
G
ames provide competitive, dynamic
environments that make ideal test beds
for computational intelligence theories,
architectures, and algorithms. Natural

evolution can be considered to be a game in
which the rewards for an organism that plays a
good game of life are the propagation of its
genetic material to its successors and its contin-
ued survival. In natural evolution, the fitness of
an individual is defined with respect to its com-
petitors and collaborators, as well as to the envi-
ronment. Within the evolutionary computation
(EC) literature, this is known as co-evolution
and within this paradigm, expert game-playing
strategies have been evolved without the need
for human expertise. The “Evolving Game
Strategies” sidebar discusses the main design
decisions involved when applying evolution in
this way.

Much of the early work on computational
intelligence and games was directed toward clas-
sic board games, such as tic-tac-toe (noughts and
crosses) [1], chess, and checkers [15]). Board
games can now, in most cases, be played by a
computer at a higher level than the best
humans. There is an interesting table in [2, page
350], which shows various games and their sta-
tus regarding human or machine superiority.
The best computer checkers player, for exam-
ple, is considered to be better than the world
champion (this is discussed further below). The
best computer chess players, despite Deep Blue
beating Kasparov, are still not rated as highly as
the best (i.e., the world champion) human play-
ers, though the day cannot be too far away
when the best computer players can consistently

10 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2006 1556-603X/06/$20.00©2006IEEE

Simon M. Lucas 
University of Essex, UK

Graham Kendall
University of Nottingham, UK

Evolutionary
Computation 
and Games



beat the best human players. Board games usually succumb to brute force1 methods of search (mini-max
search, alpha-beta pruning, parallel architectures, etc.) to produce the very best players. Go is an excep-
tion, and has so far resisted machine attack. The best Go computer players now play at the level of a good
novice (see [3], [4] for review papers and [5]–[8] for some recent research). Go strategy seems to rely as
much on pattern recognition as it does on logical analysis, and the large branching factor severely restricts
the look-ahead that can be used within a game-tree search. 

Games also provide interesting abstractions of real-world situations, a classic example being Axelrod’s
Prisoner’s Dilemma [9]. Of particular interest to the computational intelligence community, is the iterated
version of this game (IPD), where players can devise strategies that depend upon previous behavior. An
updated competition [10], celebrating the 20th anniversary of Axelrod’s competition, was held at the
2004 IEEE Congress on Evolutionary Computation (Portland, Oregon, June 2004) and at the IEEE Sym-
posium on Computational Intelligence and Games (Essex, UK, April 2005), and this still remains an
extremely active area of research in areas as diverse as biology, economics and bargaining, as well as EC.

In recent years, researchers have been applying EC methods to evolve all kinds of game-players,
including real-time arcade and console games (e.g., Quake, Pac-Man). There are many goals of this
research, and one emerging theme is using EC to generate opponents that are more interesting and fun to
play against, rather than being necessarily superior.

Before discussing possible future research directions, it is interesting to note some of the achievements
during the past 50 years or so, during which time games have held a fascination for researchers.

Games of Perfect Information
Games of perfect information are those in which all the available information is known by all the players
at all times. Chess is the best-known example and has received particular interest culminating with Deep
Blue beating Kasparov in 1997, albeit with specialized hardware [11] and brute force search, rather than
with AI/EC techniques. However, chess still receives research interest as scientists turn to learning tech-
niques that allow a computer to ‘learn’ to
play chess, rather than being ‘told’ how it
should play (e.g., [12]–[14]). Learning tech-
niques were being used for checkers as far
back as the 1950s with Samuel’s seminal
work ([15], which was reproduced in [16]).
This would ultimately lead to Jonathan Scha-
effer developing Chinook, which won the
world checkers title in 1994 [17], [18]. As
was the case with Deep Blue, the question of whether Chinook used AI techniques is open to debate.
Chinook had an opening and end game database. In certain games, it was able to play the entire game
from these two databases. If this could not be achieved, then a form of mini-max search with alpha-beta
pruning and a parallel architecture was used. Chinook is still the recognized world champion, a situation
that is likely to remain for the foreseeable future. If Chinook is finally defeated, then it is almost certain
that it will be by another computer. Even this is unlikely. On the Chinook Web site [19], there is a report
of a tentative proof that the White Doctor opening is a draw. This means that any program using this open-
ing, whether playing black or white, will never lose. Of course, if this proof is shown to be incorrect,
then it is possible that Chinook can be beaten; but the team at the University of Alberta has just produced
(May 14, 2005) a 10-piece endgame database that, combined with its opening game database, makes it a
formidable opponent. Despite the undoubted success of Chinook, the search has continued for a checkers
player that is built using “true” AI techniques (e.g., [20]–[25]), where the playing strategy is learned
through experience rather than being pre-programmed. 

Chellapilla and Fogel [20]–[22] developed Anaconda, named due to the strangle hold it places on
its opponent. It is also known as Blondie24 [22], which is the name it uses when playing on the Inter-
net. This name was chosen in a successful attempt to attract players on the assumption they were play-
ing against a blonde 24-year-old female. Blondie24 utilizes an artificial neural network with 5,046
weights, which are evolved by an evolutionary strategy. The inputs to the network are the current
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In natural evolution, the fitness of an
individual is defined with respect to its
competitors and collaborators, as well
as to the environment.

1Although the term brute force is widely used in this context, we should point out that making this kind of search work well in practice 
typically requires very elegant and finely-tuned programming.



12 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | FEBRUARY 2006

Evolving Game Strategies
There are several issues to consider when evolving a game strategy:

Fitness Function
Depending on the nature of the game and the objectives of the research, the fitness function can be based upon game-playing ability
against a fixed (non-evolved) set of opponents, or against a population of evolved agents; the latter case is known as co-evolution and has
the advantage of not requiring any human-designed playing strategies to be implemented. Instead, natural selection leads to an improving
population of players. When using a fixed opponent, the problem of choosing the correct level of difficulty arises; for if the opponent is
either too strong or too weak, then randomly constructed agents will populate regions of the space with insufficient gradient. A useful tech-
nique here, when possible, is to choose a strong fixed player, but have it make random moves with a probability that is tuned to give an
even chance of a member of the current population winning.

Exploration
It is important to encourage the evolving agents to make sufficient exploration of game strategy space. This can be done by ensuring the
population of players is sufficiently large, and/or adding noise to the player selections. Otherwise, deterministic players may play too lim-
ited a range of games.

Implementation
An important aspect of evolving game playing agents, and one that often receives scant attention in research papers, is that of efficient
implementation of the game. This is important since the quality of the evolved strategies, and of the complexity of architecture that can be
evolved, is critically dependent upon the number of fitness evaluations or in other words, upon the number of game players, or the time
steps executed in the case of a real-time game. In recent work on evolving Othello strategies, one of the authors (Lucas) made an initial
Java prototype implementation of the system that was able to play only five games per second (when evolving a weighted piece counter at
1-ply). However, through careful re-engineering of the software, he improved this to more than one thousand games per second for the
same setup. The tricks used included the use of a profiler to observe which operations were taking the most time, replacing any Java Collec-
tions used with simpler, more restricted custom-designed collection classes, removing all unnecessary dynamic memory management, and
performing incremental evaluation of the board (i.e., evaluating the effects of making a move given a particular weighted piece counter,
without actually making the move). Also, using 1-dimensional instead of 2-dimensional arrays, with a blank border around the board to
detect off-board cases, was observed to make a significant difference; this latter trick being borrowed from Thomas Runarsson’s Othello
implementation in C.

Game Interface
This defines how the evolved agent will interact with the game. The main choices are state evaluator or action selector. The state evalua-
tor’s task is to evaluate the desirability of any given state from the evaluator’s perspective. This is a very flexible interface and allows it to
be used directly with mini-max search, where the leaves of the game tree are passed to the state evaluation function. The alternative is the
action selector, which gives the agent more control as to which move to make but is typically harder to learn. The action selector is given
the current board state, and asked to choose an action. Given this setup, it is challenging for a neural network to even select a legal move,
and this interface is often modified to select the highest-rated legal move chosen by the agent, rather than the highest-rated move (which
may be illegal). 

Input Representation and Agent Architecture
We consider these together, as they are intimately related. Whether we view a particular feature to be part of the input coding scheme or
the first layer of a neural network agent, it is to some extent an arbitrary distinction. When designing neural networks for board games, it has
been common to use a convolutional style of neural network, which naturally exploits any translation-invariant features, or alternatively, to
use sliding windows of various sizes to construct extra input features. More advanced schemes also incorporate invariance to symmetry and
may also use higher-level features based upon graph collapsing in the game of Go, for example.

Regarding the choice of agent architecture, most prevalent is the neural network; and these have proven to be evolvable across a
wide range of games. However, other architectures may be even better suited, and researchers are urged to consider alternatives such
as GP-style expression trees or fuzzy systems. Much more comparison-based work is needed before a general sense of which architec-
tures are best suited to which style(s) of game is achieved. 

Continued...



board position, and it outputs a value that is used in a mini-
max search. During the training period, the program is given
no information other than whether it won or lost (it is not
even told by how much). Blondie24 is not provided with a
strategy and contains no database of opening and ending
game positions. Co-evolution is used to develop Blondie24
by playing games against itself. Once it is able to play at a
suitable level, it often searches to a depth of 10; but depths
of 6 and 8 are common in play. This program was available
to the delegates of the Congress on Evolutionary Comput-
ing (CEC) conference for two years (CEC’00 San Diego
and CEC’01 Seoul) with Fogel offering a prize of $100
(CEC’00) and $200 (CEC’01) to anybody who could defeat
it. The prize remained unclaimed.

Hughes has shown that good playing performance experi-
mented could be achieved by evolving position-weighted
piece counters for Checkers [23], with
his Brunette player competing closely with
Blondie when allowed to search to a
deeper ply, commensurate with the
reduced evaluation time per board that
results from the simpler evaluation func-
tion. Hughes has also investigated both
the use of co-evolution and Monte-
Carlo methods for position evaluation as
alternatives to mini-max search [24]. 

Monte-Carlo simulation can be applied to evaluate a game
state simply by playing out a game to its conclusion by making
a succession of random moves, and repeating this process a
large number of times to estimate the probability of winning
from that state. Although the probability is actually estimated
for purely random players, this method has, nonetheless,
proven to give surprisingly good estimates. It has been used to
good effect in a number of different games, including Go [26]
and Real-Time Strategy games [27].

As well as chess and checkers, which tend to receive the
most media interest, other games have also made significant
contributions. Research into Backgammon [28], [29] has
made advances in reinforcement learning and other machine-

learning techniques. Go [3], which remains a massive chal-
lenge, has led to advances in knowledge representation and
search techniques. Bridge [30] has inspired areas such as parti-
tion search, the practical application of Monte-Carlo tech-
niques to realistic problems, and the use of squeaky wheel
optimization [31] in game playing. Othello has also been the
subject of significant research, culminating in Logistello’s 6-0
defeat of the current world champion [32]. Furthermore,
there is an Othello competition associated with CEC 2006,
which aims to find the best Othello position evaluation func-
tion when restricted to 1-ply search.

Games of Imperfect Information
Games of imperfect information are classified by the fact that
some of the information is hidden from some (or all) of the
players. Card games typically fall into this category with, per-

haps, poker attracting the most recent research interest. As far
back as 1944, game theory (developed by von Neumann and
Morgensten [33] to model and study the economic environ-
ment) was using a simplified version of poker as a test bed.
They recognized that accomplished poker players regularly
adopt bluffing as part of their game, which would have to be
accounted for in any automated poker player.

Findler [34] studied automated poker during a 20-year
period. He also worked on a simplified game that was based on
5-card draw poker with no ante and no consideration of bet-
ting position due to the computer always playing last. He con-
cluded that dynamic and adaptive algorithms are required for
successful play, and static mathematical models were unsuc-
cessful and easily beaten. Other than von Neumann’s and
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Evolving Game Strategies Continue

Ply Depth
Each game has its unique space of strategies, and the game dynamics should influence the setup of the system. For two-player perfect
information games, an important consideration is the ply-depth to use during evolution. Chellapilla and Fogel, and Hughes independently
settled on 4-ply when evolving checkers players, as a compromise between good quality evaluation and CPU time. For other games,
a different ply-depth may be appropriate. Chong et al. [57] used 2-ply when evolving Othello players, for example.

Evolutionary Algorithm
For some games, it seems that the setup of the EA may be non-critical. Runarsson and Lucas, however, found that when evolving piece
counters for small-board Go, many of the details were very important [58]. To be get good performance with co-evolution, they found it
essential to use parent/child weighted averaging, and a sufficiently large population of 30 players (10 was not sufficient).

There are many goals of this research, and one emerging
theme is using EC to generate opponents that are more
interesting and fun to play against, rather than being
necessarily superior.



Findler’s works, research has been conducted by a limited
number of research groups, all relatively recent.

One of the groups is led by Jonathan Schaeffer. He and
members of his research team have developed ideas that have
led to the release of Poki, which is the strongest automated
poker-playing program to date. It is still a long way from
being able to compete in the World Series of Poker, an annu-
al event held in Las Vegas, but their results show promise.
Schaeffer’s work concentrates on two main areas [35], [43].
The first is to make betting decisions using probabilistic
knowledge [36] to determine what action to take (fold, call or
raise) given the current game state. Billings et al. also use real-
time simulation of the remainder of the game that allows the
program to determine a statistically significant result in the
program’s decision-making process. Schaeffer’s group is also
looking at opponent modelling [37]. This allows Poki to
maintain a model of an opponent that it uses to decide which
betting decisions to make. This is done on the assumption
that players adopt differing styles and any automated player
has to be able to exploit this. For the interested reader, per-
haps, the best starting paper for poker is [43], with a later
paper [38] presenting more recent work.

The Gala system developed by Koller and Pfeffer [39]
allows games of imperfect information to be specified and
solved, using a tree-based approach. However, due to the size
of the trees, they state, “. . . we are nowhere close to being able to
solve huge games such as full-scale poker, and it is unlikely that we
will ever be able to do so.” 

Luigi Barone and Lyndon While have carried out
research into the automation of poker [40]–[42] using EC
techniques. They recognize that there are four main types of
poker players: Loose Passive, Loose Aggressive, Tight Pas-
sive and Tight Aggressive [41], [42] players. They suggest
[40] using evolutionary strategies as a way of modelling an
adaptive poker player. They use a simple poker variant
where each player has two private cards and access to five
community cards, and there is only one round of betting.
This initial work incorporates three main areas of analysis:
hand strength, betting position and risk management. The
work demonstrates how a player that has evolved using evo-
lutionary strategies can adapt its style to two types of tables
(loose and tight). In [41] they develop this work by intro-
ducing a hypercube, which is an n dimensional vector used
to store candidate solutions. The hypercube has one dimen-
sion for the betting position (early, middle and late) and
another dimension for the risk management (selected from
the interval 0.3). At each stage of the game, the relevant
candidate solutions are selected from the hypercube (e.g.,
middle betting position and risk management) and the deci-
sion is made whether to fold, call or raise. To make this
decision, the hypercube entry holds seven real numbers that
are used, via suitably defined functions, to produce probabil-
ities for each choice. It is the seven real values that are
evolved, depending on whether the player won the hand.
Barone and While report that this player is able to adapt to

different playing styles. Their 2000 work [42] extends the
dimensions of the hypercube to include four betting rounds
(pre-flop, post-flop, post-turn and post-river) and an oppo-
nent dimension, so that the evolved player can choose from
the hypercube depending on which type of player it is play-
ing against. The authors report that this player outperforms a
competent static player.

Poker is particularly interesting, from an EC research point
of view, as it is a game of imperfect information and difficult to
tackle with brute-force search. Poker also contains other
unknowns such as the playing styles of the other players who
may use bluffing (and double bluffing) during the course of the
game. Indeed, Poker presents a range of challenging research
goals that have not yet been conquered by the EC/AI com-
munity. Darse Billings et al. [43] have stated,

“Poker is an interesting testbed for artificial intelligence
research. It is a game of imperfect information, where multiple
competing agents must deal with probabilistic knowledge, risk
assessment, and possible deception, not unlike decisions made in
the real world.”
and concluded,

“. . . but there remains considerable research to be done to
play [poker] at a world-class level.”

Unlike complete information games in which the techniques
to solve the games (computational power allowing) have been
known and understood for a long time (such as mini-max
search and alpha-beta pruning), games of imperfect informa-
tion have not received the same sort of analysis and, in doing
so, could prove relevant to many other areas, including eco-
nomics, online auctions and negotiating. Another game in this
vein is Monopoly (although admittedly, there is only a limited
amount of hidden information consisting of the ordering of
the Chance and Community Chest cards), and Frayn [44]
showed how evolution could be used to learn successful strate-
gies for this game, based upon several factors that include good
evolved estimates of the true value of each property. Interest-
ingly, in addition to evolving strong players, Frayn’s work is
informative for human players wishing to improve their game,
and offers a dramatic improvement to previous more simplistic
estimates of property values that were based solely upon the
probability of a player visiting them.

Video Games
The above discussion of perfect and imperfect information
games focused on computer agents developed to play human-
centered games. Human-centered games are limited by what
can easily be manipulated given human mental capacity and
dexterity. Video games, on the other hand, operate under no
such constraints and typically have a vastly more complex state
space than even the most complex of human-centered games.
This richer complexity encourages the development or evolu-
tion of more general purpose AI agents than are required for
playing board or card games, and successful game-play may
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involve a rich variety of skills. Laird [45] emphasized the chal-
lenge posed by real-time video games to the AI community,
and this is now a rapidly growing field of research. Of the 
38 papers presented at IEEE CIG 2005 [46], 16 were con-
cerned with real-time video or real-time strategy games, mak-
ing this the dominant category.  

Currently, the vast majority of Game-AI agents are con-
trolled through scripts, developed at significant expense by
game programmers. The use of computational intelligence
techniques offers an interesting alternative to scripted
approaches, whereby the agent behavior can be controlled
using an evolved neural network, for example, rather than
being programmed. This has two very interesting implica-
tions. Firstly, programming the scripts can be laborious and
time consuming (and, therefore, expensive). Evolving the
agent behaviors is, therefore, financially attractive. Second,
the fact that the behavior is evolved rather than programmed
by a human means that the evolved agent may create novel
strategies that game players may find especially entertaining
to compete with. Furthermore, the evolved agents tend to be
excellent at exploiting loopholes in a game. Identifying and
removing these loopholes is an important part of the game
development life cycle, and one in which evolutionary com-
putation is just starting to be used [47]. These are aspects of
the game, whereby a player finds a fast way to win or clear a
level. The effect of this is that the player tends to lose respect
for the game. Currently, game developers devote many man
hours of game playing to find these. 

Online Learning and Adaptive Characters
A major challenge for the academic community is to develop
effective learning algorithms that operate without explicit
learning signals, and can adapt in real time within complex
environments. This is a major research topic in many disci-
plines, and includes concepts such as self-organizing neural
networks and reinforcement learning (in particular Temporal
Difference learning, see “Co-Evolution Versus Temporal Dif-
ference Learning” sidebar). To have game characters that effec-
tively exhibit such characteristics would make many games
much more playable, and cause characters to invest in com-
plex, long-term dynamics. For example, if a computer oppo-
nent learns from playing against the human player, then the
human player may benefit in the long term by making deliber-
ate mistakes early on. We do not know of any existing games
that use this type of learning, but we believe it has a great deal
to contribute. Yannakakis [48] has already used an objective
measure of interestingness to evolve more engaging ghost
behaviors for a simplified version of Pac-Man and other prey-
predator games.

New Game Genres
When computational intelligence techniques become wide-
spread in games, the possibility of opening new genres arises.
This has already been seen in the work of Stanley and Miikku-
lainen [49] in their NERO video game, which won the best

paper prize at IEEE CIG 2005. In NERO, the object of the
game is to train an army unit to fight as a cohesive team and,
thereby, achieve the game goals. Each soldier has a neural net-
work that is able to learn through experience, a feature on
which the game relies. Figure 1 shows a training maze set up
by a human player. Soldiers who make more progress through
the maze have more offspring than those who make less
progress, and eventually good maze-solving behaviors can be
evolved. Here, the novel use of evolutionary algorithms has
led to a new game, and one that fosters some understanding of
evolutionary processes. 

While the major recent trend has been toward designing
NPCs (non-playing characters) for highly complex 3D
games such as Quake, the challenges of older 2D arcade clas-
sics such as Pac-Man should not be underestimated; and
Lucas [50], in his initial attempts, was only able to evolve
novice to intermediate level neural network players (see Fig-
ure 2). Previous work on Pac-Man (e.g., [51], [52]) had used
much less demanding simulations of the game. The advan-
tage of working with older-style arcade games is that they
offer a sufficiently interesting challenge, while being much
easier to implement and faster to simulate. While there exists
open-source first-person shooters, these can be quite techni-
cal to interface to, and the problem of lengthy simulation
time still remains.

Real-World Games
In complex multi-task, multi-objective research areas such as
robotics, measuring progress can be a significant problem.
One solution is to use competitive games to rank the ability
of a robot or team of robots. A great success in this area has
been the robotic football tournaments in the form of
RoboCup [53] and the Robot Soccer World cup series.
This has stimulated many research groups to work with a

FIGURE 1  Screen shot from NERO video game. Here, the human
player has set up a ‘navigate through maze’ exercise to train the
soldiers to acquire this type of behavior.
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common focus, and progress can now be measured by the
performance of current teams against previous teams. Real-
world robotic games are always much harder than they first
appear and involve dealing with noisy sensors and imperfect
actuators, together with all the strategic issues of how best to
play the game in question.

Robotic football is a very complex game, with a signifi-
cant investment of time and money required to begin
research. On a smaller scale, but still offering an immense
challenge, has been the computer-controlled car racing series
organized as competitions associated with CEC (Congress on
Evolutionary Computation). This has a start-up cost of a few
tens of dollars for a Web cam and a simple bang-bang type
remote control car. By using the real-time video feed from
the Web cam, the aim of the controller is to race the car
around the track as fast as possible. This is hard enough in
itself, but much harder and more interesting still when racing
two or more cars against each other at the same time, as with
Formula-1 or Indy car racing. The beauty of racing model
cars, however, is that deliberate obstruction and crashing can

be allowed (as it is in stock-car racing), with the cars usually
surviving collisions with only cosmetic damage (wing-mirrors
have a short life expectancy!).

For the CEC car racing series, the best entry has been the
evolved car racing system of Ivan Tanev [54]. The approach
taken by Ivan was to hand design a car control algorithm, then

optimize the parameters with an EA.
Ivan’s entry was sufficient to win the
CEC 2005 car racing competition, but
got stuck several times while completing
the 10-lap time trial. One the other hand,
Togelius and Lucas [55] were able to
evolve a high-performance neural-net-
work controller for a simulated version of
the track, while performing poorly on the
real-world track. This provides further

evidence that real-world problems tend to be much harder
than their simulated counterparts, but the rewards for solving
them are greater. On a similar theme, it would be interesting
to see whether the method of Floreano et al. [56] to evolve an
active vision system for driving a car in a 3D racing game
could be applied to driving a car in the real world.

Evolutionary Computation in Commercial Games
Clearly, there have already been some examples of evolu-
tionary algorithms deployed in commercial games. David
Fogel’s Blondie program is a famous example, and the work
of Joerg Denziger and co-workers (on using evolutionary
algorithms to test soccer games) has already been mentioned.
However, the authors believe that there is much more scope
for the utilization of EAs and other CI techniques within
commercial games, and if appropriately deployed, could lead
to not only reduced development costs but also more impor-
tantly, better gameplay. This latter point seems to be a con-
tentious issue, with some industry experts saying that what
users want is predictable gameplay, so that when a player has
learned a set of actions to complete a level, then these actions
will work on future occasions. Similarly, there is a widely
held belief that players do not want AI opponents to be too
smart, or too hard to beat. Our view is that more intelligent
opponents could potentially lead to gameplay that would be
more varied and more enjoyable.

Conclusions
Games have always held a natural fascination for humans, and
have long been used as a test bed for artificial intelligence and
machine-learning algorithms. Traditionally, most successful
game playing strategies have been achieved through clever
programming and effective search strategies, but machine-
learning techniques such as evolutionary algorithms are now
often competitive with and, in some cases, superior to hand-
coded systems.

There are many games still waiting to be explored from an
evolutionary perspective, and many more waiting to be
invented. This research area, despite its long history, has a very
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Monte-Carlo simulation can be applied to evaluate a
game state simply by playing out a game to its conclusion
by making a succession of random moves, and repeating
this process a large number of times to estimate the
probability of winning from that state.

FIGURE 2  Pac-Man: The gray overlay shows the desirability rating
(whiter = more desirable) provided by the evolved neural network
for each location in the maze, given the current state of the pills,
power pills, and the ghost positions.
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fresh and innovative feel to it at the moment, and it is clear
that video and robotic-type games offer a variety of significant
challenges for computer science and AI researchers. Academic
research about evolving or, otherwise, learning non-player
character strategies for first-person shooter games is now a

respectable area of computer science research, as indeed it
should be. There is also much more to be done with ball
games, both team and individual.

In a recent interview Ken Katagari, inventor of the Playsta-
tion, commented that soon games will become indistinguishable

Much is made of the fact that co-evolution can be used to
learn game strategies simply by having a population of players
play many games against each other, and allowing the more
successful players to have more offspring than the less suc-
cessful players. However, temporal difference learning (TDL) is
also able to achieve the same remarkable kind of feat, of
learning simply by playing.

A key difference between the two approaches is that tempo-
ral difference learning attempts to learn a value function by
observing the progression of game states during game-play. It
learns from the sequence of game states in an entirely unsu-
pervised way; there is no expert knowledge used to train the
system. In the simplest form of TDL, called TD(0), the learner
adjusts the value function (this could involve using back-propa-
gation to update the weights of an MLP, for example) to make
the value of the current state more like the value of the next
state. It may seem surprising that this works, since changes in
an incorrect value function would seem meaningless, but there
are two reasons why this is not the case. Firstly, the true values
of board positions are available at the end of the game, so the
information is fed back directly and is guaranteed to be correct.
Secondly, as the value function starts to become meaningful,
the changes in the value function during game-play will also
have some statistical importance, in the sense that they should
be better than a purely random estimate. As this happens, the
information available to the learner (albeit partially self-gener-
ated) begins to improve dramatically. To give a chess-based
example, consider a weighted piece counter style of evaluation
function. Assume that initially the learner knows nothing of the
value of the pieces (they are set to random values, or to zero).
After playing many games, the learner notes that 80 percent of
the time, the winner has one more queen than the loser. Now,
during game-play, the loss of a queen will have a negative
effect on the player’s value estimate, and it can potentially
learn that board positions (i.e., game states) that lead to such a
loss should have a low value. This is a more direct form of
credit assignment than is usually performed with co-evolution-
ary learning, in which only win/lose/draw information is fed
back at the end of a set of games (see Figure 3). 

There have been very few direct comparisons between TDL
and co-evolutionary learning, where the algorithms have been
used to learn the parameters of the same architecture applied
to the same game. So far, only two such studies are known. In
a study using neural networks to play Gin Rummy, Kotnik and

Kalita [59] found that co-evolution significantly outperformed
TDL. Runarsson and Lucas compared TDL with co-evolution for
learning strategies for small-board Go [58] and found that,
under most experimental settings, TDL was able to learn bet-
ter strategies than co-evolution and to learn them more quick-
ly. They also found, however, that the very best strategies were
learned by a carefully designed co-evolutionary algorithm, with
special attention paid to the weight sharing scheme that was
necessary to smooth the noise inherent in the fitness function.
A slightly less direct (in the sense that he did not perform all
of the experiments) comparison was made by Darwen for
Backgammon [60] in which he found that co-evolution out-
performed TDL for training a perceptron, but found the oppo-
site to be true when learning the parameters of an MLP. An
interesting exercise would be to construct (or evolve!) new
games that could clearly show cases where one method out-
performed the other. In a similar way, it is noted that GP has
already been used to evolve simple test functions to illustrate
cases in which differential evolution outperforms particle
swarm optimization and vice versa [61].

FIGURE 3  Illustration of game/learner interactions for TDL and co-
evolution. A co-evolutionary learner gets feedback on the number of
games won after playing a set of games while the TDL learner gets
feedback after every move of every game. Note also that co-evolu-
tion involves a population of players (depicted as neural networks
here) whereas TDL typically uses a single player, playing against
itself. The bold arrows indicate the reliable feedback that TDL
receives at the end of each game on the value of a final position.

Co-Evolution

TDL

Co-Evolution Versus Temporal Difference Learning



from movies and, subsequently, from real life. Graphically this
looks like a safe bet, but developing the computational intelli-
gence behind the glossy shells is a more open-ended challenge,
and one in which evolution has a big part to play.
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