Hyperheuristics: A Tool for Rapid Prototyping
in Scheduling and Optimisation

Peter Cowling, Graham Kendall, Eric Soubeiga*

Automated Scheduling, optimisAtion and Planning (ASAP) Research Group, School
of Computer Science and Information Technology (CSIT), The University of
Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, England,
United Kingdom

Abstract. The term hyperheuristic was introduced by the authors as a
high-level heuristic that adaptively controls several low-level knowledge-
poor heuristics so that while using only cheap, easy-to-implement low-
level heuristics, we may achieve solution quality approaching that of
an expensive knowledge-rich approach. For certain classes of problems,
this allows us to rapidly produce effective solutions, in a fraction of the
time needed for other approaches, and using a level of expertise com-
mon among non-academic IT professionals. Hyperheuristics have been
successfully applied by the authors to a real-world problem of personnel
scheduling. In this paper, the authors report another successful applica-
tion of hyperheuristics to a rather different real-world problem of per-
sonnel scheduling occuring at a UK academic institution. Not only did
the hyperheuristics produce results of a quality much superior to that of
a manual solution but also these results were produced within a period
of only three weeks due to the savings resulting from using the existing
hyperheuristic software framework.

Key words: Hyperheuristic, Heuristic, Rapid prototyping, Personnel Schedul-
ing.

1 Introduction

Personnel scheduling involves the allocation of timeslots and possible locations to
people. This subject has been the focus of research since the 1970’s [2, 11, 4]. As
for other combinatorial optimisation problems, the resulting NP-hard problem is
often solved using heuristic techniques [10, 1, 8, 7, 3], many of which use sophis-
ticated metaheuristic methods and problem-specific information to arrive at a
good solution. For instance Levine [9] used a hybrid genetic algorithm to solve an
airline crew scheduling problem. To obtain better results, the genetic algorithm
is hybridised with a local search heuristic which tries to repair infeasibilities
present in the rows of the constraint matrix. Experiments also compared the hy-
brid genetic algorithm with branch-and-cut and branch-and-bound algorithms
and these latter algorithms both outperformed the hybrid genetic algorithm.
Dowsland [8] used tabu search combined with strategic oscillation to schedule

* Corresponding author

nurses. Using a variety of sophisticated local search neighbourhoods, the search
is allowed to make some moves into infeasible regions in the hope to quickly reach
a good solution beyond. The result is a robust and effective method capable of
producing solutions of similar quality to those of a human expert. The same
problem was solved in [1] using a co-evolutionary strategy based on co-operating
subpopulations and problem-specific considerations.

However, as noted in [5, 6] heuristic solution methods are often tailored
specifically for the problem they are being applied to, so that it is unlikely that
they may be successfully applied to a different problem. Heuristic and meta-
heuristic approaches tend to be knowledge-rich, requiring substantial expertise
in both the problem domain and appropriate heuristic techniques [1]. It is in
this context that we proposed a hyperheuristic approach [5] as a heuristic that
operates at a higher level of abstraction than current metaheuristic approaches.
The hyperheuristic manages a set of simple, knowledge-poor, low-level heuris-
tics (for example swap, add and drop moves). At any given decision point the
hyperheuristic must choose which low-level heuristic to apply, without access
to domain-knowledge. Hence we may use hyperheuristics in cases where little
domain-knowledge is available (for instance when dealing with a new, poorly
understood or unusual problem) or when a solution must be produced quickly
(for example for prototyping). A hyperheuristic could be regarded as an “off-
the-peg” method as opposed to a “made-to-measure” metaheuristic. A hyper-
heuristic is therefore a generic and fast method, which should produce solutions
of acceptable quality, based on a set of easy-to-implement low-level heuristics. In
order for a hyperheuristic to be applicable to a given problem, all that is needed
is a set of low-level heuristics and one or more measures for evaluating solution
quality. In [6] we described various ways of choosing the low-level heuristic to
apply at each decision point and reported successful applications to a real-world
problem of scheduling a sales summit. In this paper, we use our hyperheuristic
techniques to solve another real-world problem of personnel scheduling occuring
at a UK university. We aim to demonstrate that hyperheuristics are not only
readily applicable to a wide range of problems of scheduling and other combi-
natorial optimisation problems, but also are capable of generating good quality
solutions given very little development time.

In the remainder of the paper, sections 2, 3, 4 and 5 are devoted respectively
to the application problem (Project Presentation Scheduling), the hyperheuristic
approaches that we have used, an experimental study and conclusions.

2 The Project Presentation Scheduling Problem

Every academic year the School of Computer Science and Information Tech-
nology of the University of Nottingham is faced with the problem of schedul-
ing final year BSc students’ project presentations during a period of up to 4
weeks. As part of their course requirements, final year BSc students have to
give a 15-minute presentation of their project. Each student works on a cho-
sen project topic and is assigned a member of academic staff to supervise the

project. Project presentations are then organised and each student must present
his/her project before a panel of three members of academic staff who will mark
the student’s presentation: The Chair or First Marker, the Second Marker and
the Observer. Ideally, the project’s supervisor should be involved in the pre-
sentation (as Chair or Observer) but this is rarely the case in practice. Once
every student has been assigned to a supervisor for his/her project, the problem
is to schedule all individual presentations, that is, determine a first marker, a
second marker and an observer for each individual presentation, and allocate
both a room and a timeslot to the resulting quadruple (student, 1st marker, 2nd
marker, observer). The presentations are organised in sessions, each containing
up to six presentations. Typically the same markers and observers will see all of
the presentations in a particular session. So the problem can be seen as that of
determining (student, 1st marker, 2nd marker, observer, room, timeslot) tuples,
that respect the following constraints: (1) Each presentation must be scheduled
exactly once; (2) No more than six presentations for each room and for each
session; (3) No member of staff (whether as 1st marker or as 2nd marker or
as observer) can be scheduled to 2 different rooms within the same session. In
addition presentations can only be scheduled in a given session when both the
academic members of staff and the room assigned to those presentations are
available during that session. There are four objectives to be achieved: (A) Fair
distribution of the total number of presentations per staff member; (B) Fair
distribution of the total number of sessions per staff member; (C) Fair distri-
bution of the number of “bad” sessions per staff member, i.e. sessions at bad
times (before 10:00 am, after 4:00 pm); (D) Optimise the match between staff
research interest and project themes, and try to ensure that a supervisor attends
presentations for projects which they supervise. To formulate the problem, we
denote by I the set of students, S the set of academic staff members, Q the set
of sessions and R the set of seminar rooms. Our decision variables are denoted
by Tijklgr (Z € Iaj7k7l € Sa] 7& ka] 7& lak 7& laq € Qar € R)a where Tijklgr is 1
if presentation of student 7 is assigned to 1st marker j, 2nd marker k, observer
[and allocated to session ¢ in seminar room 7, otherwise x;jr1qr is 0; and yjqr
(j € S,q € Q,r € R) where y;q is 1 if staff j is in room r during session ¢,
otherwise y;q, is 0. We may then formulate the problem as follows:
Minimise E(z) = 0.5A+ B+ 0.3C — D

s.t.
ST wimge =1, (€T (1)

7,k,leSqgeQreR

Z Z Tijkigr <6, (¢€Q,r €eR) (2)

i€l j,k,leS
Y v <1, (j€S,¢€Q) (3)

reR

DD @iktgr + Tikjigr + Tikter) < Myjer, (JE€S,q€QreR) (4)
icl k,leS

xijqu7‘ayjq7“€{071}a ZGI,J,]C,ZES,J#k#l,qu,’reR (5)

2

where A = ZjeS (ZQEQ Z’!‘ER ZiEI Zk,les(xijkl(ﬁ' + Zikjigr + Iikqur) - K))
2 2
b= ZjeS (quQ 2_reR Yiar — Kl) ,C = ZjeS (ZQEQbad 2 rer Yjar — KQ))

D=3 s (quq 2orer 2iet 2k es (Pij + 105upi;) (Tijrigr + Tikjigr + xz‘kqur))-
Equations (1), (2), (3) express constraints (1), (2), (3) respectively. Equation

(4) links variables x;jgiqr With yjqr, where M is a large number. K = %, K, =
% and Ky = % where K, (K7/K>) is the average number of presentations

(sessions/ “bad” sessions) per member of staff, with P; (P,) the total number
of (bad) sessions used in the solution and Qp.q a subset of @) containing early
sessions (before 10:00 am) and late sessions (after 4:00pm). In objective D, p;;
is an integer value associated with the level of matching between the topic of
presentation ¢ and the research interest of staff member j if he/she is involved
in presentation i. The higher p;;, the better the matching. Sup;; is an indicator
of whether staff member j is the supervisor of presentation i (Sup;; = 1) or
not (Sup;; = 0). The different coefficients in the objective function were set
so as to reflect the relative importance of each objective. The problem admits
a feasible solution if there is enough room-time to allocate each presentation
to, hence if 6|R||Q| > |I|. In this instance of the problem, |R| = 2, |Q| = 80,
|[I| = 151, |S| = 26 and therefore the problem admits a feasible solution. At
present the problem is solved manually. We developed a constructive heuristic
that produces an initial solution better than the manual one. The constructive
heuristic iteratively chooses a triple of staff members and assigns them to as
many as 6 presentations in the first available session and room. Priority is given
to non-bad sessions (to optimise objective C), to presentations whose supervisor
is among the three staff and whose project topic is most related to the concerned
staff research interest (to optimise objective D) , and the staff members are
chosen on a cyclic basis (to optimise objectives A and B). The solution of the
constructive heuristic is used as starting solution for all our algorithms presented
in this paper. In the next section we present the different hyperheuristics used
for this work.

3 Hyperheuristic Solution Techniques

We used two types of hyperheuristics, simple ones and choice function-based ones
as described in [6]. The first type of hyperheuristic comprises simple multiple-
neighbourhood search techniques which choose the low-level heuristics cycli-
cally or at random. We used the following simple hyperheuristic algorithms.
SimpleRandom: This algorithm repeatedly chooses one low-level heuristic at
random and applies it once, until some stopping criterion is met. RandomDescent:
This algorithm repeatedly chooses one low-level heuristic at random and applies
it until no further improvement is possible, until some stopping criterion is met.

RandomPerm: This algorithm repeatedly chooses a random sequence of all the
low-level heuristics and applies each low-level heuristic once in the sequence order
until some stopping criterion is met. It cycles from the last low-level heuristic in
the sequence order back to the first one. Random PermDescent: This algorithm
does the same thing as RandomPerm but each low-level heuristic is applied in
a steepest descent fashion.

The second type of hyperheuristic is based on a Choice-Function which pro-
vides guidance regarding which low-level heuristic to choose. The choice func-
tion adaptively ranks the low-level heuristics. In its original version presented
in [5], the choice function is determined based upon information regarding re-
cent improvement of each low-level heuristic (first order improvement) denoted
by fi, recent improvement for consecutive pairs of heuristics (second order im-
provement) denoted by fo and the amount of time elapsed since the heuris-

tic was last called denoted by f3. Thus we have fi(N;) = >, a”_l(%)

and fo(N;j, Ni) = >, ﬂ”fl(%) where I,,(N;)/I,(N;j, Ni) (respectively
T, (N;)/Tnh(N;, Ni)) is the change in the objective function (respectively the
number of CPU seconds) the nt" last time heuristic N; was called/called imme-
diately after heuristic Ni. Both « and 3 are parameters between 0 and 1, which
reflects the greater importance attached to recent performance. f; and fy aim at
intensifying the search. The idea behind the expressions of f; and f5 is analogous
to the exponential smoothing forecast of their performance [12]. f3 provides an
element of diversification, by favouring those low-level heuristics that have not
been called recently. Then we have f3(N;) = 7(N;) where 7(NN;) is the number
of CPU seconds which have elapsed since low-level heuristic N; was last called.
If the low-level heuristic just called is IV; then for any low-level heuristic Ny, the
choice function f of Ny is defined as

F(Ni) = af1(Ni) + Bf2(Nj, Ni.) + 6 f3(Ng) (6)

In the above expression, the choice function attempts to predict the overall
performance of each low-level heuristic. In [6] we presented a choice function
which separately predicts the performance of each low-level heuristic with respect
to each criterion of the objective function instead (i.e. A, B, C and D). The choice
function f is then decomposed into

F(NQ) = iNe) =3 [alfu(Nk) + Bifa(Nj, Ni) + 2ol @

et = I

where L = {A, B,C, D} is the set of the objective function criteria, and
f11(Ni) (respectively for(N;, Ni)) is obtained by replacing I, (Vi) (respectively
I,(Nj, Ny)) with I, (Ni) (respectively Ij,,(N;, Ni)) in the expression of fi(IV;)
(respectively fo(Nj, Ni)) above. I, (Ny) (respectively Ij,(N;, Ni)) is the first
(respectively second) order improvement with respect to criterion [€ L. We
will consider both variants of our choice function in the experiments. In [5],

parameters of the original choice function were tuned manually. Instead, we pre-
sented a procedure in [6] that monitors the choice function parameters a, 8 and
0. The procedure can be applied to both choice function expressions (6) and (7).
The procedure adaptively adjusts the values of the different parameters so that,
in light of the observed historical performance of each low-level heuristic, the
weighting assigned to each factor is modified. More precisely it rewards/penalises
the choice function intensification (f; and f2) and diversification (f3) factors by
increasing/decreasing the values of the corresponding parameters «, 3, §. Overall
the hyperheuristic works as follows

Do

For choice function (7) only: Choose a search criterion |
- Select the low-level heuristic that maximises f (fi for (7)) and apply
it.
- Update choice function f (fi for (7))’s parameters using the adaptive
procedure

Until Stopping condition is met.

We would like to emphasize the fact that the implementation of the hyper-
heuristic techniques was quite fast. In effect all hyperheuristics presented here are
“standard” approaches which worked well for another real-world problem [5, 6].
Indeed all that was needed was a set of low-level heuristics to be input to the hy-
perheuristic black box. The way the hyperheuristic works is independent of both
the nature of the low-level heuristics and the problem to be solved except for
the objective function’s value and CPU time which are passed from the low-level
heuristics to the hyperheuristic. Whilst producing the hyperheuristic framework
has taken over 18 months, using this framework took us only the equivalent of
101 hours of work (or two and a half weeks at 40 hours work per week) from un-
derstanding the problem to obtaining good hyperheuristic solutions. In the next
section we report experiments carried out on all hyperheuristics when applied
to the CSIT third year problem of scheduling project presentations.

4 Experiments

All algorithms were coded in Micosoft Visual C++4 version 6 and all experiments
were run on a PC Pentium III 1000MHz with 128MB RAM running under
Microsoft Windows 2000 version 5. In all experiments the stopping condition
was 600 seconds of CPU time. All experimental results were averaged over 10
runs. For each algorithm we distinguished the case where all moves (AM) are
accepted and the case where only improving moves (OI) are accepted. We used
three types of low-level heuristics based on “Replacing” one staff member in a
session with a diferent one, “Moving” a presentation from one session to another,
and “Swapping” two staff members, one from each presentation. The “Replace”
and “Move” type have three variants, and the “Swap” type two variants. Overall
we used the following n = 8 low-level heuristics.

1. Replace one staff member in a session (N): This heuristic chooses a random
staff member, say ji, chooses a random session, say ¢ during which staff j;

is scheduled for presentations and replaces j; with another random staff
member, say jo, in all presentations involving staff j; during session q. Staff
j2 must not be involved in any presentations during session ¢ prior to the
substitution.

2. Replace one staff member in a session (Nz) Version 2: Same as previous
heuristic but staff j; has the largest number of scheduled sessions.

3. Replace one staff member in a session (N3) Version 8: Same as Na but
session ¢ is the one where staff j; has the smallest number of presentations.
Also staff jo may be involved in presentations during session ¢ prior to the
substitution.

4. Move a presentation from one session to another (Ny): This heuristic chooses
a random presentation, removes it from its current session and reschedules
it in another random session and a random room.

5. Move a presentation from one session to another (Ns)Version 2: Same as
previous heuristic but the chosen presentation is that for which the sum of
presentations involving all three staff (i.e. 1st marker, 2nd marker, observer)
is smallest of all sessions.

6. Move a presentation from one session to another (Ng): Same as N5 but the
new session is one where at least one of the staff members (i.e. 1st marker,
2nd marker, observer) is already scheduled for presentations.

7. Swap 2nd marker of one presentation with observer of another (N7): This
heuristic chooses two random presentations and swaps the 2nd marker of the
first presentation with the observer of the second presentation. The swap
cannot involve the removal of a supervisor.

8. Swap 1st marker of one presenation with 2nd marker of another (Ng): This
heuristic chooses two random presentations and swaps the 1st marker of the
first presentation with the 2nd marker of the second presentation. The swap
cannot involved the removal of a supervisor.

For each of “Replace” and “Move” types of low-level heuristic the third ver-
sion generally yields solutions of better quality than the two others. We shall
see later on that the choice function hyperheuristic is capable of detecting this
behaviour.

In Table 1, we present results for the simple hyperheuristics, the original
choice function hyperheuristic (OriginalHyperheuristic), which needs manual
tuning of its choice function parameters and both choice function (6) and (7)
hyperheuristics (Hyperheuristic6 and Hyperheuristic7). The choice of the search
criterion [for Hyperheuristic7 is based on a probability distribution which as-
signs the probability with which a criterion is chosen depending on the relative
weight of that criterion in the objective function [6]. In this case we choose A

with probablhty Pa = m, B with probablhty Py = m, C with
probability p. = 0503+ and D with probability pg = m. Table 1

presents the results for all our algorithms. We show the objective value of both
the manual and constructive heuristic solutions.

We see that all algorithms produced results much better than the manual
solution and the constructive heuristic solution. We note that among the simple

|Alg0rithm | A | B | C | D | E |

Manual Solution 455 40 18 -363 -90.1
Constructive Heuristic 1313 | 51 0 -1616 -908.5
RandomPerm-AM 962.80(66.00|18.10|-1616.80| -1063.97
RandomPerm-OI 790.40|20.75| 4.7 |-1614.8 | -1197.59

RandomPermDescent-AM [624.60|17.40| 3.50 |-1618.00| -1287.25
RandomPermDescent-OI |631.20{16.10| 3.50 [-1617.50| -1284.75

SmpleRandom-AM 837.40|76.50|17.30(-1621.50| -1121.11
SimpleRandom-OI 796.00({22.10| 2.70 |-1614.10| -1193.19
RandomDescent-AM 645.40({20.10| 3.50 |-1618.40| -1274.55
RandomDescent-OI 583.00(18.30| 4.40 (-1614.50| -1303.38
Hyperheuristic6-AM 344.40|14.60|17.70|-1637.10|-1444.99
Hyperheuristic6-O1 592.40(15.20| 4.80 |-1629.40| -1316.56
Hyperheuristic7-AM 671.80(20.60| 4.90 (-1628.40| -1270.43
Hyperheuristic7-O1 671.40|18.70| 2.60 [-1620.70| -1265.52

OriginalHyperheuristic-AM|545.60{17.00| 3.20 |-1617.10| -1326.34
OriginalHyperheuristic-OI [665.20{19.00| 5.70 |-1621.00| -1267.69

Table 1. All algorithms start from constructive heuristic solution

hyperheuristics, the best results are from RandomPermDescent and RandomDe-
scent, which apply the low-level heuristics in a descent fashion. This was also
the case in [5, 6] when these algorithms were applied to a different scheduling
problem. While Hyperheuristic7 gave results comparable to those of the simple
hyperheuristics, Hyperheuristic6 produced results much better than those of the
simple hyperheuristics. It should be noted that as the search goes on and as
solution quality improves, finding a better solution becomes very challenging.
In light of this, it would appear that Hyperheuristic6 performs a very effective
search. We note that the original hyperheuristic whose parameters were manu-
ally set toa =0.1,56=0.1,0 = 2.5 for the AM caseand « =0.1,6=0.1,§ = 1.5
for the OI case, produced good results too, as was the case in [5] when applied
to another real-world problem. The fact that Hyperheuristic6 outperforms the
original hyperheuristic confirms the net advantage of having an adaptive proce-
dure for setting parameters as noted in [6]. Beyond the obvious advantage of the
reduction in intervention from automatically setting parameters the procedure
in some sense learns the interplay between all factors of the choice function and
adjusts values of «, 3,6 accordingly.

In Table 2, we compare the frequency of call of each low-level heuristic (the
number of times that each low-level heuristic has been called) in the case of
Hyperheuristic6 and Hyperheuristic7. We can see that these two hyperheuristics
do not treat the low-level heuristics in the same way. More precisely, we see that
although low-level heuristic N3 is the most important for both hyperheuristics,
low-level heuristics N1, N4, N5, N7 are given more importance by Hyperheuristic7
than by Hyperheuristic6, while low-level heuristic Ny is treated the same way

by both hyperheuristics. It seems that the three most important heuristics for
Hyperheuristic6 are N3, No and Ng whereas heuristics N3, N1 and Ng are the top
three from Hyperheuristic7’s perspective. As mentioned earlier, a comparison of
the proportion of calls of the low-level heuristics within each of “Replace” and
“Move” types shows that the third version for each type is called more often
than each of the other two versions of that type. Thus N3 is called by both
choice-function based hyperheuristics more often than N; and Ns. Similarly, Ng
is called more often by Hyperheuristic6 than N, and N5 while Hyperheuristic7
slightly favours N5 over Ng. Overall the choice function hyperheuristic appears
capable of detecting good low-level heuristics [6].

|Alg0rithm | E | Ny | No | N3 | Ny | N5 | Ng | N7 | Ng |
Hyperheuristic12-AM|-1402.4| 4 (42 |76 | 3 |16 [20| 5 | 15
Proportion - 0.02(0.23{0.42|0.02{0.09|0.11|0.03]0.08
Hyperheuristic13-AM| -1314 | 25 [19 | 35 | 10 | 21 | 20 | 17 | 22
Proportion - 10.15(0.11{0.21]|0.06{0.12]0.12|0.10|0.13

Table 2. Comparison between Hyperheuristic6 and Hyperheuristic7 of the frequency
of calls of the low-level heuristics

The superiority of the choice function-based hyperheuristics was also no-
ticeable when we ran each of our algorithms starting from the manual solution
(instead of that produced by the constructive heuristic). Again all algorithms
produced results better than the manual solution and Hyperheuristic6 produced
the best results of all. However the results are very poor when compared to the
solution obtained by the constructive heuristic. It seems that the search starts
from a region of such poor quality, since the manual scheduler was unable to
handle the objective of matching research interests, that it is difficult to move
to a good area. OriginalHyperheuristic produced results of comparable quality
to those of the simple hyperheuristics. Whilst Hyperheuristic6 produces better
results than Hyperheuristic7 for the project presentation scheduling problem,
the opposite happened with the sales summit scheduling problem [6]. Effectively
in [6], Hyperheuristic7, which decomposed the objective value into three crite-
ria, gave better results than Hyperheuristic6, which did not. The reason why
Hyperheuristic7 does not outperform Hyperheuristic6 here is probably due to
the fact that it would have to deal with more individual objectives than in [6].
The more individual objectives there are (i.e. the bigger |L|), the more param-
eters ay, 0; (I € L) need to be managed. Thus convergence to a good solution
for the hyperheuristic search could slow down when in presence of a substantial
number of individual objectives in E. It is also worth noting that more time
was spent “tuning” model parameters in [6] than has been undertaken for the
project presentation problem.

5 Conclusions

We have applied various hyperheuristics to a real-world problem of scheduling
project presentations in a UK university. Prior to our intervention the prob-
lem was solved manually. Our hyperheuristics produced solutions dramatically
better than the manual one when starting from both a constructive heuristic
solution and (even) the original manual solution. Comparing the performance
of our hyperheuristics for two real-world problems it appears that the choice
function hyperheuristic produces the best result of all hyperheuristics. This type
of hyperheuristic is based on a choice function which adaptively ranks the low-
level heuristics and thus provides effective guidance to the hyperheuristics. In
this paper we have added evidence to our claim that hyperheuristic approaches
are easy to implement which deliver solutions of acceptable quality, providing a
useful tool in rapid prototyping of optimisation systems. Ongoing research will
investigate other types of hyperheuristics applied to a wider range of real-world
problems.

References

1. U. Aickelin and K. A. Dowsland. Exploiting problem structure in a genetic algo-
rithm approach to a nurse rostering problem. Journal of Scheduling, 3:139-153,
2000.

2. K. Baker. Workforce allocation in cyclical scheduling problems: A survey. Opera-
tional Research Quarterly, 27(1):155-167, 1976.

3. J. E. Beasley and B. Cao. A tree search algorithm for the crew scheduling problem.
European Journal of Operational Research, 94:517-526, 1996.

4. D. J. Bradley and J. B. Martin. Continuous personnel scheduling algorithms: a
literature review. Journal Of The Society For Health Systems, 2(2):8-23, 1990.

5. P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic approach to scheduling
a sales summit. In E. Burke and W. Erben, editors, Selected Papers of the Third
International Conference on the Practice And Theory of Automated Timetabling
PATAT’2000, Springer Lecture Notes in Computer Science, 176-190, 2001.

6. P. Cowling, G. Kendall, and E. Soubeiga. A parameter-free hyperheuristic for
scheduling a sales summit. Proceedings of the 4th Metaheuristic International
Conference, MIC 2001, 127-131.

7. B. Dodin, A. A. Elimam, and E. Rolland. Tabu search in audit scheduling. FEuro-
pean Journal of Operational Research, 106:373-392, 1998.

8. K. A. Dowsland. Nurse scheduling with tabu search and strategic oscillation. Fu-
ropean Journal of Operational Research, 106:393-407, 1998.

9. D. Levine. Application of a hybrid genetic algorithm to airline crew scheduling.
Computers and operations research, 23(6):547-558, 1996.

10. G. M. Thompson. A simulated-annealing heuristic for shift scheduling using non-
continuously available employees. Computers and Operations Research, 23(3):275—
288, 1996.

11. J. M. Tien and A. Kamiyama. On manpower scheduling algorithms. SIAM Re-
view, 24(3):275-287, July 1982.

12. S. C. Wheelwright and S. Makridakis. Forecasting methods for management. John
Wiley & Sons Inc, 1973.

This article was processed using the ITEX macro package with LLNCS style

