in the 
future, and he might remember a previous defection and 
take revenge by defecting on us next time we play. 

This leads us to consider the Iterated Prisoner’s 
Dilemma (IPD): In a game of repeated or Iterated 
Prisoner’s Dilemma, the players play a sequence of games 
of PD against each other. 

In the iterated game, player strategies are rules that 
determine (perhaps stochastically) a player’s next move in 
any given game situation (which can include the history of 
the game to that point). Each player’s aim is to maximize 
his total payoff over the series.  

If you know how many times you are to play, then one 
can argue that the game can be reduced to a one-shot 
Prisoner’s Dilemma. The argument is based on the 
observation that you, as a rational player will defect on the 
last iteration - that is the sensible thing to do because you 
are in effect playing a single iteration. The same logic 
applies to your opponent. Knowing that your opponent 
will therefore defect on the last iteration, it is sensible for 
you to defect on the second to last one, as your action will 
not affect his next play. Your opponent will make the same 



deduction. This logic can be applied all the way back to 
the first iteration. Thus, both players inevitably lock into a 
sequence of mutual defections. 

One way to avoid this situation is to use a regime in 
which the players do not know when the game will end. In 
game theory terms, “Nature” can be introduced as a third 
player, which decides whether to continue the game. For 
example, Nature could toss a (possibly biased) coin to 
decide. If the players know the probability, δ , that the 
game continues, then from their point of view, it is 
equivalent to an infinite game where the values of payoffs 
in each successive round are discounted by a factor δ . 

Depending on the value of δ  and on various other 
parameters, different Nash equilibria are possible, where 
both players play the same strategy. Some well-known 
examples are: 

 
• Tit-for-tat: cooperate on the first move, and play 

the opponent’s previous move after that; 
• Grim: cooperate on the first move, and keep 

cooperating unless the opponent defects, in which 
case, defect forever; 

• Pavlov: cooperate on the first move, and on 
subsequent moves, switch strategies if you were 
punished on the previous move. 

 
Many variations of IPD have been studied, using a 

variety of approaches. Variations include different classes 
of strategies, noisy moves, noisy payoffs, alternating non-
simultaneous moves, signalling and so on. Approaches 
used include game theory, evolutionary methods, and 
machine learning. We briefly review the latter two in the 
next sections. 

A.  Axelrod’s tournaments 

Around 1980, Robert Axelrod staged two round-robin 
“tournaments” between computer programs designed by 
participants to play IPD. Many sophisticated programs 
were submitted. In each case, the winner was Anil 
Rapaport’s submission, a program that simply played tit-
for-tat. In 1987, Axelrod carried out computer simulations 
using a genetic algorithm (nowadays it would be called a 
co-evolutionary simulation) to evolve populations of 
strategies playing the IPD against each other [4]. In these 
simulations, tit-for-tat-like strategies often arose, but other, 
more complicated strategies sometimes evolved that 
outperformed tit-for-tat in particular populations. Axelrod 
used this to illustrate that there is no “best” strategy for 
playing the IPD in such an evolving population, because 
success depends on the mix of other strategies present in 
the population. 

Axelrod’s simulations illustrate a different approach to 
studying the IPD – one in which the players are not 
perfectly rational, and solutions evolve rather than being 
deduced.  

B. Evolutionary Game Theory 

Evolutionary game theory is an adaptation of game 
theory that concerns games played by populations of 
players, in which expected payoffs are frequency 
dependent, as in Axelrod’s simulations. Maynard Smith 
provides a nice discussion of the differences between the 
game theory perspective and the evolutionary game theory 
one ([5], p195). The players are not assumed to be rational 
– instead they play whatever strategy their genes tell them 
to play. It is the genes that now have an “interest” in 
maximising payoffs (of their phenotypes, relative to the 
other phenotypes in the population). The questions to be 
answered concern the dynamics and equilibria of 
populations of alternative strategies, undergoing evolution 
(i.e., replication, variation and fitness-based selection). 
One of the major application areas is the case where 
players are organisms in a natural population, and 
strategies are alternative behaviours.  

The notion of a Nash equilibrium has a strong parallel 
in evolutionary game theory – that of an evolutionarily 
stable strategy (ESS) [5]. Roughly speaking, an ESS is a 
set of proportions of alternative strategies that is stable 
against small perturbations in those proportions. ESS’s 
have been used to explain why natural populations of 
organisms are observed to contain specific proportions of 
different types of individuals (e.g., why gender ratios tend 
to remain constant in natural populations). 

C. Machine Learning 

 The machine learning community also has an interest in 
IPD and other games. Their interest is in how adaptive 
agents can learn to play these games. In contrast to game 
theory, agents are not assumed to be perfectly rational. In 
contrast to evolutionary game theory, the focus is not on 
populations, but on individual agents, whose behaviours 
change as they learn. 

Carmel et al ([6],[7],[8]) describe a model-based 
approach for learning a finite automaton model of a fixed 
opponent in a two player game, and deriving a best 
response to the inferred strategy. Reinforcement learning 
has been adapted for learning to play multi-player games 
by Littman [9] and Hu et al. [10]. Recently, Tekol et al. 
used an ant colony algorithm to discover strategies for IPD 
[11]. 

III. AGENT DESIGN 

In this study, we combine elements of the evolutionary 
simulation and machine learning approaches to IPD. We 
want to see what happens when rational thought meets 
evolutionary forces. We have chosen an IPD tournament as 
the battlefield, and an evolutionary simulation a la Axelrod 
as the method of study. 

Imagine, then, a population of IPD-playing agents 
undergoing evolution. During their lives, individual agents 



meet each other in encounters where they may choose to 
cooperate or defect, and they receive payoffs as listed in 
Table 1. Those that get higher payoffs attain higher 
reproductive fitness – that is, they contribute more viable 
offspring in the next generation. The choices that they 
make are prescribed by genetically determined strategies. 
Mutations can transform one strategy into another, causing 
the child to play differently from its parent. This is the 
scenario that Axelrod and many others have simulated. 

Into this mix, imagine injecting a new kind of mutation, 
that transforms the child into a different kind of player – 
one who tries to understand the strategies used by his 
fellows, and to use this understanding to get higher payoffs 
for himself – an intelligent, adaptive, exploitative player. 
This is the scenario that we simulated. 

In order to make our description complete, we need to 
list the implementation choices that we made – What do 
the fixed strategies look like? How are they mutated? How 
is fitness defined? What selection scheme do we use? How 
do the adaptive agents learn, and how do they figure out 
how to exploit their fellows? We describe our choices in 
the following sections, but we hasten to point out that the 
particular choices were made for convenience, and we 
believe that the outcome would be similar if we chose 
differently. That is, we are not claiming that these are the 
best or the only choices that could be made. 

D. Fixed Strategy Representation 

For this study, we have chosen to restrict the fixed 
strategies under consideration to a class of finite memory 
stochastic strategies (also sometimes called behavioural 
strategies) that can be described in terms of fixed set of 
probabilities. This is general enough to represent quite 
complicated strategies, but it does not include, for 
example, some strategies defined by finite state automata 
(see, e.g., [13]). However, most of the well-known 
strategies for IPD fit into the framework. Formally, an nth-
order strategy requires a function 

[ ]1,0: →n
n EC  

where ( )nn eeeC ,,, 21 L  gives the probability of 
cooperation on the next move, given that the previous n 
encounters in the current game were neee ,,, 21 L . Similar 
functions are also required for the first move of the game 
(as there are no previous encounters), the second move, 
and so on up to the (n-1)th move. We denote these 
functions 121 ,,, −nCCC L . A pure strategy is one where 
the value of each function is always either 0 or 1, 
otherwise the strategy is stochastic. 

For example, the strategy of always cooperating is a 
pure 0-order strategy having 0.10 =C . A completely 
random strategy is a mixed 0-order strategy in 
which 5.00 =C . 0-order strategies are those that ignore 
the other player’s moves. The optimal counter-strategy for 

any 0-order strategy is to always defect (another 0-order 
strategy).  

Tit-for-tat is a pure first-order strategy having 
0.10 =C and 

( )
( )
( )
( ) 0.0

0.1
0.0
0.1

1

1

1

1

=
=
=
=

ddC
dcC
cdC
ccC

 

We adopt the convention that each player considers 
himself to be the “first” player, so that his own move is 
listed first in each encounter (although actually the players 
move simultaneously). In this study, in order to keep 
things simple, we only use first order strategies. 

These strategies make up part of the genome of our 
populations of IPD-playing agents. In the first generation, 
stochastic strategy probabilities are assigned randomly by 
sampling from a uniform distribution with range [0,1), 
while the pure strategy probabilities are each equally likely 
to be 0 or 1. 

Mutation of a strategy is carried out as follows: For 
each probability value, p, in the genome, first determine 
whether mutation is to occur (using the specified mutation 
rate). If so, either  

 
1. “flip” the value of p to 1.0 – p, or  

2. add a small value, sampled uniformly from the 
range [-0.05,0.05), with the new value of p 
adjusted if necessary to stay in the range [0,1]. 

The choice between the two mutation types is done with 
equal probability for a stochastic strategy, while the first 
type is always chosen for pure strategies. 

E. Adaptive Agents  

We want our adaptive players to compete with non-
adaptive ones, so they must be quick learners. Although 
reinforcement learning is a very general learning method, 
we judged it to be too slow for our purposes. Therefore, 
we devised our own adaptive players specifically for 
playing IPD against first-order strategies. We use a method 
analogous to that of Carmel et al. ([6],[7],[8]). Our 
adaptive players maintain models of each opponent’s play, 
and use these models to determine a counter-strategy for 
each opponent.  

An opponent modeling agent (OMA) of order n 
maintains a summary of the moves made by each opponent 
depending on the (up to n) previous encounters with this 
opponent. We call this a model of the opponent. A model 
is a set of functions nMMM ,,, 10 L analogous to the 
functions in a strategy, except that the value of each M is a 
pair (X, Y), where X reflects how often this opponent has 
cooperated given the particular sequence of previous 
encounters in the past, and Y reflects how often they have 
defected. These models can then be used to compute an 



estimate of the opponent’s playing strategy, so that a 
counter-strategy can be devised. One way for an OMA to 
do this is described below. 

1) Updating Rule 
Any player that learns to play better over time must do 

so by adjusting internal parameters of some kind. The 
method a player uses to do this is called his updating rule. 
Here we describe the updating rule for OMA’s. Initially, 
that is, before our OMA has played any games, it has no 
opponent models at all, but has a randomly generated 
“default” model. For example, the default model could be 
one having ( )0,20 =M  and 

( ) ( )
( ) ( )
( ) ( )
( ) ( )2,0

0,2
2,0
0,2

1

1

1

1

=
=
=
=

ddM
dcM
cdM
ccM

 

This first-order model suggests an opponent who plays 
tit-for-tat. Each time the OMA meets a new opponent, he 
creates a clone of the default model as an initial model of 
the opponent. Thus, the OMA is starting from scratch each 
time he meets a new opponent. 

Each time a move is played, the OMA updates the 
relevant function value in the opponent model. He does 
this by multiplying each element of the pair by a forgetting 
factor, 1<γ , and incrementing either the cooperation 
value, X, or the defection value, Y. An increment value of 

( )γ−× 0.10.2  is chosen to keep the total of the pair values 
constant (in this case equal to 2.0). For example, if the 

previous outcome against this opponent was cc, ( )ccM 1  
is (1.5, 0.5), and both players cooperate this time, then 

( )ccM 1  becomes ( )( )γγγ 5.0,0.10.25.1 −×+ . 
One problem with this scheme is that some game 

positions may seldom or, worse, never be reached, so the 
part of the model dealing with these positions would 
remain inaccurate. We describe below, in 3), how this 
problem can be handled. 

This explains how the OMA updates his opponent 
models. Now we come to the question of how these 
models are used by the OMA to select its moves. 

2) Choice Rule 
In the next few sections, we describe the method an 

OMA uses to select moves, sometimes called his choice 
rule. Opponent models provide an OMA with a way to 
anticipate how likely it is for an opponent to play a 
particular move in a given situation. For example, in the 
situation described above, we could guess that, as ( )ccM 1  
is (1.5, 0.5), the opponent will cooperate with probability 
1.5/2.0, or 0.75. In short, the model can be converted to a 
strategy for the opponent, by using the ratio X/(X+Y) to 
estimate the probability of cooperation in each situation. 

If the opponent’s strategy is indeed a first-order 
strategy, and if its parameters are known, then we can 
derive a best response analytically, as shown below. Let us 
put ourselves in the position of the OMA. Suppose that we 
know that our opponent is playing strategy { }10 ,CC . The 
initial part of the game tree is shown in Figure 1.

 
 

cc 

cccd ccdc 

 

dd dc cd 

ccdd cdcc cdcd dddd cccc 

first 

C 

D 

C C C 

C 

D D D D 

C0 1-C0 

C1(cc) 

C0 1-C0 

1-C1(dd) 

 
Our moves are labeled with C or D, while our 

opponent’s have thicker lines and are marked with the 
probability of our opponent cooperating in that game 
position. Because our strategies are all of order 1, as far as 
the opponent’s choice of moves is concerned, the game 

positions labeled cccc, dccc, etc., are the same as those 
labeled cc – i.e. the opponent will cooperate with 
probability ( )ccC1  Also, note that if, say, C is our next 
move in a best response at position cc, it must still be a 
best response at positions cccc, etc., (if there was a better 

Figure 1 -Game tree for the first few moves in a game of IPD against a stochastic strategy 



choice, we could use it at cc for the same effect). Hence, 
from both our points of view, the game positions ending in 
cc are equivalent, as are those ending in cd, those ending 
in dc and those ending in dd. Therefore, we need only 
decide on best responses for the first move, and for 
positions ending in cc, cd, dc, and dd – 5 positions in all. 
Given a choice of move for each of these 5 positions, the 
value of the game can be calculated: Let ( )ccV  be the 
value of the game at position cc, by which we mean the 
expected discounted future payoff starting from this 
position. Define the value of the game for the other 
positions similarly. If we choose to cooperate at cc, then: 

( ) ( ) ( )( ) ( )( ) ( )( )cdVSccCccVRccCccV ×+×−+×+×= δδ 11 1  
while if we choose to defect, then: 

( ) ( ) ( )( ) ( )( ) ( )( )ddVPccCdcVTccCccV ×+×−+×+×= δδ 11 1 . 
Similar equations hold for the other positions, giving a 

system of equations that can be solved for the values 
( )_V . Finally, the value of the game at the start of the 

game is either 
( )( ) ( ) ( )( )cdVSCccVRCV ×+×−+×+×= δδ 00 1 , or 

( )( ) ( ) ( )( )ddVPCdcVTCV ×+×−+×+×= δδ 00 1  
, depending on whether we choose to cooperate or not. 

The best response is that set of 5 choices which maximizes 
this value. There are only 25 = 32 strategies to check. 

This is the method for determining a best response that 
OMA’s used in the experiments reported below. Note that 
using this “optimal” counter-strategy does not make the 
OMA’s unbeatable. One reason is that the strategy is only 
optimal relative to the opponent’s probabilities, which the 
OMA can only approximate. It takes a few moves to 
“learn” how an opponent is playing. Depending on the 
opponent, a mistake in the first few moves may lock in a 
low reward for both players (if the opponent is grim, for 
example).  A second reason is that deliberate errors are 
introduced into all agent’s play, as described in 3) below, 
so an OMA can never achieve perfect play. 

The method described above can be extended to 
calculate a best response against any finite-order stochastic 
strategy. As an aside, notice that this best response is also a 
strategy of the same order (a pure one).  Since we can find 
best responses for any stochastic strategy, including the 
pure ones, it is straightforward to check which pure 
strategies form Nash equilibria. Using the values computed 
for the subgames, it is also easy to find the subgame 
perfect equilibria. Which strategies turn out to be 
equilibria in particular cases depends on the values of δ, T, 
R, S and P. 

3) Adding exploration – the trembling hand 
As mentioned earlier, in 1), a problem with the 

opponent model updating rule is that the part of the model 
dealing with some game positions may not be updated, 
because these game positions are not reached. For 
example, if both players play tit-for-tat, neither player ever 
finds out what his opponent would do if he defected. To 

ensure that all parts of the opponent model are updated at 
least periodically, we introduce occasional (in these 
experiments, on 1% of moves) “noisy” moves, where we 
deliberately play the opposite of the calculated best 
response. This is similar to the choice rule used in 
stochastic fictitious play, where randomness is introduced 
as a response to noisy payoffs [12], and to exploration 
strategies sometimes used in reinforcement learning [14]. 
It has also been proposed as a natural way to model “real” 
players, who could be expected to make errors from time 
to time. This device has been called the “trembling hand.” 

Partly to allow OMA’s to explore, partly for uniformity 
of treatment, and partly to make the agents more realistic, 
all the agents, adaptive and non-adaptive, used in these 
experiments were “equipped” with a trembling hand. This 
requires a change to the equations given in 2). The value of 
the game at position cc, for example, now becomes either 

( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( )( )ddVPccCdcVTccC

cdVSccCccVRccCccV
×+×−+×+××+

×+×−+×+××−=
δδε

δδε

11

11

1
11

or 
( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( )( ) ( )( ) ( )( )( )ddVPccCdcVTccC

cdVSccCccVRccCccV
×+×−+×+××−+
×+×−+×+××=

δδε
δδε

11

11

11
1

 

, where ε is the error rate, depending on whether the 
player chooses to try to cooperate or not. The other 
equations need similar changes, but the whole system is 
still a linear system that can be solved as before. 

IV. EVOLVING PLAYERS 

In the experiments described below, populations of 
agents were evolved using a genetic algorithm-like 
simulation of evolution, as follows: 

 
1. An initial population is created. 

2. A round-robin IPD tournament is held between 
the members of the population. Every player 
plays every other player in a game of IPD in 
which the game continues to another round with 
probability d. The fitness of each individual is 
assigned to be that player’s average payoff per 
move in the tournament. 

3. Fitness-proportionate selection is used to select 
parents for the next generation (using stochastic 
universal selection). 

4. Each parent, when selected,  produces one child, 
by a process of copying the genome of the parent 
(with a low mutation rate – the probability of 
mutation as each gene is copied), and the 
development of a new individual from this 
genome. The children become the next 
generation. 

5. Repeat steps 2-4 until finished. 

The genome of each IPD-playing agent consists of a set 
of probabilities for a first-order strategy, plus an additional 



“smart” bit. If the smart bit is on, the agent plays as an 
OMA. Otherwise, he plays the fixed strategy prescribed by 
his genes. As well as mutation of strategies, as described in 
D, the smart bit may independently mutate between on and 
off. 

In all these experiments, we used the payoffs given in 
Section II, and a discount rate of 0.96, giving an average 
game length of 25 moves. A mutation rate of 0.01 was 
used throughout. All the strategies used were of order 1. 
The first experiments establishes a baseline for non-
adaptive players evolving without adaptive players present, 
while the second investigates interactions between 
coevolving adaptive and non-adaptive players. Note that a 
simulation with adaptive players alone would not make 
sense, as there is nothing to be passed on from parents to 
children. 

Because of space limitations, we report only on 
experiments using pure strategies for non-adaptive players. 
We also carried out experiments using stochastic 
strategies, with similar results. 

F. Experiment 1 

In this experiment, we evolved populations of 100 non-
adaptive pure strategy players, with the smart bit 
permanently turned off. We ran each simulation for 1000 
generations. In each generation, we recorded the mean 
fitness value and percentage of cooperation in each 
generation as well as the percentage of grim and tit-for-tat 
strategies present in the population. 

 
TABLE 2 – SUMMARY STATISTICS FOR EVOLUTION OF 

PURE STRATEGIES, N = 20, MEAN ± STD.DEV. 

mean fitness mean 
coop% grim% tft% 

2.783±0.013 86.7±0.8 26.4±1.5 19.7±1.8 

 
The populations evolved in a few generations to a 

mixture of generally cooperative players, cooperating 
around 87% of the time. As can be seen in Table 2, the 
mean reward was close to the mean of 2.783 in all the 
runs. The average percentages of grim and tit-for-tat 
strategies were around 26% and 20% respectively. Figure 
2 shows a typical run, with defection initially popular, and 
cooperation taking over after about 20 generations. 
Although the mean reward and degree of cooperation of 
the population have stabilised, the composition of the 
population is constantly fluctuating, with grim and tit-for-
tat always present in large numbers, appearing to be 
loosely tied together in a cycle of period about 100 
generations. Figure 3 shows the percentages for the same 
typical run.  
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Figure 2 - A typical run with pure strategies 
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Figure 3 - Percentage of grim and tit-for-tat strategies for the run 
in Figure 2 

G. Experiment 2 

In this experiment, we used the same setup as in 
Experiment 1, except that we allowed the smart bit to 
mutate. In the initial population, all the smart bits were off. 
Figure 4 shows the mean fitness and level of cooperation 
in a typical run. The picture is similar to that of 
Experiment 1, with a slightly lower degree of cooperation 
at around 81%, and slightly lower mean rewards around 
2.67. Figure 5 shows the percentage of tit-for-tat and grim 
strategies and also the percentage of OMA’s for the same 
run. As Table 4 shows, a significant number of OMA’s, a 
mean of around 13.5% of the population, is able to 
survive. Compared to Experiment 1, some of the grim 
strategies have been displaced, but the percentage of tit-
for-tat strategies has actually increased. We conjecture that 
this increase is at the expense of more exploitable 
strategies, which are under pressure from the OMA’s. 

We must ask: how do the OMA’s continue to survive, 
despite having a mean fitness of only 2.51 compared to the 
average of 2.67? The answer is that their fitness is high 
enough that the constant mutation prevents them from 
being driven to extinction. We can illustrate this using 
additional data collected in Experiment 2. At one point 
during one of the runs, we recorded the mean payoff 
achieved by OMA’s when playing against non-adaptive 



players, as well as those for OMA’s against other OMA’s, 
for non-adaptive players against OMA’s, and for non-
adaptive players against other non-adaptive players. Table 
3 gives these payoffs. The payoffs constantly fluctuate 
during a run as the percentages of different kinds of non-
adaptive players fluctuates. At this point, the percentage of 
OMA’s was 15%, the mean OMA fitness was 2.52, and the 
overall mean fitness was 2.71. In game theory terms, the 
OMA “strategy” is dominated by the non-adaptive 
“strategy”, so there could be no equilibrium - no ESS with 
a non-zero proportion of OMA’s. 

 
TABLE 3 - PAYOFF MATRIX FOR DIFFERENT STRATEGY 
TYPES 

 OMA Non-adaptive 

OMA 1.69 2.64 

Non-adaptive 1.79 2.88 

 
Without mutation, the expected percentage of OMA’s in 

the next generation would be 
%95.1371.2/52.215 =× and the expected percentage of 

non-adaptive players would therefore be 86.05%. With a 
mutation rate of 1%, we expect on average 0.1395% of the 
next generation will be OMA’s mutated into non-adaptive 
players, and 0.8605% will be non-adaptive players mutated 
into OMA’s. Therefore, the expected percentage of OMA’s 
in the next generation is actually 

%67.148605.01395.095.13 ≈+−  almost back up to 
15%. This unequal effect of mutation would be more 
pronounced if the percentage of OMA’s was to fall lower. 
The result is that an equilibrium - a kind of modified ESS - 
occurs. 

Thus we see that OMA’s, which come into the IPD-
world knowing nothing and must quickly learn everything 
they need to know about their fellows, can survive 
amongst a population of players genetically bred to play 
IPD instinctively. We conjecture that OMA’s could do 
better at some other games, because in IPD, players like 
grim severely punish mistakes like those that a learner 
makes in the process of learning. 

 
TABLE 4 – SUMMARY STATISTICS FOR COEVOLUTION 
OF PURE STRATEGIES WITH OMA’S, N = 20, MEAN ± 
STD.DEV. 

mean 
fitness 

mean 
OMA 
fitness 

mean 
coop% 

OMA
% grim% tft% 

2.67± 
0.01 

2.51± 
0.01 

80.6± 
0.6 

13.5± 
0.7 

21.7± 
2.0 

24.1± 
2.0 
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Figure 4 - A typical run with pure strategies and OMA’s 

 

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000

Generation

P
er

ce
n

t

nGrim

nTFT

nSmart

 
Figure 5 - Percentage of OMA’s, grim and tit-for-tat strategies for 
the run in Figure 4 

V. CONCLUSION 

We have presented a simulation study combining 
evolution and learning in a competitive game setting. 
Previous work in this area has focussed on either evolution 
or learning as the mechanism by which agents determine 
their strategies. This paper is a first step towards studying 
interaction between these two mechanisms. 

We chose Iterated Prisoners’ Dilemma as our example 
game. We chose a  class of non-adaptive players that use 
strategies that are easy to understand and analyse, but able 
to represent many of the well known IPD strategies. These 
non-adaptive players “learn” to play IPD with each other 
by a purely evolutionary process – the players learn 
nothing during their lifetimes. For the adaptive players, we 
chose a custom built learner that inherits nothing from its 
parents, and must learn everything in its own lifetime. We 
found that these adaptive players are able to survive in the 
evolving population in significant proportions, though IPD 
is a tough environment for a learner, and mutation is 
needed to prevent their extinction. We also found that the 
presence of these adaptive players alters the composition 
of the non-adaptive portion of the population. 

In this initial study, we chose simple, but non-trivial, 
strategies, and kept a clear distinction between learning 
and evolution. In future work, richer, more complex 



interactions may be studied by relaxing these restrictions. 
For example, the non-adaptive players could use strategies 
defined by finite state automata. Our adaptive players start 
from scratch each time they meet a new opponent. It would 
perhaps be more realistic if knowledge gained by playing 
previous opponents could be kept and used. Taking this a 
step further, an adaptive player’s default opponent model 
could be inherited from his parent. It would be interesting 
to see whether this would produce a kind of Baldwinian 
learning. Lastly, it would be interesting to know whether 
human or animal society provides examples that mirror 
what we saw in these simulations – can we find situations 
in which a minority of devious, calculating individuals is 
able to sustain a parasitic existence by exploiting the naïve 
good nature of the majority? We leave this question for 
those with expertise in the social sciences to ponder. 
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