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a b s t r a c t

This paper presents a real-world, capacitated examination timetabling problem from Universiti Malaysia
Pahang (UMP), Malaysia. The problem has constraints which have not been modelled before, these being
the distance between examination rooms and splitting exams across several rooms. These constraints
provide additional challenges in defining a suitable model and in developing a constructive heuristic.
One of the contributions of this paper is to formally define this real-world problem. A further contribution
is the constructive heuristic that is able to produce good quality solutions for the problem, which are
superior to the solutions that are produced using the university’s current software. Moreover, our method
adheres to all hard constraints which the current systems fails to do.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Examination timetabling problems can be categorised as either
un-capacitated or capacitated. In the un-capacitated examination
timetabling problem, room capacities are not considered, whilst
in the capacitated problem the room capacities are treated as a
hard constraint, in addition to the other commonly used hard con-
straints, e.g. a clash-free timetable (Pillay and Banzhaf, 2009;
Abdullah, 2006). Most of the research in the literature has investi-
gated the un-capacitated examination timetabling problem, con-
centrating on the algorithm and algorithmic performance in
terms of producing solutions effectively and quickly (see Burke
and Petrovic, 2002; Qu et al., 2009). In enabling comparisons to
be made among the research community, a benchmark dataset
proposed by Carter et al. (1996b) is often used. Although un-capac-
itated benchmark datasets are popular, McCollum (2007) and Car-
ter and Laporte (1996a) believe that, researchers are not dealing
with all aspects of the problem. That is, they are only working on
a simplified version of the examination problems. Qu et al.
(2009), in their survey paper, reveal that most research only ad-
dresses a few common hard constraints. For example, no exams
with common students assigned simultaneously, the size of exams
need to be below room capacity etc. Commonly used soft con-
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straints include spreading conflicting exams as evenly as possible,
or not in x consecutive timeslots or days.

The capacitated problem more closely reflects the real-world
problem as it includes a room capacity constraint. However, the
capacitated problem has received less attention from the research
community. This is probably due to the lack of benchmark data-
sets. In addition, the capacitated problem is much harder to solve;
see Burke et al.’s (1996a) survey paper where 73% of the universi-
ties agree that accommodating exams is a difficult problem.
Capacitated problems also require more comprehensive data as
they have to include the room capacity as well as the other data
also required for the less complex problem (e.g. student and exam
list). This extra information can be difficult to collect (McCollum,
2007).

This paper presents a capacitated examination problem drawn
from a real world example from Universiti Malaysia Pahang
(UMP). This dataset has several new constraints in addition to
those commonly used. In Section 2, we describe the examination
timetabling problem and present related work. A description of
the UMP examination timetabling problem, including the con-
straints, is discussed in Section 3. A formal model of the problem
is presented in Section 4. In Section 5, we describe the experimen-
tal setup for our proposed constructive heuristic. In Section 6, a
comparison between the solutions achieved with the current
method employed by Universiti Malaysia Pahang (which is pro-
duced using a proprietary system), and our method, is presented
in order to evaluate the effectiveness of the proposed methodol-
ogy. In Sections 7 and 8 we summarise the contribution and pres-
ent our conclusions.
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2. Background

2.1. The examination timetabling problem

The university timetabling problem can be divided into two cat-
egories: course timetabling (de Werra, 1985; van den Broek et al.,
2009) and exam timetabling (Burke et al., 2007). This paper con-
centrates on examination timetabling. The construction of an
examination timetable is a challenging task and is quite often time
consuming. The examination timetabling problem is concerned
with assigning exams to a specific, or limited, number of timeslots
and also assigning rooms so as to satisfy a given set of constraints.
The constraints that contribute to the complexity of an examina-
tion timetable can be divided into two categories; hard and soft.
Hard constraints cannot be broken and a timetable is considered
feasible if all the hard constraints are satisfied. An example of a
hard constraint is that no student should be required to sit two
examinations simultaneously (i.e. the timetable should be clash
free). Soft constraints, on the other hand, are requirements that
are not essential but should be satisfied as far as possible. The soft
constraints are therefore used to evaluate the quality of the solu-
tions, which can be done by associating a weighted penalty value
with each violation of the soft constraint. An example of a soft con-
straint is to spread exams as evenly as possible, from the perspec-
tive of individual students, throughout the exam period. A list of
commonly used constraints is given in Qu et al. (2009), Merlot
et al. (2003), Burke et al. (1996a).

In some situations, the problem becomes more difficult as con-
straints conflict with each other where satisfaction of one constraint
can lead to the violation of another (Qu et al., 2009). For example,
suppose we have a situation where we want to minimise the total
examination period and at the same time we wish to spread out
exams as much as possible. In such a situation, satisfaction of the
first constraint will inevitably lead to poorer quality solutions of
the second constraint, and vice versa. Moreover, examination
timetabling becomes more challenging as the number of student
enrollments, courses and combined courses increases. In addition,
room constraints add even more complexity to the problem.

The examination timetabling problem varies from one institu-
tion to another (Burke et al., 1996a). Every institution has a differ-
ent set of requirements in order to effectively utilise their
resources, meet the requirements of their business, provide a high
level of satisfaction to their students etc. Therefore, an examination
timetabling system has to be built to meet these individual
requirements. As evident from the literature a large number of pa-
pers published on variants of the timetabling problem have some
common objectives. Examples of these are:

– Minimise the number of timeslots.
– Spread conflicting exams within the given examination period.
– Minimise students sitting exams in two consecutive timeslots

or sitting two exams on the same day.

A discussion on the variants of the problem can be found in Qu
et al. (2009).

Using the UMP dataset, this paper considers a real-world exam-
ination timetabling problem which has not previously been investi-
gated in the scientific literature. The objectives (i.e. soft constraints)
include the distance between rooms of an exam being held in multi-
ple rooms and the minimisation of the number of rooms an exam is
split across. We present further details in Section 3.

2.2. Related work

In the examination timetabling research community, the most
commonly used datasets are those from Toronto (Carter et al.,
1996b), Nottingham (Burke et al., 1996b) and Melbourne (Merlot
et al., 2003). The introduction of these datasets has motivated
researchers to develop many approaches. Recently the Interna-
tional Timetabling Competition (ITC2007) dataset has been intro-
duced (McCollum et al., 2008) which includes more realistic
problems than the Carter benchmark problems. Other examination
datasets also exist, for example from UKM (Ayob et al., 2007) and
UiTM (Kendall and Hussin, 2004). The Toronto and UiTM datasets
are un-capacitated problems whilst the Nottingham, Melbourne,
ITC2007 and UKM datasets are capacitated problems. The Toronto
dataset consists of thirteen real-world exam timetabling problems
from eight Canadian institutions, one from the London School of
Economics, one from King Fahd University, Dhahran and one from
Purdue University, Indiana (Carter et al., 1996b). The dataset does
not allow any student from sitting two exams at the same time.
The sole objective is to evenly spread out the exams within the
allocated number of timeslots. The Toronto dataset has received
the most research attention. Many papers, which use this dataset,
can be found in the PATAT conference series of selected papers (i.e.
Burke and Ross, 1996; Burke and Carter, 1998; Burke and Erben,
2001; Burke and De Causmaecker, 2003; Burke and Trick, 2005;
Burke and Rudova, 2007), as well as in other papers such as Qu
et al. (2009) and Burke et al. (2007).

In 1996, Burke Newall and Weare introduced the examination
timetabling dataset from the University of Nottingham. The data-
set includes a maximum number of exam sessions (23 timeslots)
and imposed clashing and total capacity constraints. The objective
of this dataset is to minimise the number of instances of a student
having two exams in a row on the same day and overnight. Several
researchers have investigated this dataset including Di Gaspero
and Schaerf (2001), Caramia et al. (2001), Burke and Newall
(1999) and Merlot et al. (2003). A dataset from the University of
Melbourne was introduced by Merlot et al. (2003). They introduced
two different datasets which include two timeslots on each day for
each of the five workdays, and a varying capacity for each session.
The datasets also includes exam availability constraints, which in-
volve a restriction on some exams in some sessions (exams are pre-
assigned to specific sessions or can only be held in a limited set of
sessions). Researchers who have investigated this dataset include
Merlot et al. (2003) and Cote et al. (2005).

Ayob et al. (2007) introduced a capacitated dataset from UKM,
Malaysia. The dataset requires that all exams be scheduled and be
scheduled only once. They forbid any student taking two exams at
the same time and from sitting three consecutive exams in a day.
The dataset also includes assigning exams to specified rooms and
those students assigned to sit consecutive exams must be assigned
to the same room. The objective involves evenly spreading the exams
and minimising students having consecutive exams on the same day.

Kendall and Hussin (2004) introduced a dataset from UiTM
Malaysia. The dataset requires that all exams must be scheduled
and that some exams are required to be scheduled together in
the same timeslot. No student should sit for more than one exam
in the same slot. The objective is to spread exams as evenly as pos-
sible, which is calculated using the proximity value from Carter
et al. (1996b), and penalising exams that are scheduled during
the weekend.

The first international timetabling competition was established
in 2002 with the aim of creating a platform for researchers to test
their algorithms on real-world timetabling problems. ITC2007 (the
second competition) has the following constraints; no student sits
more than one exam at the same time and the exams should not
exceed the room capacity. An exam assigned to a timeslot should
not violate the timeslot lengths and the exams need to be arranged
as specified (for example, assign examA after examB, examA must
use room 15 etc.). The objective is to minimise the number of stu-
dents sitting two exams in a row on the same day, minimise the
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number of students sitting two exams in a day, minimise mixed
duration of exams within a timeslot, minimise the usage of a par-
ticular timeslot or room and schedule larger examinations as early
as possible. The details of the examination competition track can
be found in McCollum et al. (2008) and McCollum et al. (2010).
Researchers who have investigated this dataset include McCollum
et al. (2009) and Gogos et al. (2008).

Table 1 summarises the constraints of datasets discussed above.
For the capacitated datasets discussed above, Nottingham and Mel-
bourne are concerned with the total seating capacity. That is, the
total number of students sitting all exams, in the same timeslot,
must be less than some specified number. According to Merlot
et al. (2003), this represents a simplified problem whereas nor-
mally in solving a real-world problem, we would have to take into
account individual room capacities, but this obviously depends on
institutional requirements. UKM and ITC2007 specify individual
room capacities.

Based on the datasets described above (see Table 1) and the other
constraints listed in the literature (Burke et al., 1996a, Qu et al.,
2009), we note that there is a gap in terms of the examination timet-
abling datasets from the literature and many of the requirements
faced by many institutions. The UMP examination timetabling prob-
lem contains additional constraints which consider individual room
capacities, whilst not allowing rooms to be shared by multiple exams
(unless exams are combined, where they are treated as one exam). In
addition, UMP also has a distance penalty cost (applied when an
exam is split across more than one room for a given exam) and a
splitting penalty cost (as it is favorable to use only one room) in
the room assignment. A further discussion on the UMP examination
timetabling problem is presented in the next section.
Table 1
Summary of datasets.

Hard = hard constraint; Soft = Soft constraint; shaded cell = constraint not considered.
The solution approaches seen in literature for the exam
timetabling problem can be separated into exam-timeslot assign-
ment and exam-classroom assignment. The most published work
seen in the literature is the exam-timeslot assignment. Only a
few works discuss exam-classroom assignment (Dammak et al.,
2006). Both the un-capacitated and capacitated (as total seating
capacity) problem (i.e. benchmark dataset) can be solved using a
two-phase approach, as both allow more than one exam in an
examination room. This will provide a feasible solution in the
exam-classroom assignment phase as long as the capacity of
rooms is greater than the number of students (Dammak et al.,
2006). However, if individual room capacities are used, that pro-
hibiting having more than one exam in a classroom, it does not
guarantee that we are able to find a feasible solution using the
two-phase approach. We might even need to introduce a solu-
tion repair mechanism in order to arrive at a feasible solution.
Therefore, in this problem, we are going to solve the UMP exam-
ination timetabling problem sequentially as an exam-timeslot-
classroom assignment.
3. Universiti Malaysia Pahang (UMP): Examination timetabling
problem

The Universiti Malaysia Pahang (UMP), formerly known as Kolej
Univerisiti Kejuruteraan dan Teknologi Malaysia (KUKTEM), was
established in 2002 and is located in Pahang, Malaysia. In 2007,
UMP consisted of five faculties with a total of 3550 students. The
number of students is growing rapidly as new faculties are being
introduced along with an increase in the programs offered. Cur-



560 M.N.M. Kahar, G. Kendall / European Journal of Operational Research 207 (2010) 557–565
rently, a total of 17 programs are offered by these faculties. UMP is
currently situated in a temporary campus, which presents many
challenges in terms of available space, logistics and the human re-
sources to manage the process.

In addition to these limitations, the UMP examination timetable
problem has other challenging constraints which have never been
tackled before in the literature, at least, as far as the authors are
aware.

In UMP, the Academic Management Office is responsible for
planning and managing the entire academic process. It provides
all the academic space and facilitates academic affairs. All this is
done with the aid of an Information Management System (IMS).
This system encompasses a complete student life cycle process;
from student intake to graduation. One of the modules in the IMS
includes generating an examination timetable which has been used
since 2003. However, although this proprietary system has been
successful in producing the examination timetable, it involves
manual processes in order to achieve a feasible solution. Moreover,
the proprietary system is unable to determine the quality of the
solutions it produces due to having no mathematical model (that
we are aware of) that allows the quality of the generated timetable
to be gauged. Therefore, one of our research objectives is to develop
a formal model in order to evaluate the effectiveness of the solu-
tion produced by the proprietary system and thus enable a compar-
ison with other methods, one of which we present in Section 5.

The hard constraints for the UMP examination timetable prob-
lem are as follows:

H1: No student should be required to sit two examinations
simultaneously.

H2: The total number of students assigned to a particular
room(s) must be less that the total room capacity.

H3: Only one examination paper is scheduled to a particular
room. That is, there is no sharing of rooms with other exam
papers (even if enough seats are available to fit in another
exam). However, some exams can be combined with others,
for the following reasons:

– The same examination for different academic programs.
– Lecturers request exam papers to be combined. This

might be caused by a lecturer teaching different courses
but with similar content.

– Faculties request that exams are combined. The com-
bined exam papers might contain similar or identical
questions.

The request for combining exams is done before the exam
schedule is generated. The combined exams are given a
unique examination code and treated as one large exam.

H4: The size of each exam room in UMP is relatively small (less
than 100) and with a large number of registered students for
each exam, this inevitably leads to splitting exams across
different rooms. In splitting the exam we need to allocate
the rooms as close as possible to each other (this actually
represents a soft constraint, see below) but the rooms MUST
be in the same building (a hard constraint).

In measuring the quality of the solution, the soft constraints are
as follows:

S1: Each set of student examinations should be spread as evenly
as possible over the exam period.

S2: The distance between exam rooms, for the same exam,
should be as close as possible to each other (and within
the same building, see hard constraint above).

S3: There is a penalty associated with splitting an exam across
several rooms, as we would like an exam to be in a single
(or as few as possible) room whenever possible.
At UMP we cannot solve the capacity problem as a total seating
capacity (i.e. as one large exam room) due to having a constraint
that does not allow an exam to share a room with another exam.
Therefore each room has a specific seating capacity, which must
be respected. Therefore, the problem needs to be solved as an
exam-timeslot-classroom assignment where the timeslot and room
need to be selected sequentially in the searching process.

4. Problem formulation

In this section, we present the formal model of the UMP exam-
ination timetabling problem as discussed in Section 3.

Indices

i,j
 1. . .N

r,p
 1...R

s
 1. . .S

t
 1...T
Parameters

N
 The number of examinations

R
 The number of examination rooms

S
 The number of students

T
 The number of available timeslots

Si
 The number of registered students in exam i

Rt
 The number of examination rooms available at timeslot t

Br
 The building for room r

fr
 The total capacity for room r

cij
 The conflict matrix where each element (cij, i, j 2 {1. . .N})

is the number of students that have to take both exam i
and j. The conflict matrix is a symmetrical matrix of size
N, where diagonal elements cii = Si
drp
 The distance matrix where each element (denoted by
drp,r,p 2 {1. . .R}) is the distance between rooms r and p.
The distance matrix is a symmetrical matrix of size R,
where diagonal elements drr = 0
Decision variables

xit
 1 if examination i is assigned to timeslot t, 0 otherwise

yir
 1 if examination i is assigned to room r, 0 otherwise

zrt
 1 if room r is assigned to timeslot t, 0 otherwise
The objective is to spread out examinations over the exam per-

iod (timeslots) for each student, minimise the distance between
rooms of an exam that is being held in multiple rooms and to min-
imise splitting an exam over several rooms. Therefore our formula-
tion is as follows:

ðMinimiseÞ ðFðxÞ ¼ F1 þ F2 þ F3: ð1Þ

The first component of the cost, F1 (spreading exams over the exam
period) is shown in Eq. (2).

F1 ¼
PN

i¼1

PN
j¼1cij � proximityðti; tjÞ

2S
; ð2Þ

and

proximityðti; tjÞ ¼
32=2jti�tj j if 1 6 jti � tjj 6 5
0 otherwise

(
; ð3Þ

where ti and tj specify the assigned timeslot for examination iand j
(i, j 2 {1, . . .,N}). Eq. (2) represents the cost for an exam i that is gi-
ven by the proximity value multiplied by the number of students in
conflict. Proximity values of 16, 8, 4, 2 and 1 are used here. For
example, if a student has two consecutive examinations then a
proximity value of 16 is assigned. If a student has two examinations,
with a free timeslot in between, then a value of 8 is assigned. Two
empty periods correspond to a penalty of 4 and so on. These prox-
imity values were introduced by Carter et al. (1996b) and have been
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widely used by other researchers (see Burke et al., 2004; Ayob et al.,
2007; Abdullah, 2006).

The second component of the cost, F2 (distance of an exam in
multiple rooms) is shown in Eq. (4):

F2 ¼
PN

i¼1

PR�1
r¼1

PR
p¼rþ1drpyiryip

N
: ð4Þ

Eq. (4) represents a cost for an exam i that is scheduled in multiple
rooms. A subset of the distance matrix is shown in Fig. 2.

The third component of the cost, F3 (splitting exam) is shown in
Eq. (5):

F3 ¼
PN

i¼1mi � 1
N

; ð5Þ

where mi is the number of rooms exam i has been split across. It can
be calculated using the following formulation, mi ¼

PR
r¼1yir8i 2

1 . . . Nf g. Eq. (5) represents a cost for an exam i that is being pena-
lised for splitting the exam in multiple room (mi > 1). For example,
if an exam is being split into two rooms, then a value of 1 is given as
the penalty value. Splitting the exam across three rooms corre-
sponds to a penalty of 2 and so on.

Eq. (1) is subject to the following constraints:

a) No student can sit two exams concurrently (clash-free
requirement). If examination i and j are scheduled in time-
slot t, the number of students sitting both examination i
and j must be equal to zero, i.e. cij = 0. This hard constraint
is expressed in Eq. (7):
XN

i¼1

XN

j¼1

XT

t¼1

xitxjtcij ¼ 0: ð6Þ
b) All exams must be scheduled and each exam must be sched-
uled only once in available timeslots, T.
XT

t¼1

xit ¼ 1 for all i 2 1; . . . ;Nf g: ð7Þ
c) Only one examination paper is scheduled to a particular room
in a particular timeslot. There is no sharing of rooms with
other exam papers (even though seats might be available to
fit in another exam), except for requested combined exams,
which has been carried out as a pre-process operation.
XN

i¼1

xityir ¼ zrt for all t 2 1; . . . ;Tf g and for all r 2 1; . . . ;Rf g:

ð8Þ

d) Exam can only be split across several rooms in the same

building.
XR�1

r¼1

XR

p¼rþ1

yiryipbrp ¼
mi mi � 1ð Þ

2
for all i 2 1; . . . ;Nf g; ð9Þ
where
brp ¼
1 if ðBr ¼ BpÞ
0 otherwise

�
:

e) For each timeslot t the number of rooms assigned to a partic-
ular timeslot must not exceed the maximum number of
rooms available in a timeslot, Rt
XR

r¼1

zrt 6 Rt for all t 2 f1; . . . ; Tg: ð10Þ
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 16, 17, 18, 19, 20, 21, 
22, 23, 24) 
f) The total number of students assigned to a particular exam
room(s) must be less than the total room capacity.
Fig. 1. Timeslot indices.
Si 6
XR

r¼1

yirfr for all i 2 f1; . . . ;Ng: ð11Þ
5. Experimental setup

In this section we present our proposed constructive heuristic,
along with other algorithmic details to aid reproducibility. The
dataset is taken from Universiti Malaysia Pahang (UMP) for semes-
ter 1, 2007. The total number of examination papers is 252, across
the 17 programs offered by 5 faculties. However, due to the com-
bined exams requirement, the dataset has been pre-processed
and the combined exams are given a new examination code and
treated as one large exam. This results in a total of 157 examina-
tions. By combining these exams, it helps to minimise and optimise
the usage of the rooms. The total number of students is 3550 with
12,731 enrolments. The conflict matrix density is 0.05, meaning
that 5% of students are in conflict among the examinations paper.
The number of exam days and timeslots are 10 and 20, respec-
tively. There are only 2 timeslots on each examination day. There
are no exams during the weekend (Saturday and Sunday). We cap-
ture this by introducing gaps in our timeslots indices. Therefore the
timeslots can be represented as shown in Fig. 1.

In Fig. 1, timeslot 1 and 2 refer to day 1, timeslot 3 and 4 refer to
day 2 etc. Notice that indices 11 to 14 are missing. This is because
those indices refer to Saturday and Sunday.

The total available exam space for this dataset is 24 rooms, with
each room having a given capacity. To assist our constructive heu-
ristic in the process of searching for the most suitable room(s) and
minimising the room related cost value, we generate a list of room
groupings (based on the list of rooms provided). These pre-deter-
mined room groupings are generated within the same building
only. Note that we limit the room groupings up to a maximum of
4 possible rooms for each exam. In our observations, 4 rooms are
adequate to satisfy any exam capacity. Besides, increasing the
room grouping possibilities (>4) will obviously increase the dis-
tance cost, splitting cost and the search space. The room groupings
are sorted in decreasing order based on the total room(s) capacity.
By doing so we could directly search for suitable room(s) and end
the search procedure when an unsuitable room capacity is
encountered.

To illustrate the procedure we provide the following example.
Assume, we have five rooms in two different buildings, where four
of the rooms are in the same building, and each room has a specific
capacity (see Fig. 2). The travel cost for rooms in different buildings
is not shown, as this is not permitted. Therefore, we could create
15 room groupings with 14 room groupings from building W and
1 room grouping from building X. Referring to Fig. 3, each of the
room groupings have their new total capacity, distance cost (total
of the distance value prior to the distance matrix for every rooms)
and splitting cost (mi �1). These room groupings are sorted based
on their capacity.

Having the decreasing order of pre-determined room groupings
assists the search algorithm in selecting the most suitable rooms,
aiming to minimise the room related cost value and speeding up
the search by stopping the room search procedure if an unsuitable
room grouping capacity is encountered.

The experiments are conducted using graph heuristic ap-
proaches including Largest Degree (LD), Largest Weighted Degree
(LWD), Saturation Degree (SD) and Largest Enrolment (LE). The
description of these methods is presented below:

– Largest degree (LD): this heuristic takes the exams that
have the most conflicts with other exams and schedules them
first.



Room Capacity Building WDK26 WDK28 WDK29 WDK30 XDK04  
WDK26 92 W 0 2 3 4 -  
WDK28 90 W 2 0 1 2 -  
WDK29 40 W 3 1 0 1 -  
WDK30 40 W 4 2 1 0 -  
XDK04 47 X - - - - -  

Fig. 2. Room information and distance matrix.

No. Room Grouping 
Room 

Grouping 
Capacity 

Distance 
Cost 

Split 
Cost 

1 WDK26 - WDK28 - WDK29 - WDK30 262 13 3 
2622292KDW-82KDW-62KDW2
2822203KDW-82KDW-62KDW3
1228182KDW-62KDW4
2407103KDW-92KDW-82KDW5
1323192KDW-62KDW6
1423103KDW-62KDW7
1103192KDW-82KDW8
1203103KDW-82KDW9
002962KDW01
000982KDW11
110803KDW-92KDW21
007440KDX31
000492KDW41
000403KDW51

Fig. 3. Decreasing order of pre-determined rooms grouping.
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– Largest weighted degree (LWD): this heuristic is similar to larg-
est degree except that it takes exams that have the most num-
ber of students who are involved in the conflict and schedules
them first.

– Largest enrolment (LE): this heuristic takes exams with the
largest number of registered students and schedules them
first.

– Saturation degree (SD): this heuristic chooses exams which
have the least number of available periods in the timetable that
can be selected and schedules them first.

In general, the algorithm (see Fig. 4) starts (line 2) by sorting the
examinations based on a graph colouring heuristic (e.g. LD, SD,
etc.) and also sorting the room groupings G in decreasing order
based on total room(s) capacity. For all examination i, (step 2)
we randomly select a timeslot t (the number of timeslots we con-
sider is referred to as a candidate list, and we show the effect of dif-
ferent candidate list sizes in the results section), which is clash free
and we only accept t if it is not equal with any t previously gener-
ated in C and the total available seating capacities in timeslot t
(totalSeatAvailable (t)) able to accommodate exam i

(capacity (i)). If the total available seating capacities in t is
greater or equal to exam i (capacity (i) 6totalseatAvail-
able(t)), we will continue to calculate the spreading penalty
based on the selected timeslot and store it in spreadCost[c].
The spreadCost[c] value will be used later in selecting the time-
slot and room with the minimum cost values (line 24). However, if
the total available seating capacities unable to accommodate the
exam, the search will continue to look for other t until a number
of count trials. Here we set a maximum of three trials. If after a
number of count trials the algorithm still could not find a feasible
t, then the search will proceed with the next c. Otherwise, it will
continue with the room assignment which goes through the room
groupings G. Selections of g is based on its capacity. If room group-
ing g able to accommodate exam i, an availability check on the
individual room(s) in the g is carried out and if the exam i can
be accommodated, the room distance and the splitting penalty
within the room(s) in room grouping g is calculated as distPen-
alty (g) and splitPenalty (g)), respectively. These values are
compared with the distance cost (distCost[c]) and the splitting
cost (splitCost[c]) in c. The value of these arrays, dist-

Cost[c] and splitCost[c], are overwritten if the distance and
splitting costs are minimum. Otherwise, we will continue to search
for other rooms in G. Once, room(s) in g been selected, we select
the minimum cost value found by comparing each of the spread-
Cost, distCost and splitCost in C and set the decision variable
to 1. The algorithm will continue the search for all exam i. Lastly,
we verified the solution by checking the solution to ascertain that
the timeslot and rooms found satisfied the constraints and calcu-
late the cost value.

Algorithm Parameters:

– i = 1...N where N is the number of examinations
– g = 1...G where G is the number of pre-determined

roomGrouping
– r = 1...R where R is the number of rooms
– c = 1...C where C is the candidate list size
– t = 1...T where T is the number of timeslots
– totalSeatAvailable(t) is the total seating capacity available

calculated in timeslot t
– capacity(i) is the size of examination i

– spreadCost[c] store the spreading penalty for candidates list c
– distCost[c] store the room distance penalty for candidates list c
– splitCost[c] store the splitting room penalty for candidates

list c
– roomCapacity(g) is the total room seating capacity in g,
– distPenalty is the room distance penalty in g
– splitPenalty is the splitting room penalty in g
– xit=1 if examination i is assigned to timeslot t, 0 otherwise
– yir=1 if examination i is assigned to room r, 0 otherwise
– zrt=1 if room r is assigned to timeslot t, 0 otherwise



Fig. 4. Pseudo-codes for the examination timetable.
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5.1. Discarding moves sub-algorithms

The algorithm is able to find superior solutions, compared to the
proprietary software, in a small amount of computational time.
This is done by discarding unnecessary moves as early as possible
in the algorithm. Referring to the algorithm (Fig. 4), the discarding
move algorithms are as follows, and we present them here to assist
in reproducibility:

(a) Total available seating capacities in timeslot t (lines 13–15).
Line 13–15 check the room availability prior to timeslot t is
generated. It calculates the total available seats in t. If the
total available seats are unable to accommodate exam i

(see line 15), then a new clash-free timeslot t is generated.
Having to calculate the total available seating capacities
would avoid the search from selecting an inappropriate
timeslot. It is good to recognize that we don’t have enough
room early in the search, rather than at the end, in order
to make effective use of the computational time available.

b) Room grouping capacity checking (line 18).
In line 18 the algorithm will check whether the room group-
ing g (start at g = 1) able to accommodate exam i. If the con-
dition is TRUE, the algorithm will continue to determine
whether each room in g (line 19) is available or otherwise
it will look for other g in the list. The room grouping search
will stop once an unsuitable room grouping capacity is
found (as we have already sorted the room grouping in
descending order) as it will only consume computational
time if the search in the G is continued.

c) Determine room availability in g (lines 19).
Line 19, checks every room(s) in the room grouping g to
determine whether the room is available or not. This is done
by checking zrt (zrt=1 if room r is assigned to timeslot t, 0
otherwise). If zrt=0 it means that the room is available and
the search will continue to check other rooms. However, if
zrt=1 which means that the room is unavailable, the algo-
rithm will stop searching the room members in the selected
room groupings g and continue to select the next suitable
room groupings g.

d) Selecting minimum value of distance and splitting cost
(line 19).
In line 19, the algorithm will only proceed if all the rooms in
room grouping g are available. Hence, it will compare the dis-
tance (distPenalty (g)) and splitting penalty (splitPen-
alty(g)) ingwith thedistCost[c] andsplitCost[c]. If
these penalty values are less than the current value stored in
distCost[c] and splitCost[c], we will store this value
in distCost[c] and splitCost[c].

All of these discarding moves help in finding a feasible solution
with minimum cost value compare to UMP proprietary software in
a small computational time. In the next section we present our
results.
6. Results

In this section, we compare the examination timetable gener-
ated by the proprietary software and the result from our proposed
algorithm, shown in Fig. 4.

6.1. UMP proprietary software

In the solution generated by the proprietary software for semes-
ter I, 2007, prior to the model being developed presented in Sec-
tion 4, the solution exhibited the following characteristics:

– Based on the five hard constraints stipulated by UMP, the exam-
ination timetable that was produced complied with all the con-
straints except for the no student should be required to sit two
examinations simultaneously constraint. Eight students were
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scheduled to sit exams at the same time and UMP had to quar-
antine these students.

– As mentioned previously, the quality of the solution is mea-
sured based on three objectives. The calculated cost for each
of the objectives is F1 = 8.82 for the spreading of exams over
the examination period, F2 = 3.63 for the distance of an exam
in multiple rooms and F3 = 0.71 for the number of room(s) an
exam being split across. The sum of the cost is therefore
13.16. Recall that this includes violation of the hard constraint
on the clash-free requirement (eight students).

6.2. Graph colouring heuristic

Using the proposed heuristic, several experiments have been
run with different candidate lists. In the context of this work a can-
didate list is how many timeslots are considered when placing an
examination. Each experiment was run 50 times in order to pro-
duce average and standard deviation statistics. Every one of the
50 runs produced a feasible solution. The experiments were run
on a Pentium core 2 processor. The running time for a candidate
list of one is around 99 seconds and 470 seconds for a candidate list
of five.

With a candidate list of one (C = 1), the algorithm searches ran-
domly for one available timeslot and selects the room grouping
that produces the minimum cost value for room distance and the
number of splitting rooms. Referring to Table 2, the result using
a candidate list of one produces comparable solutions with the
proprietary software while adhering to all the constraints. On aver-
age, our approach produces a cost value that is higher compared to
the proprietary software solution (see Table 2). However, our solu-
tions adhere to all of the constraints compared to proprietary soft-
ware, which does not. Referring to Table 2 (column min), we are
able to produce a solution that is 17% (13.16 compared with
10.98 ((13.16 � 10.98)/13.16 � 100%)) better when compared to
the solution produced by the proprietary software. Of the heuris-
tics we have used, largest enrolment (LE) produced the best cost
value of 10.98 where the spreading cost is F1 = 9.01, the distance
cost is F2 = 1.39 and the splitting cost is F3 = 0.58 with a standard
deviation of 2.10. LWD is second best with a minimum cost of
11.43 followed by saturation degree-LE, saturation degree-LD, larg-
est degree (LD) and Saturation degree-LWD. Overall, using a candi-
date list of one is able to produce a good solution, which adheres to
all the hard constraints (unlike the proprietary software).

When using a candidate list of five, the algorithm randomly
searches for five available timeslots. For each of the timeslots se-
lected, the algorithm will search the room groupings that give
the minimum cost value (distance and splitting cost). Finally,
among all the selected timeslot and room(s), we will select the
one which produces the minimum total cost value. Referring to
Table 2, the result constructed using a candidate list of five pro-
duced a solution that is between 15% (13.16 compared with
11.12 ((13.16 � 11.12)/13.16 � 100%)) to 64% (13.16 compared
with 4.74 ((13.16 � 4.74)/13.16 � 100%)) better when compared
Table 2
Result using graph colouring heuristic.

Graph colouring heuristic Candidate list = 1

Ave stdev min

Largest degree (LD) 16.21 1.52 12.74
Largest weighted degree (LWD) 15.82 1.97 11.43
Largest enrolment (LE) 15.51 2.10 10.98
Saturation degree (SD)-LD 16.17 1.53 13.11
Saturation degree (SD)-LWD 16.29 1.54 13.97
Saturation degree (SD)-LE 16.09 1.80 12.66

Ave = average; var = variance; stdev = standard deviation; min = minimum; max = maxim
to the proprietary software. Largest Enrollment (LE), again pro-
duces the minimum cost value (4.74). Other heuristics perform rel-
atively the same, with respect to their ordering based on their
performance, with a candidate list of one. However, with candidate
lists of five all heuristics outperform the UMP proprietary software
with the minimum spreading cost found being F1 = 3.31, distance
cost F2 = 0.98 and splitting cost F3 = 0.45 (produced using LE).

Our proposed algorithm always produces a feasible solution
over the 50 runs for candidate lists one and five. LE obtained the
best result compared to the other heuristics due to the room re-
lated constraints (i.e. distance and splitting constraint). Having
those two constraints reduces the effectiveness of SD and LD. This
is perhaps not surprising as SD and LD are designed to specifically
target spreading the examinations.
7. Statement of contribution

This paper has provided a study of a real-world examination
timetabling problem from UMP. In particular, we have investigated
the scheduling of exams in a capacitated environment with the aim
of minimising the spreading, distance and splitting cost. One of the
contributions of this paper is the collection of the necessary
requirements (constraints) which has never before been properly
documented at UMP. This data collection was carried out with
the help and assistance of UMP employees. Studying the problem
has led to two new constraints being identified; the travel distance
for lecturers/invigilators and splitting exams across rooms. A fur-
ther contribution of this work is the formulation of the UMP exam-
ination timetabling problem as a mathematical model. A simple
yet effective approach of single or multiple room searching and
selection is introduced through the pre-determined room group-
ing. Finally, we have presented an algorithm, based on graph col-
ouring heuristics, which we have shown can produce superior
solution to the software currently used. In addition, the proposed
algorithm adheres to all the hard constraints which the current
methodology fails to do.
8. Conclusion and future work

It is recognised that a gap exists between theory and practice in
examination timetabling. Different institutions have different
requirements and it is difficult to produce a common solution
methodology. In this paper we have introduced a new examination
dataset and two new constraints. A constructive heuristic has been
used to generate solutions that produce better solutions when
compared to the proprietary software that is used by UMP. For fu-
ture work, we plan to schedule the invigilators and include other
additional requirements requested by UMP. For example:

– Last minute exam paper addition. In certain cases, lecturers (or
faculties) require a last minute addition of exam paper into the
exam period.
Candidate list = 5

max Ave stdev min max

20.42 7.84 0.98 5.99 11.12
20.70 6.09 0.67 5.05 8.29
20.03 6.06 0.76 4.74 7.98
19.39 7.22 0.84 5.76 8.72
20.41 7.00 1.02 5.49 9.78
20.74 6.96 0.66 5.28 8.49

um.



M.N.M. Kahar, G. Kendall / European Journal of Operational Research 207 (2010) 557–565 565
– Invigilator request for change. An invigilator may request a
change in the timetable. This may be due to changes of their
own schedule or changes to the exam timetable itself.
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