
OPERATIONS RESEARCH
Vol. 52, No. 4, July–August 2004, pp. 655–671
issn 0030-364X �eissn 1526-5463 �04 �5204 �0655

informs ®

doi 10.1287/opre.1040.0109
© 2004 INFORMS

A New Placement Heuristic for the Orthogonal
Stock-Cutting Problem

E. K. Burke, G. Kendall, G. Whitwell
School of Computer Science and Information Technology, University of Nottingham, Jubilee Campus,
Nottingham, NG8 1BB, United Kingdom {ekb@cs.nott.ac.uk, gxk@cs.nott.ac.uk, gxw@cs.nott.ac.uk}

This paper presents a new best-fit heuristic for the two-dimensional rectangular stock-cutting problem and demonstrates
its effectiveness by comparing it against other published approaches. A placement algorithm usually takes a list of shapes,
sorted by some property such as increasing height or decreasing area, and then applies a placement rule to each of these
shapes in turn. The proposed method is not restricted to the first shape encountered but may dynamically search the
list for better candidate shapes for placement. We suggest an efficient implementation of our heuristic and show that it
compares favourably to other heuristic and metaheuristic approaches from the literature in terms of both solution quality
and execution time. We also present data for new problem instances to encourage further research and greater comparison
between this and future methods.

Subject classifications : production/scheduling: cutting stock/trim; production/scheduling: approximations/heuristic;
computers/computer science: artificial intelligence.

Area of review : Optimization.
History : Received May 2002; revision received January 2003; accepted June 2003.

1. Introduction
The field of cutting and packing motivates many areas
of operations research. The focus of this paper is the
two-dimensional orthogonal stock-cutting problem. It has
applications to areas such as dynamic memory allocation,
multiprocessor scheduling problems, and general layout
problems (Coffman et al. 1978, Garey and Johnson 1981,
Coffman and Leighton 1989, Dyckhoff 1990). These prob-
lems have a similar logical structure and can be modelled
by a set of rectangular pieces that must be arranged on a
predefined stock sheet so that each rectangular piece does
not overlap with another. It occurs, with different con-
straints, within manufacturing industries including paper,
wood, glass, and metal cutting. For example, paper cutting
is generally concerned with the guillotine packing (where
only vertical or horizontal straight cuts across the entire
sheet region are allowed) of rectangular items from a stock
roll of fixed width, whereas applications in metal and ship-
building are often concerned with the cutting of irregu-
lar shapes from a stock sheet. However, in most industrial
applications the goals are similar: to produce good quality
arrangements of items on the stock sheet in order to max-
imise material utilisation and, therefore, minimise wastage.
The time allowed for any specific problem is usually depen-
dent on the material cost and the urgency of a solution.
For example, when packing onto a sheet with a two-inch
thickness you would probably allow the packing algorithm
more time, as a small improvement in the solution qual-
ity can result in large cost savings. With a sheet of one

millimeter thickness, there may be more emphasis in find-
ing solutions quickly, as small reductions in packing qual-
ity may only yield negligible savings. These processes are
most heavily associated with mass-production operations,
and it is usually very important to produce better-quality
solutions, in less time, with less wastage in order to max-
imise profits. In some industrial situations, this optimisation
task is still undertaken by skilled experts. However, due to
the large costs, performance falloff, and the liability inher-
ent with employed labour, automated-packing approaches
have been more widely used in recent years. The solu-
tion quality of automated-packing approaches can often
be equal or better than that of their human counterparts
(Roberts 1984, Li and Milenkovic 1995) and are usually
performed more quickly (Hower et al. 1996). There have
been many approaches to producing automated-packing
algorithms. These range from mathematical linear pro-
gramming approaches to problem-specific heuristic algo-
rithms and, more recently, the application of metaheuristic
methodologies (Dowsland and Dowsland 1992, 1995; Hop-
per and Turton 2001).

This paper addresses the problem of placing rectangles
onto a larger rectangular object in order to minimise the
height of the nest. We allow nonguillotine packings in
which we are not restricted to only performing full horizon-
tal or vertical cuts from one sheet edge to another (unlike
guillotine packing). All items in the set of rectangles must
be packed onto the object sheet, and we allow rotations of
90 degrees.

655



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
656 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

The two-dimensional variant of the stock-cutting prob-
lem is NP hard due to the combinatorial explosion encoun-
tered as the problem size increases (Garey and Johnson
1979). This area has been the subject of several decades
of research from its formulation in the 1950s, where
Paull (1956) addressed the newsprint layout problem. Due
to the extensive nature of this research field and its
diverse problem instances, many researchers have provided
overviews and categorised bibliographies (Dowsland and
Dowsland 1992, Sweeny and Paternoster 1992, Dyckhoff
1990, Coffman et al. 1984, Golden 1976, Gilmore 1966).
The approaches can be broadly categorised into three
methods: exact, heuristic, and metaheuristic.

Exact methods were investigated by Gilmore and
Gomory (1961) in what is considered to be the first real
industry-applicable research into stock cutting. They used
linear programming techniques to solve problem instances
to optimality. However, only small problem instances
could be solved due to the computational time required.
Christofides and Whitlock (1977) used a tree-search
method to solve the two-dimensional guillotine stock-
cutting problem to optimality, as does Beasley (1985a) with
the nonguillotine variant. However, once again, with larger
instances the method becomes time infeasible. Beasley
(1985b) compares both optimal and heuristic algorithms
using dynamic programming. Hifi and Zissimopolous
(1997) presented an exact algorithm that improves on the
approach used by Christofides and Whitlock. Recently,
Cung et al. (2000) developed a new version of the algorithm
proposed in Hifi and Zissimopolous (1997) that uses a best-
first branch-and-bound approach to solve exactly some vari-
ants of two-dimensional stock-cutting problems. A major
drawback of these methods is that they cannot provide good
results for large instances of the problem (see our com-
parison and discussion in §4.3.1). Heuristic methods are
required to provide good, although, of course, not neces-
sarily optimal solutions.

For such instances, there have been many heuristic
approaches that have been formulated to produce good
packings in an acceptable time frame, even with large
stock-cutting cases. Albano and Orsini (1979) used a
heuristic method that packs similar rectangles into strips for
large-problem instances ranging between 400 to 4,000 rect-
angles. Bengtsson (1982) presented a heuristic solution that
achieved trim loss of between 2% and 5% by sorting rect-
angles and then arranging them into piles. The most doc-
umented heuristic approaches are the bottom-left (BL) and
bottom-left-fill (BLF) methods (Baker et al. 1980, Chazelle
1983). Jakobs (1996) used a bottom-left method that takes
as input a list of rectangles and places each one in turn onto
the stock sheet. The placement strategy first places the rect-
angle in the top-right location and makes successive moves
of sliding it as far down and left as possible (Figure 1). Lui
and Teng (1999, Figure 2) developed an improved bottom-
left heuristic, giving downward movement priority so that
shapes only slide leftwards if no downwards movement is

Figure 1. A bottom-left method (Jakobs 1996).

possible. It was shown that, unlike Jakobs’ method, there
was always at least one rectangle sequence that could be
decoded into the optimal solution.

The second method, bottom-left-fill, is a modified ver-
sion of the bottom-left placement heuristic. One implemen-
tation maintains a list of location points in a bottom-left
ordering to indicate where the shapes may be placed. When
placing a shape, the algorithm starts with the lowest and
leftmost point, places the shape and left justifies it, then
checks whether the shape would overlap with any other
shape and that it stays within the confines of the sheet. If
it does not overlap, the shape is placed and the point list
is updated to indicate any new points. If the shape would
overlap, the next point in the point list is selected until the
shape can be placed without overlap occurring. Figure 3
shows an example of available points for placement.

In Figure 3, when placing a fifth shape the algorithm
tries to place at the bottommost point first (with points at
the same height being resolved by leftmost first). There-
fore, bottom-left-fill can overcome the problem of holes by
the storage of possible location points. We can show the
difference between the two placement heuristics by show-
ing the stages undertaken when adding a fifth shape to the
above packing (Figure 4).

Figure 4 shows that bottom-left-fill is able to fill holes
by using fitting rectangles later in the packing, whereas
using bottom-left results in a hole in the final packing.
This hole will never be filled (even if a later rectangle
would fit), therefore the space can be considered to be
wastage. An important aspect of these algorithms is that
the sequence of rectangles supplied can greatly influence
the quality of the solution. In experiments between the
algorithms, Hopper and Turton (2001) found that bottom-
left-fill outperformed bottom-left by up to 25%, and that
preordering the shapes by decreasing widths or decreasing
heights for both algorithms increased the packing quality
by up to 10% compared to random sequences. The main
advantage for using bottom-left is its time complexity of
O(N2) (Hopper and Turton 2001). The bottom-left-fill algo-
rithm is disadvantaged by its worse time complexity of
O(N3) (Chazelle 1983). Consequently, execution times can

Figure 2. An improved bottom-left method (Liu and
Teng 1999).



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 657

Figure 3. Storing placement locations for one imple-
mentation of bottom-left-fill.

become large for bottom-left-fill with increasing problem
sizes. An overriding feature of these approaches is that they
pack each shape according to a set of rules. Therefore,
the solution will be the same if supplied with an identical
rectangle input sequence. They attempt to produce good-
quality packings in a single run, reducing the time required
to achieve solutions.

A recent trend has been to utilise metaheuristic
approaches in producing packings for the problem. These
are usually hybridised algorithms involving the generation
of input sequences that are then interpreted by placement
heuristics such as bottom-left or bottom-left-fill (Jakobs
1996, Ramesh Babu and Ramesh Babu 1999, Hopper and
Turton 2001). However, alternative methods have been
developed that place all shapes on the stock sheet and
then apply small movements to the shapes to maximise
the packing density and minimise the penalty function for
overlapping shapes (Dagli and Hajakbari 1990, Dowsland
and Dowsland 1992). Dagli and Hajakbari performed one
of the first applications of metaheuristics to this prob-
lem. They used a simulated annealing algorithm to pack
rectangular and irregular shapes onto a sheet of finite
dimensions (Dagli and Hajakbari 1990). Other work has
since appeared on the applications of simulated annealing
to the stock-cutting problem. Lai and Chan (1996) used
a simulated annealing algorithm. They test their algo-
rithm with real data from a printing company and report
that their algorithm performs well with problems where
less than 15 rectangles need to be packed. Faina (1999)
applies simulated annealing to both the guillotine and

Figure 4. A comparison of the BL and BLF methods
when adding a rectangle.

BLF 

BL 

1st Attempt 2nd Attempt Points List Updated 

nonguillotine varieties of the problem and shows that for
larger problems, nonguillotine outperforms guillotine with
little extra computation overhead. Genetic algorithms have
also been extensively studied for this problem over the last
decade. Kroger (1995) used genetic algorithms for the guil-
lotine variant of bin packing and introduced the idea of
“metarectangles,” which are groupings of rectangles that
can pack well together and can be treated as one single rect-
angle. Jakobs (1996) uses a genetic algorithm for the pack-
ing of polygons using rectangular enclosures and a bottom-
left heuristic. Ramesh Babu and Ramesh Babu (1999) detail
improvements on the genetic method proposed by Jakobs.
It is able to pack onto many finite sheets by including an
ordering of sheets within the chromosome of each pop-
ulation member. Hopper and Turton (1999) evaluate the
use of the bottom-left-fill heuristic with genetic algorithms
on the nonguillotine rectangle-nesting problem. They found
that a genetic algorithm with bottom-left-fill placement
outperformed a genetic algorithm with bottom-left place-
ment. Other problems where evolutionary methods have
been applied include bin packing (Falkenauer 1996) and the
guillotinable variant of the orthogonal stock-cutting prob-
lem (Valenzuela and Wang 2001). Dagli and Poshyanonda
(1997) compare the nesting of rectangular patterns using
two methods involving artificial neural networks. The first
neural network method was trained through back propaga-
tion. The second method involved a neural network/genetic
algorithm combination. Their methods produced an aver-
age waste of 7.88%. Hopper and Turton (2001) compare
several metaheuristics including genetic algorithms, sim-
ulated annealing, naïve evolution, hill climbing, and ran-
dom searches. Genetic algorithms, simulated annealing, and
naïve evolution (with bottom-left-fill decoder) all gave sim-
ilar results, and the authors show that they are better than
using the bottom-left-fill heuristic with a height- or width-
sorted input sequence, although extra computation time is
required.

In general, metaheuristic algorithms represent the more
sophisticated heuristic methods. As they operate, they gen-
erate a number of different solutions; i.e., the metaheuristic
algorithms are guided through the problem’s search space
by previous attempts. However, there are usually search
variables that must be tuned to achieve best performance.

2. A New Heuristic Algorithm for
the Problem (Best Fit)

2.1. An Overview

Unlike the bottom-left and bottom-left-fill methods that
make placements that are based on the sequence of rect-
angles supplied to them, our proposed method dynamically
selects the next rectangle for placement during the pack-
ing stage. This enables the algorithm to make informed
decisions about which rectangle should be packed next and
where it should be placed. We adopt a best-fit type strat-
egy. This is, essentially, a greedy algorithm that attempts



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
658 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

to produce good-quality packings by examining the lowest
available space within the stock sheet and then placing the
rectangle that best fits the space available. There are some
inherent problems with respect to the time complexity of
the algorithm and the quality of the solution. In order to
find the lowest available gap, we need to examine the stock
sheet and current assignment of shapes. Once the lowest
gap is found, we must examine the list of rectangles to
find the best-fitting shape. Both of these operations must be
conducted at each step of the algorithm, and therefore they
contribute to increasing the time complexity. We address
methods that can be employed to reduce this complexity
bottleneck in §2.2.

At the beginning of the packing process there will not be
any shapes assigned to locations on the stock sheet. There-
fore, the lowest available gap or “niche” for placement of a
shape will be the entire width of the stock sheet. As shapes
are placed, the lowest gap will change with respect to both
location and width. We always select and place the best-
fitting shape. There are three possibilities: (i) There is a
shape with a dimension (either width or height) that exactly
fits the gap, (ii) there is a shape with a dimension smaller
than the gap, or (iii) there are no shapes that will fit the gap.
In the first case, the placement of the shape is easy because
there is a perfect fit (where there are several shapes that
would exactly fit, the rectangle with the largest area is cho-
sen). However, in the second case the shape that consumes
the largest portion of the gap is placed. As this shape does
not completely fill the gap, we need to choose how to place
the shape within the gap. We have called this the niche-
placement policy. The third case gives rise to an important
property of using the best-fit methodology. If none of the
available rectangles can fit within the lowest gap, then we
can regard the relevant space as wastage. This is clear to
see because if none of the shapes fit the space now, then
none of the remaining shapes will be able to fit in the
space in future iterations. Unlike the bottom-left placement
heuristic, this method only ever creates holes that cannot
be filled, and unlike bottom-left-fill, all holes that are cre-
ated can be “forgotten.” This leads to another important
“feature” of the best-fit heuristic. Many algorithms, such
as bottom-left and bottom-left-fill, require a costly “over-
lap” function. This performs an overlap test between the
current shape and each of the shapes that have previously
been placed onto the sheet. Obviously, the more rectangles
that have been packed, the more overlap tests we have to
perform, thus resulting in the process becoming slower as
each rectangle is placed. However, because of the best-fit
approach and the implementation (presented in §2.2), we
do not require this operation, as we are always sure that the
shapes we are placing do not overlap with other rectangles.

Niche-Placement Policies. Our heuristic is a combi-
nation of three niche-placement policies, with each policy
indicating how a shape could be placed when it does not
fit exactly into the lowest niche. We never deliberately cre-
ate a niche, but if no rectangle can fit the gap completely,

Figure 5. Placement next to tallest neighbour.

Lowest 

Best Shape 

Tallest 
Neighbour 

Shortest 
Neighbour 

there is no option but to create one. We assume that the
stock-sheet sides are “infinitely tall,” which can be thought
of as corresponding to a roll of material (which is infinitely
long!). Our three policies can be summarised as follows:

(a) Place at Leftmost. The leftmost niche-placement
policy places a nonexact fitting rectangle at the left side
of the niche. Note: If a rightmost niche-placement policy
were used, the resultant packing would be a mirror image
of the leftmost policy.

(b) Place Next to Tallest Neighbour. In this placement
policy we examine the two rectangles on the stock sheet
that define the lowest gap. We then place the best-fitting
rectangle within the gap next to the tallest gap-defining
rectangle (Figure 5). If the lowest gap is defined by a rect-
angle and the sheet side, we place next to the sheet side.

(c) Place Next to Shortest Neighbour. This placement
policy is the opposite of the tallest-neighbour policy
described above. This time, we place rectangles next to the
shortest neighbour. An example is given in Figure 6.

Figure 6. Placement next to shortest neighbour.

Lowest 

Best Shape 

Tallest 
Neighbour 

Shortest 
Neighbour 



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 659

Improving the Packing. A drawback of using the pro-
posed method is that it can create poorer-quality packings
due to “towers.” Towers are produced when long thin
rectangles have not been placed until the latter stages of a
packing. The algorithm may place these rectangles in por-
trait orientation near to the top of the nest, where they
negatively affect the solution quality. Due to this difficulty,
we conduct a further step after all rectangles have been
placed. This searches for the shape that is currently adding
the greatest height to the nest (i.e., a tower) and removes it
from the packing. Then the shape is rotated by 90 degrees
and replaced on top of the nest. If the solution quality is
improved by this step, then we look for a new “tower” and
perform the step again. We continue with this process until
there is no improvement in solution quality. The procedure
is described in more detail in the implementation section
below.

2.2. Implementation

The description of the algorithm above requires a search for
both the best-fitting rectangle and the lowest space within
the stock sheet at every time step of the algorithm. These
are computationally expensive operations and the algorithm
would benefit if we could simplify or remove them. The
inputs to the algorithm are a list of rectangles in random
order, and the width of the stock sheet.

Preprocessing Stage. First, we address the problem of
representation. Some algorithms store the required infor-
mation using location points as in the bottom-left-fill algo-
rithms (Chazelle 1983) and/or collision detection by the
sliding of shapes such as the bottom-left algorithms (Jakobs
1996, Liu and Teng 1999). Others avoid the problem by
packing in rows with a new row starting from the high-
est point of the previous one (Bengtsson 1982). However,
with these methods we require the use of free location lists
that must be traversed and/or collision detections on each
rectangle placement. Collision detection is computationally
expensive due to the need to examine all of the already
placed rectangles when adding a shape. Therefore, when
adding the last piece in a problem of 500 shapes, we need
to perform 499 collision tests to ensure that there are no
overlaps. Our approach to this problem is to store the stock
sheet as a linear array that has a number of elements equal
to the width of the stock sheet. Each element of the array
holds the total height of the packing at that x coordinate
of the stock sheet. Two examples are given in Figure 7 to
show a sheet of width nine units when empty, and the same
sheet during packing.

Therefore, the coordinate of the lowest space of the stock
sheet can be found by locating the smallest-valued entry of
the array. The width of the gap can be found by examining
how many consecutive array items of equal value exist. In
the nonempty sheet in Figure 7, the lowest available space
is located at x= 0 and has a width of three.

Figure 7. Storing the skyline of packings on a sheet of
width nine units when empty, and filling.

 
 

7 
7 5 4 0 

4 4 4 7 7 5 5 6 
1 2 3 6 8 

Array Index 

0 
7 5 4 0 

0 0 0 0 0 0 0 0 
1 2 3 6 8 

0 
1 
2 
3 
4 
5 
6 

0 
1 
2 
3 
4 
5 
6 

7 

7 

 
 Array Index 

The other problem we encounter is due to using the
best-fit methodology. The rectangle data is defined as a list
of rectangles each denoted by a (width, height) pair. In an
unsorted list we must examine all n rectangles to be sure
that there is not a “better”-fitting rectangle at each rectangle
placement. However, we can sort the list of rectangles once
before packing commences so that we reduce the number
of rectangles we need to examine to �1/2�n (on average
per-rectangle placement). The first stage of this restructur-
ing is to rotate any rectangle for which the height is greater
than the width. For example:

��3�5�� �5�2�� �1�1�� �7�3�� �1�2�� becomes

��5�3�� �5�2�� �1�1�� �7�3�� �2�1��	

Next, the list of rectangles is sorted into decreasing width
order (resolving equal widths by decreasing heights):

��5�3�� �5�2�� �1�1�� �7�3�� �2�1�� becomes

��7�3�� �5�3�� �5�2�� �2�1�� �1�1��	

This list of rectangles can now be examined for the best-
fitting rectangle without the need to search the entire list.
For example, suppose we require a shape to fill a gap of
six units. The first rectangle in the list is examined, �7�3�.
Note that it could fill three units of the gap if rotated. The
second rectangle in the list, �5�3�, can occupy a gap of
five units. At this point we can terminate, as we know that
all remaining rectangles have dimensions of equal or less
than five.

Assume that we have the same list of rectangles, but
that this time there is a gap of four units. The first rectan-
gle in the list is examined, �7�3�. It can fill three units if



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
660 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

Figure 8. Finding a new gap when the old gap has not been completely filled.

If last shape placed left in gap then:  New Gap Location = (Gap Location) + (Placed Rectangle Width) 
If last shape placed right in gap then:  New Gap Location = Gap Location 
The gap’s width is found by:   New Gap Width =  (Gap Width) – (Placed Rectangle Width) 

4 4 4 0 0 0 0 6 6 4 4 4 2 2 0 0 6 6 

Location = 3 
Width = 4 

New Location = Old Location + Rectangle Width = 3 + 2 = 5 
New Width = Old Width – Rectangle Width = 4 – 2 = 2 

rotated. The second rectangle is examined, �5�3�. Although
it has an equal capacity to fill the gap as the first rectan-
gle, we prefer to pack larger rectangles first, and so the
search continues. The third rectangle, �5�2�, is not better
than Rectangle 1. We must continue because there may be
a rectangle with a width of four units. The fourth rectan-
gle is examined, �2�1�. Now the width of this rectangle is
worse than our current best, so we can terminate. The first
rectangle would be returned as the best-fitting rectangle.

Note also that as soon as a rectangle that fits exactly
is found, we terminate. This reduces the search time of
the process and, due to the list structure, rectangle dimen-
sions decrease as we proceed through the rectangle list. In
general, it is better to place shapes with larger dimensions
earlier in the packing than towards the end of the packing,
where they may be allowed to protrude at the top of the
layout and affect solution quality.

Packing Stage. First, the stock sheet is examined to
find the lowest available gap (initially at x= 0, y = 0, and
lasting the entire sheet width). The rectangle list is exam-
ined and the best-fitting rectangle returned. This is placed
within the gap depending on the current placement policy
(as described in §2.1). The rectangle is assigned coordinates
and removed from the rectangle list. Finally, the relevant
stock-sheet array elements are incremented by the rectan-
gle height. The process continues: Find the position of the
lowest gap, find the width of the lowest gap, find the best-
fitting rectangle, assign coordinates, remove the rectangle
from the rectangle list, and update the stock-sheet array. If
the best-fitting rectangle does not completely fill the gap,
then there is no need to locate the lowest gap for the next
rectangle because it is a portion of the recent gap and can
be found as shown in Figure 8.

If a gap is found for which no remaining rectangle can
fit, then this is wasted space, and the stock-sheet array ele-
ments that reference the gap are raised up to the lowest
neighbour. For example, assume there is a gap of two units,
but that there are no rectangles with dimension two units
or less within our rectangle list (Figure 9).

In Figure 9 there is a gap for which no rectangle is small
enough to fit. Each neighbour of the gap is examined, a

height of two to the left and six to the right. The array
elements that define the gap are raised to the lowest neigh-
bour (in this case, to a height of two). We can now recheck
for the lowest gap and continue with packing. In raising
some of the array elements it cannot be assumed that the
new lowest gap is at a height of two because there may be
more gaps at a height of zero or one, so the array must be
rechecked.

Postprocessing Stage. Once every rectangle is packed,
we proceed through all of the rectangles to find if any
are protruding from the top of the packing and nega-
tively affecting solution quality. When we find the highest-
positioned rectangle, if the rectangle is orientated in such a
way that its height is greater than its width, then we remove
it from the packing and reduce the stock-sheet array by the
relevant rectangle height. Note that if the rectangle is found
orientated with width greater than height, then we cannot
improve (reduce) the height of the packing, as this rectangle
is in the lowest position possible. We then rotate the rect-
angle so that its width has the larger dimension and try to

Figure 9. Procedure when no rectangle will fit gap.

 
 
 
 
4 4 4 2 2 0 0 6 6 

4 4 4 2 2 0 0 6 6 

Wasted 
Space 

4 4 4 2 2 2 2 6 6 



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 661

Figure 10. The processing of “towers.”

1 
2 

3 

4 
5 

6 

1 
2 

3 
5 

6 

1 
2 

3 
5 

6 

  
 

 
 

 

1 2 
3 

4 5 
6

1 2 

5 
6 

1 
2 

4 5 
6 

A B 

C D 

E F 

3 

3 

pack the rectangle as before in “normal” packing but with
the constraint that it must be packed in the width> height
orientation. If the rectangle were allowed to rotate again,
then it would be placed back in exactly the same position.
We continue with this process until we cannot improve the
quality of solution (Figure 10). This would occur when we
remove the highest shape of the nest, rotate it, and in plac-
ing it in the lowest available position, it would give a worse
solution than that achieved previously.

Figure 10A shows the solution after packing with the
best-fit algorithm. To apply postprocessing to give better
solutions, the tallest shape is removed (Shape 4) and the
skyline is decreased appropriately as in Figure 10B. The
removed shape is rotated and an attempt is made to reinsert
it in the lowest part of the nest. As this shape will not fit,
the lowest gap is raised to its lowest neighbour to make
a more sizable gap, as in Figure 10C. As it still will not
fit, the gap is raised once more (see Figure 10D). Now
this gap is large enough to accommodate the shape, so it
is placed as shown in Figure 10E. If this new arrangement
improves the solution, it is accepted (as in this case). The
same operation is performed with the next-highest shape
(Shape 6). Figure 10F shows Shape 6 placed in its new
position. If it enhances the quality of solution, it is accepted
(as in this case). As all previous attempts have produced
better-quality packings, the highest shape is selected once
more. The highest shape is Shape 6 once again and its

width is greater than its height, so we terminate and return
the packing as the final solution.

Floating-Point Data. As the implementation is based
on the faster integer data type, we must convert floating-
point data to integer format by multiplying each rectangle
by a scaling factor, depending on the degree of accuracy
required. Some of the test problems from the litera-
ture, which we have used in §4, gave floating-point data
(Valenzuela and Wang 2001).

Summary of Process. The final algorithm is based
on the best solution returned after trying three pack-
ings with each utilising a different placement policy.
The whole process can be summarised by the following
pseudocode:

Obtain Stock Sheet Dimensions
Obtain List of n Rectangles
Rotate each Rectangle so that Width�Height
Sort Rectangle List by Decreasing Width (resolving equal

widths by decreasing heights)

Initialize Skyline Array of n Elements

for Each Placement Policy (Leftmost, Tallest Neighbour,
Smallest Neighbour) do

while Rectangles Not Packed do
Find Lowest Gap
if (Find Best-Fitting Rectangle== True) then

Place Best-Fitting Rectangle Using Placement
Policy

Raise Array to Appropriately Reflect Skyline
else

Raise Gap to Lowest Neighbour
end if

end while

while Optimisation Not Finished do
Find Highest Shape
if (Shape Width� Shape Height) then

Optimisation Finished
end if
Remove Highest Shape
Reduce Array to Reflect Skyline
Rotate Shape by 90 Degrees
if (Shape Fits) then

Place Best-Fitting Rectangle Using Placement
Policy

Raise Array to Appropriately Reflect Skyline
else

Raise Gap to Lowest Neighbour
end if
if (Packing Better== False) then

Optimisation Finished
end if

end while

end for

Return Best Solution



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
662 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

Table 1. Test data from the literature.

Problem Test problems Number of Optimal Object
Data source category given rectangles height dimensions

Hopper and Turton (2001) C1 P1, P2, P3 16 or 17 20 20× 20
C2 P1, P2, P3 25 15 40× 15
C3 P1, P2, P3 28 or 29 30 60× 30
C4 P1, P2, P3 49 60 60× 60
C5 P1, P2, P3 72 or 73 90 60× 90
C6 P1, P2, P3 97 120 80× 120
C7 P1, P2, P3 196 or 197 240 160× 240

Valenzuela and Wang (2001) Nice P1, P2, P3, P4, P5, P6 25, 50, 100, 200, 500, 1,000 100 100× 100
Path P1, P2, P3, P4, P5, P6 25, 50, 100, 200, 500, 1,000 100 100× 100

Ramesh Babu and P1 50 375 Width= 1�000
Ramesh Babu (1999)

3. Benchmark Problems
In order to compare the relative performance of the pre-
sented best-fit heuristic to other heuristic and metaheuristic
approaches, we used several test problems from the liter-
ature. Perhaps the most extensive data sets given for this
problem are found in Hopper and Turton (2001), where
21 problem sets of rectangle data are presented in seven
different-sized categories (each category has three problems
of similar size and object dimension). Valenzuela and Wang
(2001) provide floating-point data sets of both similarly
dimensioned rectangles (named “nice” data) and vastly dif-
fering dimensions (named “path” data). Each category has
data ranging from 25 to 1,000 rectangles. In Ramesh Babu
and Ramesh Babu (1999), the authors use a test problem
to compare their GA method against the GA method pro-
posed by Jakobs (1996). Table 1 presents an overview of
the test data from the literature.

Randomly Generated Problems. As we wanted to
extensively test our approach, other test problems were gen-
erated at random. The method chosen to do this involved
supplying the dimensions of a large rectangle, the number
of smaller rectangles to be cut from this larger rectangle,
and finally the smallest dimension allowed for any rect-
angle. A list of rectangles was maintained—initially with
only the specified large rectangle. The algorithm selects
any rectangle from the list and makes a vertical or hori-
zontal guillotine cut through it at a random point to create
two new rectangles. This process continues, making sure
that the minimum dimension is observed, until the larger
rectangle has been divided into the desired number of rect-
angles. This allows us to produce data sets for which we
know the optimal solution. Table 2 shows an overview of
our generated data. The complete data set is produced in
Appendix A to allow other researchers to access the data.

4. Experimentation and Results
For our experiments we want to compare how the proposed
heuristic method compared to conventional methods such
as bottom-left, bottom-left-fill, and published metaheuristic

methods. First of all, however, we present a series of exper-
iments that investigates the options for employing different
niche-placement policies within our algorithm.

4.1. A Comparison of the Placement Policies

We supplied the proposed best-fit heuristic with Hopper
and Turton’s data set and compared the performance of the
three different placement policies we used (LM—Leftmost,
TN—Tallest Neighbour, SN—Smallest Neighbour). Table 3
shows that each policy appears to have equal ability in find-
ing good solutions (ticks indicate the best placement policy
for each data set).

After 21 problems, we see that all three policies per-
form within a cumulative height of only 10 units difference,
and we can see that each policy creates an outright best
solution in several of the problems. This result validates
our decision to allow all three policies to be tried within
our heuristic. As an illustrative example, Figure 11 shows
the solutions obtained by each placement policy with prob-
lem C2P3 from Hopper and Turton (2001). The problem
has 25 shapes and an optimal solution of 15. The leftmost
placement policy obtains a solution with a height of 18.
The tallest-neighbour policy obtains a height of 16. The
smallest-neighbour policy achieves a height of 17.

Table 2. Generated benchmark problems.

New test Number of Optimal Object
problems rectangles height dimensions

N1 10 40 40× 40
N2 20 50 30× 50
N3 30 50 30× 50
N4 40 80 80× 80
N5 50 100 100× 100
N6 60 100 50× 100
N7 70 100 80× 100
N8 80 80 100× 80
N9 100 150 50× 150
N10 200 150 70× 200
N11 300 150 70× 200
N12 500 300 100× 300
N13 3�152 960 640× 960



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 663

Table 3. Comparison of placement policies and their cumulative performances.

Placement policy solution height Best policy

Category Problem LM TN SN Optimal LM TN SN

C1 P1 21 22 21 20 � �
P2 22 22 22 20 � � �
P3 24 24 24 20 � � �

C2 P1 17 16 17 15 �
P2 16 17 16 15 � �
P3 18 16 17 15 �

C3 P1 32 32 32 30 � � �
P2 34 34 34 30 � � �
P3 33 35 35 30 �

C4 P1 63 64 65 60 �
P2 64 66 62 60 �
P3 62 63 63 60 �

C5 P1 94 93 94 90 �
P2 93 92 96 90 �
P3 94 93 93 90 � �

C6 P1 124 123 124 120 �
P2 124 124 122 120 �
P3 124 128 125 120 �

C7 P1 246 247 250 240 �
P2 246 244 246 240 �
P3 245 246 248 240 �

Total 1�796 1�801 1�806 1�725 12 11 9

4.2. Comparison Against Bottom-Left and
Bottom-Left-Fill Algorithms

In Hopper and Turton’s comparison of bottom-left and
bottom-left-fill algorithms, bottom-left-fill produced the
better packings, although it took the longest time. Also, the
use of preordering shapes by decreasing width or decreas-
ing height gave better-quality solutions. As we are using a
different quality measure from that of Hopper and Turton,
involving the total height of the packing and not the density
of the packing, the bottom-left and bottom-left-fill algo-
rithms have been coded and tested using data from Hopper
and Turton. Table 4 shows that the bottom-left-fill heuris-
tic performs better than bottom-left and that the proposed
best-fit heuristic outperforms bottom-left-fill in all but one
of the categories, even when preordering is allowed (DW=
decreasing width, DH= decreasing height, for unsorted we
supply random sequences and take the average). The best
solutions are shown in bold type.

Figure 11. The solutions achieved by the placement policies on problem C2P3 from Hopper and Turton (2001).

Leftmost  Tallest Neighbour  Smallest Neighbour

4.3. Comparison Against Metaheuristic
Approaches

Hopper and Turton (2001) also show that the best pack-
ings are achieved when using the bottom-left-fill algo-
rithm along with a metaheuristic/evolutionary algorithm
(simulated annealing or genetic algorithm). We imple-
mented both of these algorithms to obtain a comparison
with the new best-fit heuristic. For both of the metaheuris-
tics, we operate on the rectangle input sequence and then
decode the sequences using bottom-left-fill. We adapt the
fitness function to use two distinct evaluators, a primary
evaluator of the height of the nest and a secondary evalua-
tor based on the sheet area used. This is necessary in order
to distinguish packings with identical heights. We allow the
metaheuristics five runs on each problem. The two meta-
heuristic implementations are briefly described as follows:

(a) Genetic Algorithm/Bottom-Left-Fill Decoder (GA+
BLF). We implemented a genetic algorithm approach with



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
664 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

Table 4. Comparison of the best-fit heuristic to bottom-left and bottom-left-fill heuristics (% over optimal).

C1 C2 C3 C4 C5 C6 C7

Problem: P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3
No. of rectangles: 16 17 16 25 25 25 28 29 28 49 49 49 72 73 72 97 97 97 196 197 296

BL 45 40 35 53 80 67 40 43 40 32 37 30 27 32 30 33 39 34 22 41 31
BL-DW 30 20 20 13 27 27 10 20 17 17 22 22 16 18 13 22 25 18 16 19 17
BL-DH 15 10 5 13 73 13 10 10 13 12 13 6	7 4	4 10 7	8 8	3 8	3 9	2 5 10 7	1
BLF 30 35 25 47 73 47 37 50 33 25 25 27 20 23 21 20 18 21 15 20 17
BLF-DW 10 15 15 13 20 20 10 13 13 10 5 10 5	6 6	7 5	6 5 4	2 4	2 4	6 3	3 2	9
BLF-DH 10 10 5 13 73 13 10 6	7 13 10 5 5 4	4 5	6 4	4 5 2	5 6	7 3	8 2	9 3	8

NEW BF 5 10 20 6	7 6	7 6	7 6	7 13 10 5 3	3 3	3 3	3 2	2 3	3 2	5 1	7 3	3 2	9 1	7 2	1

a population size of 50 and generation size of 1,000. Ini-
tially, each member of the population is a random ordering
and orientation of the input rectangles. At each generation,
we decode the sequences using bottom-left-fill to obtain
packings. To improve the population after each generation,
we select parents using linearly normalised roulette-wheel
selection and then apply partially matched crossover with a
probability of 60%. We also use two mutations of probabil-
ity 3%, one for the random swapping of rectangles within
an input sequence and another for the flipping of a rectan-
gle’s orientation. We use elitism to preserve the best two
solutions of the population, and we replace the others with
the children. We return the best solution found.

(b) Simulated Annealing/Bottom-Left-Fill Decoder
(SA + BLF). We allowed the simulated annealing algo-
rithm 50,000 iterations (same as the genetic algorithm
method). The initial solution is a randomly generated
input sequence. To move to a new candidate solution, we
randomly select one of three neighbourhood operators:
(i) swaps the orientation of a randomly chosen rectangle,
(ii) moves a randomly chosen rectangle to a random
position, (iii) swaps two randomly chosen rectangles.
The starting temperature was calculated based on the
total area of the input rectangles for each problem. We
used a geometric cooling schedule of 0.9999, which is
applied after every iteration. If we do not improve for 10
consecutive iterations, we reheat by applying a 1.01 times
increase to the temperature. This scheme has the effect of
cooling to about a 10% acceptance rate, where we remain
until the search is completed. After 50,000 iterations, we
return the best solution found during the process.

4.3.1. Experiments on Published Data. Table 5
shows the resultant solutions from using the metaheuristic
methods and our new best-fit heuristic with test problems
from the literature. For the metaheuristics, all times shown
indicate the time taken to achieve the solution and not the
time taken to complete the run. Therefore, the total time
taken to finish the search will be of a longer duration. All
experiments were performed on a PC with an 850 MHz
CPU and 128 MB RAM. For all instances, the best solution
is shown in bold.

The final columns of Table 5 show that the best-fit
heuristic equals or outperforms both the GA + BLF and

the SA+BLF metaheuristic methods on most of the data.
On closer inspection of the cases where best fit cannot bet-
ter the metaheuristic methods, we see that this occurs on
problems involving fewer shapes. It seems that with up to
around 50 shapes, which we call small problems, the meta-
heuristic methods produce the better solutions. As there are
fewer possible sequences of shapes, they are able to evalu-
ate a larger area within the search space and are therefore
able to produce better solutions. On large problems, where
there are more than 50 shapes to be packed, the best-fit
heuristic provides the better solutions. Figure 12 shows our
best-fit solution to the problem given in Ramesh Babu and
Ramesh Babu (1999).

With the data of Ramesh Babu and Ramesh Babu, our
best-fit heuristic obtains a solution of 40 mm, which equals
the height returned from our implemented metaheuristic
methods and their genetic method. It gives a better result
than the solution of Jakobs’ genetic method, which only
achieved a solution of height of 45 mm. The execution time
of the genetic algorithm of Ramesh Babu and Ramesh Babu
is given as 521 seconds on a 100 MHz processor. However,
our best-fit solution was achieved in 0.01 seconds.

As an illustrative example, a comparison of the solu-
tions obtained by each of the examined methods is given
in Figure 13, using problem C7P2 of 197 shapes, and
where we know the optimal solution is 240 from Hopper
and Turton (2001). Best fit achieves a solution with height
of 244, GA+BLF finds a solution with height 251 using
a population of 50 and several generations of 1,000, and
SA+BLF finds a solution with height 253 after several
50,000-iteration runs.

With the floating-point-based data of Valenzuela and
Wang (2001), the best-fit heuristic consistently performed
better than the other methods. Due to the floating-point
nature of the data and the integer-based implementations,
all methods took longer to execute than similarly sized inte-
ger problems due to the required scaling. However, because
the best-fit heuristic is a one-pass method, the overhead is
not exceptional.

4.3.2. Experiments on New Randomly Generated
Data. In many real-world industrial applications there
are time constraints and economic reasons for reaching
good solutions quickly, so to compare the various methods



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 665

Ta
bl
e
5.

C
om

pa
ri
so

n
of

th
e

be
st

-fi
t
he

ur
is

tic
ag

ai
ns

t
th

e
m

et
ah

eu
ri
st

ic
m

et
ho

ds
(G

A
+

B
L
F,

SA
+

B
L
F)

.

G
A
+

B
L
F

SA
+

B
L
F

B
es

t
Fi

t
G

A
be

st
−

B
F

SA
be

st
−

B
F

N
um

be
r
of

O
pt

im
al

D
at

a
se

t
C

at
.

Pr
ob

le
m

sh
ap

es
he

ig
ht

B
es

t
W

or
st

T
im

e
(s

)
B

es
t

W
or

st
T
im

e
(s

)
So

l.
T
im

e
(s

)
A

bs
.

%
Im

pv
.

A
bs

.
%

Im
pv

.

H
op

pe
r

C
1

P1
16

20
20

21
3	

4
20

21
1	

1
21

<
0	

01
−1

−5
	0

−1
−5

	0
P2

17
20

21
21

0	
5

21
21

0	
8

22
<

0	
01

−1
−4

	8
−1

−4
	8

P3
16

20
20

21
7	

1
20

21
0	

8
24

<
0	

01
−4

−2
0	

0
−4

−2
0	

0
C

2
P1

25
15

16
16

1	
3

16
16

6	
5

16
<

0	
01

0
0

0
0

P2
25

15
16

16
2	

2
16

16
13

	9
16

<
0	

01
0

0
0

0
P3

25
15

16
16

1	
0

16
16

13
	6

16
<

0	
01

0
0

0
0

C
3

P1
28

30
32

32
7	

4
32

33
20

	3
32

<
0	

01
0

0
0

0
P2

29
30

32
32

12
	4

32
32

22
	5

34
<

0	
01

−2
−6

	3
−2

−6
	3

P3
28

30
32

32
11

	6
32

33
18

	3
33

<
0	

01
−1

−3
	1

−1
−3

	1
C

4
P1

49
60

64
64

35
64

64
65

63
<

0	
01

1
1	
6

1
1	
6

P2
49

60
63

64
48

64
64

46
62

<
0	

01
1

1	
6

2
3	
1

P3
49

60
62

63
61

63
64

70
62

<
0	

01
0

0
1

1	
6

C
5

P1
72

90
95

95
23

6
94

95
50

1
93

0	
01

2
2	
1

1
1	
1

P2
73

90
95

96
44

0
95

96
28

5
92

0	
01

3
3	
2

3
3	
2

P3
72

90
95

96
15

0
95

95
42

5
93

0	
01

2
2	
1

2
2	
1

C
6

P1
97

12
0

12
7

12
7

45
3

12
7

12
8

85
4

12
3

0	
01

4
3	
1

4
3	
1

P2
97

12
0

12
6

12
7

86
6

12
6

12
8

68
0

12
2

0	
01

4
3	
2

4
3	
2

P3
97

12
0

12
6

12
7

94
6

12
6

12
6

91
2

12
4

0	
01

2
1	
6

2
1	
6

C
7

P1
19

6
24

0
25

5
25

5
4�

33
0

25
5

25
6

4�
84

0
24

7
0	

01
8

3	
1

8
3	
1

P2
19

7
24

0
25

1
25

3
5�

87
0

25
3

25
3

5�
10

0
24

4
0	

01
7

2	
8

9
3	
6

P3
19

6
24

0
25

4
25

5
5�

05
0

25
5

25
5

6�
52

0
24

5
0	

01
9

3	
5

10
3	
9

V
al

en
zu

el
a

N
ic

e
P1

25
10

0
10

8	
2

10
9	

5
18

5
10

9	
3

11
0	

9
19

2
10

7	
4

0	
02

0	
8

0	
7

1	
9

1	
7

P2
50

10
0

11
2	

0
11

3	
5

95
6

11
2	

6
11

3	
3

1�
35

8
10

8	
5

0	
01

3	
5

3	
1

4	
1

3	
6

P3
10

0
10

0
11

3	
0

11
4	

0
2�

58
0

11
3	

3
11

3	
8

4�
13

0
10

7	
0

0	
01

6	
0

5	
3

6	
3

5	
6

P4
20

0
10

0
11

3	
2

11
4	

0
1	

6
×

10
4

11
3	

4
11

3	
8

2	
3
×

10
4

10
5	
3

0	
03

7	
9

7	
0

8	
1

7	
1

P5
50

0
10

0
11

1	
9

11
2	

3
5	

1
×

10
4

11
1	

9
11

2	
2

7	
3
×

10
4

10
3	
5

0	
08

8	
4

7	
5

8	
4

7	
5

P6
1�

00
0

10
0

—
—

—
—

—
—

10
3	
7

0	
26

Pa
th

P1
25

10
0

10
6	
7

10
8	

4
14

8
10

9	
6

11
0	

8
12

2
11

0	
1

0	
04

−3
	4

−3
	2

−0
	5

−0
	5

P2
50

10
0

10
7	
0

10
8	

0
2�

41
7

10
8	

7
10

9	
5

1�
01

0
11

3	
8

0	
24

−6
	8

−6
	4

−5
	1

−4
	7

P3
10

0
10

0
10

9	
0

11
0	

1
4�

19
0

10
9	

0
11

1	
2

6�
86

5
10

7	
3

0	
15

1	
7

1	
6

1	
7

1	
6

P4
20

0
10

0
10

8	
8

10
9	

0
1	

6
×

10
4

11
0	

3
11

1	
3

2	
7
×

10
4

10
4	
1

0	
33

4	
7

4	
3

6	
2

5	
6

P5
50

0
10

0
11

1	
1

11
1	

5
8	

8
×

10
4

11
2	

4
11

3	
0

1	
4
×

10
5

10
3	
7

0	
19

7	
4

6	
7

8	
7

7	
7

P6
1�

00
0

10
0

—
—

—
—

—
—

10
2	
8

0	
23

R
am

es
h

B
ab

u
P1

50
37

5
40

0
40

0
5	

7
40

0
40

0
6	

4
40

0
0	

01
0

0
0

0



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
666 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

Figure 12. The resultant packing of our heuristic with
data from Ramesh Babu and Ramesh Babu.

we should consider the time used in finding the solution.
Table 6 uses our new data sets to show both solution qual-
ity and difference in time taken to find the solution. Once
again, the best solutions are presented in bold.

The execution times from Tables 5 and 6 indicate that
the best-fit heuristic can reach good solutions in a much
quicker time than the other methods. In fact, on the newly
generated problems in Table 6, best fit completes all solu-
tions in a combined time of less than two seconds. Due
to the use of populations with the genetic algorithm and
neighbourhood functions with simulated annealing, there is
an increase in execution time (because of their associated
operations).

The power of the approach that we have presented is
particularly illustrated by considering the largest of our
problems, N13. Note that the GA + BLF and SA + BLF
methods were unable to complete our N13 due to excessive
time requirements (interpolated to approximately 26–40

Figure 13. A comparison of the best-fit heuristic to the metaheuristic methods using problem C7P2 from Hopper and
Turton.

Best-Fit Heuristic BLF+GA BLF+SA

weeks of execution time). However, the best-fit heuristic
was able to pack the 3,152 shapes in less than two
seconds, and it gave a solution of 964, which is only
four units above optimal. The solution is presented in
Figure 14.

5. Summary
In this paper we have described a new heuristic approach
based on the best-fit methodology and have presented an
efficient implementation of the heuristic. Using data pro-
vided by other researchers in the field of cutting and pack-
ing, our new heuristic has produced better results than the
bottom-left and bottom-left-fill heuristics for most of the
problems. The new heuristic has produced better-quality
packings than the metaheuristic hybrids when given prob-
lems of 50 shapes or more. We obtained these solutions in
a significantly shorter period of time by several orders of
magnitude. The method also performs very well with data
sets containing similar-sized rectangles and ones contain-
ing different-sized rectangles (such as the problems rep-
resented by data from Valenzuela and Wang 2001). In
Hopper and Turton (2001), the authors concluded that the
methods that yielded the best results were GA+BLF and
SA+BLF. We have demonstrated that, even with extremely
large problems, the proposed best-fit heuristic is able to
outperform currently published and established heuristic
and metaheuristic methods to produce solutions that are
very close to optimal, using very small execution times.
Many other areas of operations research, including memory
allocation and multiprocessor scheduling, share a similar



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 667

Table 6. A comparison of execution time.

GA+BLF SA+BLF BF Heuristic GAbest −BF SAbest −BF
No. of Optimal

Problem shapes height Result Time (s) Result Time (s) Result Time (s) Abs. % Impv. Abs. % Impv.

N1 10 40 40 1	02 40 0	24 45 <0	01 −5 −12	5 −5 −12	5
N2 20 50 51 9	2 52 8	14 53 <0	01 −2 −3	9 −1 −1	9
N3 30 50 52 2	6 52 39	5 52 <0	01 0 0 0 0
N4 40 80 83 12	6 83 84 83 <0	01 0 0 0 0
N5 50 100 106 52	3 106 228 105 0	01 1 0	9 1 0	9
N6 60 100 103 261 103 310 103 0	01 0 0 0 0
N7 70 100 106 671 106 554 107 0	01 −1 −0	9 −1 −0	9
N8 80 80 85 1�142 85 810 84 0	01 1 1	2 1 1	2
N9 100 150 155 4�431 155 1�715 152 0	01 3 1	9 3 1	9
N10 200 150 154 2× 104 154 6�066 152 0	02 2 1	3 2 1	3
N11 300 150 155 8× 104 155 3× 104 152 0	03 3 1	9 3 1	9
N12 500 300 313 4× 105 312 6× 104 306 0	06 7 2	2 6 1	9
N13 3�152 960 — — — — 964 1	37

logical structure to the problem in this paper. Therefore, the
techniques proposed in this paper could be applied to these
other areas with the possibility of similar improvements in
solution quality.

Figure 14. The resultant packing from data N13 involv-
ing 3,152 rectangles.

Note. A packing of height 964 is achieved using best fit, which is only 4
over optimum.

Appendix A. Generated Benchmark
Problems

N1: 10 shapes, 40× 40.

Width Height Width Height

7 6 4 4
40 16 7 8
5 20 4 20

24 24 5 4
7 4 7 6

N2: 20 shapes, 30× 50.

Width Height Width Height

23 9 14 6
19 4 6 6
12 21 5 4
6 4 4 6
7 13 6 4
9 4 7 6
4 6 14 11

23 6 4 7
16 6 8 4
4 14 14 4

N3: 30 shapes, 30× 50.

Width Height Width Height Width Height

10 6 6 4 5 4
4 4 3 15 3 5
4 5 9 6 3 3
3 5 3 3 5 8

10 5 3 4 5 16
3 5 6 18 10 13
7 13 7 5 3 3
3 4 3 4 10 17
8 32 5 3 5 14
3 23 3 8 5 3



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
668 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

N4: 40 shapes, 80× 80.

Width Height Width Height Width Height Width Height

61 38 4 4 5 4 5 72
7 4 5 4 10 7 5 52
9 5 8 10 4 7 5 4
5 4 4 4 20 7 9 7
5 7 5 5 5 7 5 12
7 7 32 4 5 12 9 33
9 15 7 7 5 4 4 8
4 4 5 4 11 7 9 34
4 4 5 8 8 21 4 4

32 31 7 24 9 4 29 4

N5: 50 shapes, 100× 100.

Width Height Width Height Width Height

25 10 7 10 7 6
74 8 6 10 25 10
27 19 11 10 26 8
64 34 53 7 36 6
74 6 20 6 6 6
39 6 46 10 6 7
48 7 18 6 20 6
11 10 10 6 16 22
8 10 10 10 20 14

14 6 9 6 10 6
6 10 7 6 14 8

26 6 11 6 8 6
27 6 7 6 7 6
6 10 6 8 16 6
8 10 9 7 8 6

31 10 47 7 15 6
23 6 10 7

N6: 60 shapes, 50× 100.

Width Height Width Height Width Height

3 3 50 4 3 5
9 4 6 25 5 8

26 30 5 3 50 3
5 5 24 30 3 19
4 21 4 12 8 3

14 24 5 3 3 8
4 5 5 4 4 3
3 4 5 3 4 3
3 4 5 4 4 3
3 5 12 6 35 13
5 5 5 5 4 3
5 5 16 6 4 3
3 3 3 3 5 5
7 5 7 5 3 3
3 5 4 14 5 21
3 5 5 5 4 7
5 3 4 5 35 12
3 6 7 21 4 15
3 3 5 24 4 5
3 5 5 8 50 3

N7: 70 shapes, 80× 100.

Width Height Width Height Width Height

6 82 2 4 3 40
3 2 2 2 3 4
3 38 8 2 8 2

19 23 3 2 3 20
7 36 28 22 2 2

46 12 22 2 2 2
3 4 3 6 3 4
3 2 2 2 2 2
2 82 37 22 3 2
3 15 24 2 23 38
3 2 13 2 2 2
3 22 11 2 11 38
2 2 4 33 4 2
3 37 9 12 12 7
2 2 5 2 2 4
2 2 25 5 3 2
3 2 2 2 3 52
3 40 2 2 3 14
6 2 3 2 3 2
7 2 2 2 18 4
7 7 3 4 19 59
2 2 3 22 23 2

18 2 9 22
13 7 3 5

N8: 80 shapes, 100× 80.

Width Height Width Height Width Height

17 6 12 6 3 5
3 5 37 15 5 16

16 5 3 4 20 5
4 4 3 3 4 5
4 3 34 11 4 5
4 5 4 5 8 6
4 4 23 4 10 3

12 4 23 4 3 4
3 11 37 3 3 7
3 4 7 50 11 19

40 13 20 3 13 43
8 20 3 5 5 20
3 9 4 7 5 11
4 28 10 6 4 4
9 11 7 6 9 3
3 22 5 8 3 4
4 3 3 3 3 14
4 3 4 4 10 6

20 4 9 24
4 35 11 8
4 4 4 3

23 34 3 5
4 29 8 10
3 12 7 3

11 8 3 3
4 21 3 5
7 35 16 5

23 35 7 4
3 4 3 10
4 5 12 10
3 15 18 4



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 669

N9: 100 shapes, 50× 150.

W H W H W H W H W H W H W H W H W H W H

5 3 4 3 4 4 4 3 3 3 4 5 3 13 3 8 4 5 3 10
3 5 47 7 4 3 3 40 5 3 3 5 4 3 3 4 3 4 4 9
5 3 4 4 8 7 4 5 3 20 47 4 3 3 4 32 3 39 15 50
5 5 11 3 3 3 24 4 3 3 3 3 5 3 3 5 19 17 12 27
4 5 3 4 4 4 4 3 3 4 4 28 4 3 8 3 10 5 22 4
4 15 4 5 28 5 3 3 3 6 3 5 28 11 3 5 6 54 8 4
5 5 19 6 9 5 3 3 4 5 3 3 3 3 3 4 9 4 3 4
3 3 3 5 3 4 3 5 6 5 4 4 4 3 4 3 7 3 16 5

44 35 4 3 12 23 3 3 7 3 4 4 10 3 4 9 3 54 18 4
3 5 5 3 28 7 9 5 3 8 3 35 10 5 5 3 3 5 3 14

N10: 200 shapes, 70× 150.

W H W H W H W H W H W H W H W H W H W H W H W H

2 3 2 2 2 2 6 2 2 2 2 2 4 6 2 2 3 12 3 2 5 2 6 2
3 3 2 2 3 2 3 2 2 2 2 2 51 3 2 3 2 2 14 3 3 3 8 3
3 21 2 3 3 2 2 2 2 8 13 2 3 2 6 3 16 31 2 2 4 4 2 2

54 33 3 3 25 3 25 3 20 2 2 2 9 2 34 2 2 2 3 12 42 3 2 2
8 5 3 2 2 2 2 8 2 3 2 3 5 9 2 2 3 2 2 2 2 2 3 3
2 2 2 2 2 2 2 2 4 2 2 2 2 2 13 33 13 3 4 2 3 11 2 3
3 2 3 62 2 2 2 2 2 3 2 3 25 2 2 2 2 2 3 3 2 3 2 3
2 2 3 5 2 4 2 3 3 8 2 2 2 2 16 3 2 6 2 3 2 2 2 3
3 2 2 2 60 25 3 3 2 11 2 3 3 2 4 2 16 4 27 2 2 2 2 2
5 3 2 3 2 2 5 13 2 3 19 8 3 3 2 7 8 3 3 2 31 28 19 2
2 2 2 2 59 18 4 3 5 12 9 4 2 3 2 5 2 5 2 4 2 2 2 2

29 3 6 6 5 28 4 2 32 2 17 8 32 2 2 2 3 2 7 5 2 3 2 2
3 3 3 3 3 2 2 2 2 2 5 2 11 3 2 2 3 3 5 2 2 2 20 2
2 3 2 2 12 3 2 2 3 2 2 2 17 6 2 2 2 2 3 10 2 2
6 50 2 2 29 2 48 3 5 2 2 3 3 2 7 2 2 2 5 3 2 7
3 2 2 2 2 2 2 2 2 3 5 3 2 2 8 3 2 2 14 3 2 2

22 6 7 2 3 6 3 3 3 3 23 2 2 2 2 2 2 3 18 3 5 6

N11: 300 shapes, 70× 150.

W H W H W H W H W H W H W H W H W H W H W H W H

3 3 3 4 3 20 3 2 3 17 70 7 2 2 3 3 2 3 2 2 2 6 32 10
17 3 3 2 2 5 19 23 3 2 2 3 2 2 6 9 2 3 3 3 3 3 3 3
21 9 2 3 3 3 3 2 2 2 32 6 9 11 3 2 3 3 8 4 11 4 2 2
2 3 2 5 2 2 3 2 63 3 4 2 4 16 2 13 2 2 9 3 5 5 2 3
2 11 2 10 3 2 2 2 2 2 4 2 3 3 3 2 6 17 9 2 9 5 2 2
2 3 2 3 7 3 2 3 2 2 2 7 3 3 2 2 3 5 8 2 4 6 3 12
3 3 3 2 2 3 19 19 4 3 2 3 2 3 2 3 3 2 6 2 13 17 3 9

31 17 2 3 10 11 3 2 3 2 2 2 2 2 15 2 2 2 2 4 2 2 2 5
2 2 3 2 5 4 2 5 8 2 15 17 7 2 2 2 4 2 2 3 2 14 14 17
2 3 3 3 3 2 2 3 4 3 3 2 2 6 2 3 3 2 8 3 14 17 12 2

20 3 2 5 3 2 3 3 3 10 2 3 23 6 2 2 2 7 10 2 3 3 2 2
2 3 2 3 38 3 2 3 3 2 2 2 18 2 2 2 10 4 3 6 3 8 11 4
2 3 2 2 48 2 3 2 3 2 3 3 3 2 3 4 3 2 30 5 27 2 3 4

70 4 12 14 2 5 3 3 2 2 3 2 4 8 3 3 2 2 3 2 10 21 3 3
5 4 2 3 6 2 4 11 2 2 30 4 3 2 24 2 2 3 10 3 2 4 7 3

23 2 3 30 3 3 2 3 2 2 21 3 10 2 4 13 4 3 3 4 6 2 2 3
5 3 3 3 8 16 2 3 3 3 3 3 8 3 3 16 2 3 2 2 21 2 3 2
2 12 2 3 2 3 3 3 2 23 2 2 10 2 26 6 3 2 3 2 4 2 4 3
2 3 2 3 2 3 2 3 2 3 2 3 2 8 2 2 3 3 5 2 2 4 3 2
2 3 8 3 3 2 3 5 2 3 3 3 5 2 3 2 3 3 7 3 7 3 16 2
7 2 4 2 15 2 2 2 18 2 3 5 3 5 2 3 6 16 3 4 2 3 5 5
2 3 2 3 15 6 2 3 2 3 3 3 3 2 5 11 2 2 2 2 3 2 4 11
5 16 2 2 2 3 2 2 3 2 3 3 2 2 70 5 2 2 3 3 3 2 5 17
2 2 24 7 2 3 4 6 2 3 27 4 5 4 3 5 25 2 12 4 19 5 3 4

15 6 3 3 3 3 5 3 3 3 3 3 5 16 2 2 2 2 2 2 10 4 2 4



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
670 Operations Research 52(4), pp. 655–671, © 2004 INFORMS

N12: 500 shapes, 100× 300.

W H W H W H W H W H W H W H W H

5 4 3 6 3 5 3 3 4 28 3 5 4 75 3 6
3 13 3 3 5 5 15 23 3 4 5 5 8 6 3 3

49 3 3 3 3 3 3 3 3 4 3 5 22 5 18 24
3 5 5 34 4 4 5 3 5 4 4 5 4 6 9 3
5 5 3 5 3 3 3 3 5 5 3 5 9 23 4 5
3 5 3 3 3 3 3 4 3 4 3 4 3 7 5 7
5 5 5 3 3 3 19 12 3 4 3 5 12 31 4 11
3 3 3 3 3 16 4 3 3 3 3 5 31 3 9 3
4 10 3 4 3 5 5 18 3 3 4 3 15 8 3 12
3 4 3 5 12 3 3 3 4 3 3 4 4 3 36 33
4 11 5 3 3 5 3 4 3 3 3 5 3 9 3 4
3 7 3 21 3 3 33 18 3 3 3 12 3 12 16 8
9 8 4 4 3 4 3 4 3 3 3 4 3 3 3 6
7 33 3 28 5 3 3 7 3 3 5 5 36 27 3 4
5 5 3 3 4 4 3 10 5 3 3 3 3 8 3 5
5 3 3 14 5 3 4 3 3 6 3 3 5 51 4 26
4 5 31 5 5 4 4 5 3 3 5 3 3 35 4 3
5 4 3 3 5 5 5 11 3 12 28 5 3 4 4 10
5 3 4 4 3 18 4 4 3 3 4 5 5 8 3 4
3 5 3 5 3 3 3 3 22 10 3 3 3 3 40 10

12 5 5 3 3 6 3 10 4 6 3 5 3 10 9 18
3 3 5 3 3 3 9 34 20 4 5 3 5 3 5 3
3 4 5 20 3 4 3 3 4 5 3 4 4 16 4 4
3 3 3 26 3 3 3 3 3 3 3 5 3 4 6 98
3 5 5 3 3 5 4 3 3 3 3 10 3 3 3 3
5 3 17 3 4 3 5 16 4 4 3 4 4 5 9 5
3 5 5 7 3 3 3 36 3 7 3 4 3 3 3 3
3 7 5 9 7 6 4 5 3 3 3 4 3 3 3 3
5 5 3 7 4 3 5 4 3 3 3 3 18 3 3 4
5 3 54 13 3 3 3 21 3 4 8 4 5 4 10 27
5 3 10 10 12 19 3 3 12 4 3 4 3 21 3 21
3 7 14 3 3 17 4 3 5 4 3 68 3 23 10 17
5 3 3 4 3 3 3 4 3 8 7 15 3 3 3 3
3 3 3 3 3 3 5 3 5 5 5 4 5 13 3 9
3 4 3 5 3 5 3 4 3 44 3 3 5 23 3 51
5 4 3 3 3 5 3 3 18 5 5 20 43 11 8 98
4 4 3 3 3 3 3 5 3 5 6 5 3 3 6 7
3 4 3 3 4 3 3 4 3 3 3 3 31 61 3 33
3 3 3 3 4 3 4 10 4 3 3 4 3 3 7 20
4 8 3 3 3 3 21 3 4 6 4 3 3 3 3 8
5 4 5 6 4 3 3 3 9 5 3 5 4 5 4 3
5 3 5 3 3 4 4 5 3 5 4 10 3 11 4 13
4 3 5 5 3 4 3 4 3 7 9 3 3 7 3 4

12 33 3 4 3 12 3 7 4 3 5 11 10 125 6 35
3 5 5 3 3 3 7 4 3 4 4 3 3 5 3 5
3 3 4 3 3 3 11 3 3 29 5 4 4 5 3 4
4 4 3 3 3 3 3 3 3 3 3 3 5 6 3 6
3 5 3 4 3 3 3 3 3 5 5 3 5 94 3 4
5 5 14 27 5 10 4 3 4 7 3 4 6 8 4 3
5 4 3 3 3 3 3 5 12 3 4 14 4 3 24 4
7 3 3 4 3 3 8 7 3 3 18 25 4 4 3 6
5 3 11 3 3 3 3 3 8 58 4 3 3 3 4 3
5 4 3 3 3 5 4 24 14 5 3 4 5 18 5 6
5 3 4 4 3 13 5 3 5 4 10 25 4 5 30 4
3 4 3 3 3 3 3 3 4 5 11 49 5 5 3 3
3 4 3 4 3 3 4 4 3 4 3 3 3 3 17 3
3 5 3 3 4 5 3 5 5 4 5 4 3 10 4 5
3 3 4 5 4 5 4 3 3 4 5 3 4 3 5 5
3 4 4 5 3 3 18 25 4 7 15 4 3 3 3 6
7 3 3 5 54 19 3 3 3 4 3 3 3 25
5 8 18 9 5 3 3 3 3 5 8 3 4 3

34 12 4 16 12 3 3 3 6 16 4 5 4 9
5 5 3 4 5 10 3 4 3 5 6 12 3 3



Burke, Kendall, and Whitwell: A New Placement Heuristic for the Orthogonal Stock-Cutting Problem
Operations Research 52(4), pp. 655–671, © 2004 INFORMS 671

N13: 3,152 shapes, 640× 960. Obtained by a 4× 4 exten-
sion of problem C7P2 (197 shapes) from Hopper and
Turton (2001).

240

[

C7P2 C7P2 C7P2 C7P2

C7P2 C7P2 C7P2 C7P2

C7P2 C7P2 C7P2 C7P2

C7P2 C7P2 C7P2 C7P2




960

| |
160

| |
640

Acknowledgments
The authors thank the UK Engineering and Physical Sci-
ences Research Council (EPSRC) and Esprit Automation
Ltd. for supporting this work. They also thank the anony-
mous reviewers for their helpful comments.

References
Albano, A., R. Orsini. 1979. A heuristic solution of the rectangular cutting

stock problem. Comput. J. 23(4) 338–343.

Baker, B. S., E. G. Coffman, Jr., R. L. Rivest. 1980. Orthogonal packings
in two dimensions. SIAM J. Comput. 9(4) 808–826.

Beasley, J. E. 1985a. An exact two-dimensional non-guillotine cutting tree
search procedure. Oper. Res. 33(1) 49–64.

Beasley, J. E. 1985b. Algorithms for unconstrained two-dimensional guil-
lotine cutting. J. Oper. Res. Soc. 36(4) 297–306.

Bengtsson, B. E. 1982. Packing rectangular pieces—A heuristic approach.
Comput. J. 25(3) 353–357.

Chazelle, B. 1983. The bottom-left bin packing heuristic: An efficient
implementation. IEEE Trans. Comput. 32(8) 697–707.

Christofides, N., C. Whitlock. 1977. An algorithm for two-dimensional
cutting problems. Oper. Res. 25(1) 30–44.

Coffman, E. G., Jr., F. T. Leighton. 1989. A provably efficient algorithm
for dynamic storage allocation. J. Comput. System Sci. 38 2–35.

Coffman, E. G., Jr., M. R. Garey, D. S. Johnson. 1978. An application of
bin packing to multiprocessor scheduling. SIAM Comput. 7 1–17.

Coffman, E. G., Jr., M. R. Garey, D. S. Johnson. 1984. Approximation
algorithms for bin packing—An updated survey. G. Ausiello, M.
Lucertini, P. Serafini, eds. Algorithm Design for Computer Systems
Design. Springer-Verlag, New York 49–106.

Cung, V. D., M. Hifi, B. Le Cun. 2000. Constrained two-dimensional
cutting stock problems—A best-first branch-and-bound algorithm.
Internat. Trans. Oper. Res. 7 185–210.

Dagli, C. H., A. Hajakbari. 1990. Simulated annealing approach for solv-
ing stock cutting problem. Proc. IEEE Internat. Conf. Systems, Man,
and Cybernetics. Los Angeles, CA, 221–223.

Dagli, C. H., P. Poshyanonda. 1997. New approaches to nesting rectangu-
lar patterns. J. Intelligent Manufacturing 3(3) 177–190.

Dowsland, K. A., W. B. Dowsland. 1992. Packing problems. Eur. J. Oper.
Res. 56 2–14.

Dowsland, K. A., W. B. Dowsland. 1995. Solution approaches to irregular
nesting problems. Eur. J. Oper. Res. 84 506–521.

Dyckhoff, H. 1990. A typology of cutting and packing problems. Eur. J.
Oper. Res. 44 145–159.

Faina, L. 1999. An application of simulated annealing to the cutting stock
problem. Eur. J. Oper. Res. 114 542–556.

Falkenauer, E. 1996. A hybrid grouping genetic algorithm for bin packing.
J. Heuristics 2(1) 5–30.

Garey, M. R., D. S. Johnson. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company,
San Francisco, CA.

Garey, M. R., D. S. Johnson. 1981. Approximation algorithms for
bin packing problems: A survey. D. Ausiello, M. Lucertini, eds.
Analysis and Design of Algorithms in Combinatorial Optimization.
CISM Courses and Lectures, Vol. 266. Springer Verlag, New York,
147–172.

Gilmore, P. C. 1966. The cutting stock problem. IBM Proc. Combinatorial
Problems 211–224.

Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach to
the cutting stock problem. Oper. Res. 9 849–859.

Golden, B. L. 1976. Approaches to the cutting stock problem. AIIE Trans.
8 265–274.

Hifi, M., V. Zissimopolous. 1997. Constrained two-dimensional cutting:
An improvement of Christofides and Whitlock’s exact algorithm.
J. Oper. Res. Soc. 48 324–331.

Hopper, E., B. C. H. Turton. 1999. A genetic algorithm for a 2D industrial
packing problem. Comput. Indust. Engrg. 37 375–378.

Hopper, E., B. C. H. Turton. 2001. An empirical investigation of meta-
heuristic and heuristic algorithms for a 2D packing problem. Eur. J.
Oper. Res. 128 34–57.

Hower, W., M. Rosendahl, D. Köstner. 1996. Evolutionary algorithm
design. Artificial Intelligence in Design ’96. Kluwer Academic Pub-
lishers, Dordrecht, Germany, 663–680.

Jakobs, S. 1996. On genetic algorithms for the packing of polygons. Eur.
J. Oper. Res. 88 165–181.

Kroger, B. 1995. Guillotineable bin packing: A genetic approach. Eur. J.
Oper. Res. 84 645–661.

Lai, K. K., J. W. M. Chan. 1996. Developing a simulated annealing algo-
rithm for the cutting stock problem. Comput. Indust. Engrg. 32(1)
115–127.

Li, Z., V. Milenkovic. 1995. Compaction and separation algorithms
for non-convex polygons and their applications. Eur. J. Oper. Res.
(Special Issue on Cutting and Packing) 84 539–561.

Liu, D., H. Teng. 1999. An improved BL-algorithm for genetic algo-
rithms of the orthogonal packing of rectangles. Eur. J. Oper. Res. 112
413–419.

Paull, A. E. 1956. Linear programming: A key to optimum newsprint
production. Pulp Paper Magazine Canada 57 85–90.

Ramesh Babu, A., N. Ramesh Babu. 1999. Effective nesting of rectan-
gular parts in multiple rectangular sheets using genetic and heuristic
algorithms. Internat. J. Production Res. 37(7) 1625–1643.

Roberts, S. A. 1984. Application of heuristic techniques to the cutting
stock problem for worktops. J. Oper. Res. Soc. 35 369–377.

Sweeny, P. E., E. R. Paternoster. 1992. Cutting and packing problems:
A categorized application-orientated research bibliography. J. Oper.
Res. Soc. 43(7) 691–706.

Valenzuela, C. L., P. Y. Wang. 2001. Heuristics for large strip pack-
ing problems with guillotine patterns: An empirical study. Proc. 4th
Metaheuristics Internat. Conf., University of Porto, Porto, Portugal,
417–421.


