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This paper presents a new heuristic algorithm for the two-dimensional irregular stock-cutting problem, which generates
significantly better results than the previous state of the art on a wide range of established benchmark problems. The
developed algorithm is able to pack shapes with a traditional line representation, and it can also pack shapes that incorporate
circular arcs and holes. This in itself represents a significant improvement upon the state of the art. By utilising hill climbing
and tabu local search methods, the proposed technique produces 25 new best solutions for 26 previously reported benchmark
problems drawn from over 20 years of cutting and packing research. These solutions are obtained using reasonable time
frames, the majority of problems being solved within five minutes. In addition to this, we also present 10 new benchmark
problems, which involve both circular arcs and holes. These are provided because of a shortage of realistic industrial style
benchmark problems within the literature and to encourage further research and greater comparison between this and future

methods.
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1. Introduction

The field of cutting and packing impacts several differ-
ent industries and motivates many areas of research. Direct
applications include the optimisation of layouts within the
wood, textile, sheet metal, plastics, and glass industries.
Cutting and packing algorithms can also be applied to other
spatial problems such as floor plan layouts. The main objec-
tives are to maximise space utilisation and minimise the
computation time required. In addition to these fundamen-
tal objectives there are often industry specific requirements
which are normally dictated by the material to be cut, the
cutting method, and the required cut quality. For example,
within the textile industry, consideration must be given to
the weave of the cloth and printed designs which is in con-
trast to the sheet metal industry where heat distribution and
material warping are of concern because plasma or oxy-fuel
cutting processes are being employed. Research into auto-
matic packing approaches has steadily increased over the
years partly due to industrial competitiveness, but also due
to greater academic interest from the scientific community
(Sweeny and Paternoster 1992).

Gilmore and Gomory (1961) conducted some of the ear-
liest research in the area and solved one-dimensional prob-
lems to optimality using linear programming. An example
of a one-dimensional problem is the division of steel bars
or rods into smaller lengths for fabrication or resale. Two-
dimensional problems can be categorised into orthogonal
problems (where pieces are rectangular) and irregular prob-
lems. Orthogonal problems have received greater attention
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from the academic community as they are less geometri-
cally complex. A review of work in this area can be found
in Hopper and Turton (2001). The best-known results for
the established benchmark problems have been achieved
using the best-fit heuristic which is presented, discussed,
and evaluated by Burke et al. (2004). The irregular two-
dimensional packing problem is the focus of this paper and
is geometrically more complex; therefore, it is more dif-
ficult to implement and requires considerably more com-
putational power. A review of approaches to this problem
is included in Dowsland and Dowsland (1995). The best
results for several benchmark problems (before the results
presented here) are found in Gomes and Oliveira (2002),
Hopper (2000), and Dowsland and Dowsland (1993). We
will briefly discuss each paper that introduced one or more
data sets and papers that improved on the best-known result
for any of these problems.

Some of the earliest work on irregular packing was con-
ducted by Albano and Sapuppo (1980) who approached the
two-dimensional problem using a nesting algorithm which
utilised the no-fit polygon (NFP) in addition to a profile
simplification method to reduce the geometric complexity
of the nesting process (the profile represents the leading
edge of the shapes placed on the nest). Available space
behind the leading edge is ignored, causing this method
to perform as a bottom-left packing algorithm (i.e., with
no hole-filling capabilities). The no-fit polygon defines the
positions with which two polygons touch without intersect-
ing. This was the first time that the term “no-fit polygon”
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was used, but the concept had been introduced in Art
(1966), who used the term “shape envelope” to describe the
feasible nonintersecting positions for which two shapes can
be placed. We further discuss the no-fit polygon in §2.1.
Blazewicz et al. (1993) present an extension to the work
performed by Albano and Sapuppo (1980). Their method
produces a bottom-left-fill style algorithm which performs
well against their chosen data sets. The approach attempts
to back fill holes in the existing layout before attempting
to place a shape on the leading edge of the nest. The tech-
nique utilises a tabu search method to produce moves from
one nest to another. The authors note that the main prob-
lem is in the definition of an algorithm for checking the
feasibility of the move produced by the process.

Marques et al. (1991) approached the problem by using a
grid approximation to reduce the complexity of the nesting
process. This, in combination with a simulated annealing
search (to control compaction via Markov chains), produces
a result for their data set in just over 24 hours. While it is
difficult to determine the exact quality of the produced solu-
tion, we have estimated the length of sheet to be 100 units
from the provided diagram giving a density of approxi-
mately 69%.

Fujita et al. (1993) present a two-part approach con-
sisting of a genetic algorithm (GA) combinatorial search
and a local minimisation function for nesting. The GA
manipulates shape pairs which hold information about
their positional relationship with one another. A hybrid
crossover operator produces child chromosomes which are
used to create a nest via the local minimisation function;
the method then attempts to place these shape pairs in a
bottom-left fashion. Overlapping solutions are not allowed
but overhang from the required sheet width is acceptable,
although penalised in the evaluation function. They only
use convex shapes to reduce the time complexity of identi-
fying shape intersections.

Oliveira and Ferreira (1993) discussed two approaches
to the problem. Both are driven by a simulated annealing
algorithm. The first approach is based on a raster repre-
sentation of the shapes to be nested. This approximation
allows the quick generation of solutions but suffers from
inaccuracy, caused by the approximation inherent in the
raster representation. The second approach uses a polygon-
based representation where D-functions (Konopasek 1981)
are used to identify and resolve overlap in the solutions.
Both methods allow overlap in the solutions, the extent of
which is penalised by the evaluation function. The algo-
rithm aims to reduce the overlap to zero, but allows worse
moves based on the cooling schedule applied. The sec-
ond implementation produces feasible results but performs
five times slower than the first, which is unable to produce
results without overlap.

Dighe and Jakiela (1996) extend the work of Smith
(1985), and add geometric extensions to cope with irregular
polygons. Their use of a complex genetic algorithm chro-
mosome which is able to avoid the generation of solutions

with overlap significantly improves the performance of pre-
vious work. Their two-stage approach generates clusters of
shapes in valid and tightly-packed positions, which are then
manipulated through a tree structure by a GA searching for
the best arrangement of those clusters. The generated solu-
tions are evaluated by the area of the rectangular enclosure
around the clusters. This paper presents a polygon assem-
bly routine for the clustering of polygons based on similar
principles to the overlap resolution routine which forms
part of this paper. Dighe and Jakiela’s problems are jig-
saw in nature in that they have a known optimal as they
were generated from a single rectangle through a process
of subdivision.

Jakobs’ (1996) work is aimed at the sheet steel stamp-
ing/punching industry. It develops work on rectangle pack-
ing from Baker et al. (1980), using a GA approach to
improve on the orthogonal results of the earlier work.
The paper then extends this to irregular polygons. Jakobs’
approach uses polygons in their minimum bounding rect-
angle orientation and places them using the orthogonal
method followed by a compaction phase. The compaction
is a stepwise bottom-left algorithm that continues until no
shape can be moved any further toward the bottom or left
of the sheet, respectively. Jakobs discusses the idea of clus-
tering several shapes, finding the minimum bounding rect-
angle of these clusters, and packing them orthogonally with
the use of the same compaction phase to improve the layout
but the results from this approach are not reported.

Bounsaythip and Maouche (1997) utilise an evolution-
ary algorithm approach which improves on the results from
Fujita et al. (1993). The solution uses a comb-nesting algo-
rithm to solve the geometric aspects of the problem. They
approach the problem from a textile industry perspective,
where the practicalities of cutting mean that strips of a user-
defined length across the sheet of fixed width are prefer-
able. This means that direct comparison of results is prob-
lematic. The nesting of shapes is again performed on two
levels: the lower level uses the comb approach to find the
minimum bounding rectangle for two shapes and the upper
level employs an evolutionary algorithm to search through a
tree of possible combinations. Ratanapan and Dagli (1997)
describe an improved approximation method with the aim
of reducing the computational time required to generate
solutions. The authors report high densities achieved during
runs with a higher resolution approximation.

Hopper (2000) was the first practitioner in this area to
pull together numerous examples of problems from dif-
ferent papers and attempt to produce results for all the
gathered data. A genetic algorithm in combination with
bottom-left and bottom-left-fill approaches are reported
in this work for both orthogonal and irregular nesting
problems. Within the orthogonal field, both guillotine and
nonguillotine problems are attempted. The irregular nest-
ing approach also includes results gathered from com-
mercial nesting software, which sometimes outperformed
the presented methods. The work contains information on
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many authors’ approaches. Further to the collection of data
from other authors, usually through a process of scanning
shapes from illustrations in publications, Hopper has added
nine new polygon-based problems to her results. These
problems are randomly generated convex and concave poly-
gons ranging from 15 to 75 in quantity.

Oliveira et al. (2000) approach the irregular nesting prob-
lem with a no-fit polygon solution that produces good
results. They tackle several problems, most of which have
been generated by the authors in previous papers (from the
fabric-cutting industry). They also tackle one problem from
the paper by Blazewicz et al. (1993). They produced new
benchmarks (for the time) for the majority of the problems.
Their approach involves generating an outline polygon for
all shapes already nested onto a sheet. This polygon is then
used in the generation of a no-fit polygon for the next shape
to be nested. The algorithm is controlled with either the
aim of producing a nest with the minimum bounding rect-
angle or minimum length. The shape will be nested in a
nonoverlapping position touching at least one other shape
already on the plate, allowing its addition to the profile
of the shapes on the sheet before beginning the process
again. Oliveira et al. (2000) compare their results against
an implementation of the Albano and Sapuppo (1980) algo-
rithm, and against results from Blazewicz et al. (1993) and
Dowsland and Dowsland (1993). They report improvements
on three of the five attempted problems, the best result
being 6.2% better than any known solution and the worst
being 4% worse than the best-known solution. The work
also provides the data for these problems, in vertex form,
as an appendix.

Two further papers have provided improved results for
the data sets from the papers discussed above. These are
Dowsland and Dowsland (1993) and Gomes and Oliveira
(2002). Dowsland and Dowsland (1993) discuss simple
geometric techniques for the identification of overlaps in
a nested solution and they present several new algorithms
which use the geometric techniques. They also present and
discuss computational results for the various methods that
they develop. One method, in particular, the jostle algo-
rithm, produces excellent results when used to improve
an existing nest. The jostle procedure iteratively shifts all
shapes to the right and then left most boundaries of the
plate. Hole filling is attempted on each move. The method
gradually fills holes in the packing and improves the solu-
tion. A significant benchmark of 63 unit length was set for
the problem SHAPESO using this algorithm. This repre-
sents an improvement of 20.6% on the previous best solu-
tion from Oliveira and Ferreira (1993). Other algorithms
presented in the work also surpass the previous best solu-
tion for SHAPESO but not to the degree of the jostle algo-
rithm, or with the speed of the jostle algorithm which is
able to improve solutions within a “few minutes.”

Gomes and Oliveira (2002) develop shape-ordering
heuristics for an extended nesting algorithm similar to that
in Oliveira et al. (2000). The nesting algorithm is improved

by the introduction of the inner-fit rectangle which is the
interior no-fit polygon for a shape about to be nested and
the rectangle of the sheet on which the nest is gener-
ated. The vertices and intersection points of the inner-fit
rectangle with the separate no-fit polygons of the shapes
already nested, and the shape to be nested, produces all
the nonoverlapping feasible positions for the shape. In
addition to the extension of the geometric techniques, the
paper introduces a 2-exchange heuristic for manipulating
the order of shapes which are then nested onto a sheet.
The paper presents data from numerous experiments which
work from various initial ordering criteria, e.g., random,
longest length, and greatest area, using the 2-exchange
heuristic to develop better solutions over a number of iter-
ations. The results for the improved geometry and new
heuristic set new benchmarks for the shapesl, shapes2,
shirts, and trousers data sets. Only the SHAPESO data set
is not improved upon; the best solution still standing at
63 units from Dowsland and Dowsland (1993). However,
the authors improve on their own best solution for the prob-
lem (Oliveira et al. 2000).

2. The Proposed Approach

In this paper, we propose a new method for implement-
ing a bottom-left-fill packing strategy which utilises new
shape primitive overlap resolution techniques. These tech-
niques allow us to quickly produce high-quality solutions
by eliminating grid-based inaccuracy in the vertical axis
of the packing sheet. Furthermore, the proposed approach
allows problems containing circular arcs and shapes with
holes to be nested. None of the practitioners discussed in
this section present approaches capable of handling nonap-
proximated circular arcs. By combining the new techniques
with both hill climbing and tabu local search methods, we
test the proposed method against the 26 existing problems
from the literature, then introduce and set benchmarks for
10 new problems, five of which contain circular arcs and
three that include shapes with holes.

2.1. Motivation

There have been many different approaches for producing
solutions for the irregular two-dimensional stock-cutting
problem. It should be noted that, in general, the approaches
that have achieved the best-known results have used a
no-fit polygon-based technique to generate potential place-
ment positions and/or test for overlaps (Gomes and Oliveira
2002). While the no-fit polygon is a powerful geomet-
ric technique, there are several issues that make it lim-
ited in scalability for industrial applications. No-fit polygon
techniques are notorious for the large quantity of degen-
erate cases that must be handled to be completely robust.
There are several well-known cases for which no-fit poly-
gon algorithms can fail which include the following: hole
filling, shapes with concavities, and jigsaw-type shapes,
where one shape fits exactly into a concavity from another
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shape. Several different techniques have been implemented
to generate no-fit polygons: sliding shapes using geome-
try intersection tests (Mahadevan 1984), convex partition-
ing of concave shapes (Avnaim and Boissonnat 1987),
star-shaped region decomposition of concave shapes (Li
and Milenkovic 1995), using Minkowski sums (Daniels
and Milenkovic 1997, Flato and Halperin 2000, Agarwal
et al. 2002, Bennell et al. 2001), and through the use of
d-functions (Stoyan et al. 1996, Stoyan and Yaskov 1998,
Stoyan et al. 2004). However, as far as the authors of this
paper are aware, there have not been any implementations
of the no-fit polygon that can successfully handle true arc
geometry. Therefore, most methods and benchmark prob-
lems have approximated arcs using a sequence of lines. The
problem with approximations is that there is an accuracy
to time trade-off. That is, if we model the arc with fewer
lines, then we reduce the accuracy of the approximation but
the shape is less complex, and if we increase the quantity
of lines, then we improve accuracy but make the resultant
shape more complex. When performing translation or rota-
tion operations, obviously shapes with a larger number of
lines will take longer to manipulate than shapes with fewer
lines. Ultimately, there will always be inaccuracy when
modelling arcs as a series of lines, and in adding more
lines to our approximation we increase the time required to
operate on that approximation. Our geometry implementa-
tion is able to model shapes composed of both lines and
nonapproximated arcs and is able to conduct fast shape
intersection operations to an accuracy of 10~ metres. The
development of such a geometry system is a complex and
time-consuming undertaking, and the authors would like to
suggest that other practitioners may like to consider general
geometry libraries such as LEDA and CGAL. Furthermore,
continuing research is being conducted into computation-
ally exact geometry systems. However, the additional accu-
racy obtained through computationally exact approaches
is usually at the detriment of computation times. Further
information on exact geometry systems can be found in
Yap (1997) and rounding considerations in (Guibas and
Marimont 1995, Goodrich et al. 1997, Milenkovic 2000,
Halperin and Packer 2002).

In real-world industrial settings, and especially for pro-
filing (sheet metal cutting) within the steel-cutting industry,
it is imperative that we are able to handle arcs, concav-
ities, and holes. These requirements mean that the no-fit
polygon techniques that we have discussed are not cur-
rently suitable. Traditionally, industry has used a bottom-
left-fill approach based on an iterative grid approximation
in which arcs are represented by approximated lines. The
grid approach aims to reduce the infinite number of poten-
tial positions (due to the continuous nature of space) to a
fixed set of potential locations. The algorithm works as fol-
lows: when placing a shape on the sheet, we try the first
grid location (bottom-left point) and then check for inter-
section with shapes already assigned to the sheet. If there
are no intersecting shapes, then the shape is assigned to the

sheet in its current position and we start from the first grid
location with a new shape. However, if the current shape
does intersect with another shape on the sheet, then we
move it to the next grid position and test for intersection
again continuing the process until a valid position is found.
As we can see, this also means that using a lower reso-
lution grid will, in the general case, adversely affect the
quality of the solution because shapes are placed in later
positions than they could otherwise be placed if a higher
resolution grid was used. Once again, we can see that this
causes an accuracy to time trade-off. The approach that
we describe in the next section is not restricted to moving
shapes by a fixed translation when intersecting with another
shape, unlike the iterative grid approach. This is achieved
by using the underlying geometric primitives of intersecting
shapes to resolve the overlap. This has two main advan-
tages: first, we can resolve intersecting shapes so that they
touch exactly and, second, this accuracy is achieved in a
smaller number of steps than the iterative grid mechanism.
Although the grid method and our proposed approach fol-
low a similar conceptual procedure when placing shapes,
our proposed approach has both a faster and more accurate
method of producing solutions.

Figure 1 shows the potential locations for two iterative
grid approaches with differing resolutions and also our pro-
posed overlap resolution method. In the two iterative grid
approaches, there are a finite number of locations for which
shapes may be placed. The iterative grid approach of Fig-
ure 1(b) has a higher resolution than that in Figure 1(a)
and therefore has more potential placement locations and
should result in more compact packings. The variable shift
approach of Figure 1(c) has an infinite number of potential
locations due to its continuous y-axis property and there-
fore has more chance of producing compact packings.

Figure 1.  (a) Low resolution grid approach, (b) high
resolution grid approach, and (c) variable

shift approach.
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3. The New Bottom-Left-Fill Algorithm

In this section, we explain the techniques used to resolve
overlap. The overall algorithm can be found in §3.4.

3.1. Geometrical Definitions

To illustrate our new packing method, we first define what
constitutes a “primitive,” “loop,” and “shape.” For the pur-
poses of our discussions, a “primitive” is defined as either
an arc or a line. A line is represented by its start and end
points, whereas an arc is circular and is represented through
a centre point, radius, start angle, and offset angle. We
define a “loop” as an anti-clockwise closed list of primi-
tives, where each primitive’s end point is the start point of
the next primitive. We do not allow nonsimple polygons
(O’Rourke 1998) as we are only interested in shapes that
can be physically cut from a sheet of material. A shape is
defined as one outer loop and O...n internal loops which
can be thought of as holes in the shape. Most of the prob-
lems from the current literature do not include shapes with
either arcs or holes and numerous examples only contain
convex shapes, where it is easier to detect overlaps. Fur-
thermore, it is necessary for our algorithms to cope with
floating-point data to establish high accuracy and realism
on real-world problems. Our geometry library can cope
with these extra complications. Figure 2 demonstrates an
instance of overlap between two shapes, A and B. We can
see that arc primitive a2 intersects with line primitive b4
and that the line primitives a3 and b3 also intersect.

3.2. Resolving Overlapping Primitives

This section shows how we can use the information
about intersecting primitives to accurately resolve over-
lap between shapes. There are four possible cases that
must be handled to resolve intersecting primitives. One of
these primitives is part of the shape that we are trying to
place, called the “free shape,” and the other is part of a
shape that has already been placed on the sheet, called the
“locked shape.” The techniques we describe in the follow-
ing sections involve calculating the positive vertical dis-
tance required to translate the free shape such that the

Figure 2. Overlapping shapes.

a4

bl

two primitives no longer intersect. While this resolves the
overlap between the two intersecting primitives, the two
shapes may still not be fully resolved in that other prim-
itives belonging to the shapes may also intersect or the
free shape may be entirely contained in the locked shape
(discussed in §4.3). However, repeated application of these
techniques will always resolve overlapping shapes with the
smallest positive vertical distance required. There are four
intersection cases which must be handled: (1) two lines,
(2) line and arc, (3) arc and line, and (4) two arcs. It should
be noted that throughout all of the cases, the locked shape’s
intersecting primitive, which we call the “locked primitive,”
has already been assigned to the sheet and its position may
not change, whereas the intersecting primitive belonging to
the shape that we are trying to place is termed the “free
primitive.” We will explain the steps required in resolving
the intersections for each of these cases, but first introduce
some terminology. The x span of a primitive can be thought
of as the horizontal span of its bounding rectangle. Another
concept we use is an “infinite vertical line.” This is a verti-
cal line that spans from negative infinity to positive infinity
along the y-axis. The notations used within the diagrams
and descriptions of the following subsections are presented
in Table 1.

Having established the required terminology and nota-
tion, we explain each of the intersection cases outlined
above.

3.2.1. Line and Line (Free Line Moving Through
Locked Line). To resolve any two intersecting lines, we
find the end points of each line, A and B, that are within the
x span of the other. These points are known as the points
in range (pir). We pass infinite vertical lines through each
of the pir originating from line A and find the intersection
points of these lines with line B. We calculate the distance
between each pir from line A and its corresponding inter-
section point on line B by using formula (1):

distancepirA = intersectionPointB.y — pirA,. (1)

We also need to pass infinite vertical lines through each
of the pir originating from line B to find their intersection

Table 1. Notation for diagrams and descriptions.
Symbol Description

Al — A2  Primitive A (the free primitive)

Al, A2 Start point (A1) and end point (A2) of primitive A
Bl — B2 Primitive B (the locked primitive)

Bl1, B2 Start point (B1) and end point (B2) of primitive B
CP Centre point of an arc primitive

cl...cn Intersection points

tl, t2 Tangent points of a line on an arc

Infinite vertical line (short-dashed vertical line)

Perpendicular to a line primitive (long-dashed line)
1 Translation used to resolve overlap
(bold vertical arrow)
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points with line A. A different formula, formula (2), is used
to calculate the distances when the pir originates from the
locked primitive (line B):

distancepirB = pirB.y — intersectionPointA . 2)

For our resolution method, the overlap must always be
resolved by translating line A in the positive vertical direc-
tion. The distance formulae, given in formulas (1) and (2),
may yield negative results, therefore, these results are not
valid positive vertical movements and are eliminated. These
distance formulae also form part of our strategies for
resolving other cases. For intersecting lines, there always
exists one valid positive result which can be used to verti-
cally translate line A, thus resolving the overlap. An exam-
ple of this approach is shown in Figure 3.

Here, point Al is within the x span of B1 — B2, and
B2 is within the x span of A1 — A2. We label these points
pirA and pirB, respectively (see Figure 3(a)). We pass
an infinite vertical line through pirA to create intersection
point cl and through pirB to create intersection point c2
(see Figure 3(b)). The distance between pirA and cl is cal-
culated using formula (1), and the distance between pirB
and c2 is calculated using formula (2). In this example, the
first distance yields a positive result while the second is
negative. Formula (3) shows how we might combine the
distance formulae (1) and (2) into a “max” function call:

yTranslation = max(cl.y — pirA,, pirB.y —c2). 3)

The result of formula (3) is shown pictorially as the bold
arrow in Figure 3(b). Figure 3(c) shows how the overlap has
been resolved by vertically translating line A by this posi-
tive translation. In practice, all of the primitives of shape A
are translated, not just the line involved in the overlap.

Figure 3. Resolution of intersecting line primitives.
B1 B1
A2
B2 (pirB)
Al (pirA)
(@)
A2
Bl
Al
B2

©)

Figure 4. A line and arc example where points in range
are insufficient to resolve overlap.
[
11
11
. 11
B1 (pirB1) EISI (pirB1)
A2 11e0 A2
*
Cp B2 (pirB2
B2 (pirB2) B2 (pirB2)
(|
[
Al Al n
(a) (b
A2
*
CP
Al

(©)

3.2.2. Line and Arc (Free Line Moving Through
Locked Arc). In this case, where a line is intersecting
with an arc, we must find the positive vertical transla-
tion with which the line should be translated to completely
resolve its intersection with the arc. As with the Line and
Line case (§3.2.1), we can utilise the points in range of
each primitive. However, because an arc is involved, we
may also need to use tangent points between the arc and
line primitives. Figure 4 shows an example where applying
the points in range method alone is not sufficient to resolve
the overlap.

Figure 4(a) shows that the only points within range are
B1 (pirB1) and B2 (pirB2) from the arc (both end points
of the line, Al and A2, are outside the x span of the arc
and, therefore, are not in range). Once again, an infinite
vertical line is passed through each pir and is intersected
with the line A1 — A2. This creates intersection points cl
from pirB1 and c2 from pirB2 (see Figure 4(b)). The dis-
tance between each pir and its respective intersection point
on the other primitive is calculated using the distance for-
mulae (1) and (2). In this example, both pir originate from
the locked primitive (arc B) and therefore both distances
are calculated using formula (2). This yields one positive
result that is shown by the bold arrow in Figure 4(b). Fig-
ure 4(c) shows that this vertical translation is not sufficient
to resolve the overlap. Figure 5 shows how we can resort
to the tangent points to fully resolve the overlap.

The tangent points can be found by translating the per-
pendicular (or “normal”) of the line such that it passes
through the centre point of the arc, CP, as shown in Fig-
ure 5(a). The intersection of the perpendicular with the arc
gives the tangent point(s), t1 and 2 (see Figure 5(b)). These
tangent points are then used in a similar manner to the
point in range technique in that infinite vertical lines are
passed through each tangent point and intersected with line
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Figure 5. Using tangent points to resolve overlap with
the line and arc case.
(a)
\
\
A2
Bl
y
\CP
\ B2
Al \

Al — A2 to give points cl and c2. The translation dis-
tances can then be calculated by substituting each tangent
point, t1 and t2, for pirB into formula (2). This gives

distanceTangentB

= tangentB.y — intersectionPointA, . 4

In the example, it can be seen that t1 would yield a pos-
itive translation, whereas t2 would give a negative transla-
tion distance. Therefore, translating the line A1 — A2 by
the distance given by tl will resolve the overlap (see Fig-
ure 5(c)). It should be noted that if the intersection of the
perpendicular line with the arc yields no tangent points or
the tangent points result in negative translation distances
using formula (4), then the point in range technique must
be able to resolve the overlapping primitives.

3.23. Arc and Line (Free Arc Moving Through
Locked Line). This case, where we have an arc mov-
ing through a locked line, involves a similar approach to
the free line and locked arc case. Once again, the same
technique for points in range applies and, therefore, will
not be repeated here. However, because the arc is now
the free primitive (arc A1 — A2) and the line is now the
locked primitive (line B1 — B2), we must substitute calcu-
lated tangent points and their intersections into formula (1)
instead of formula (2) (as was the previous case in §3.2.2).
An example of this is shown in Figure 6.

Figure 6(a) shows that points A2 and B1 are the points
in range, pirA and pirB. However, both of the pir produce
negative translations (using formulae (1) and (2)), thus they
cannot be used to resolve the intersection. We must resort
to utilising the tangent points method again. In the example,
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Figure 6. Resolving overlap using the tangent point
method with the arc and line case.
(a) ®
\ i
A A2 (pirA) '

B1 (pirB)

©

A2

B2

B1

only one tangent point is found because the perpendicular
line intersects the arc in only one place. Figure 6(b) shows
that an infinite vertical line is passed through the tangent
point, tl, and is intersected with line Bl — B2 to produce
point cl. The translation distances can then be calculated
by substituting tangent points for pirA in formula (1). This
gives

distanceTangentA

= intersectionPointB.y — tangentA . (5)

Using formula (5) in our example yields a positive trans-
lation distance as shown by the bold arrow in Fig-
ure 6(b). The intersection is resolved by translating the arc,
Al — A2, by this vertical distance as shown in Figure 6(c).
Once again, if the tangent points method does not find tan-
gent points or does not yield a valid positive result, then
the points in range method will be able to resolve fully.

3.24. Arc and Arc (Free Arc Moving Through
Locked Arc). The arc through arc case initially uses the
point in range technique. We shall not explain this in detail
as it is identical to the technique used throughout the pre-
vious cases. For the situation where the point in range
method is unable to resolve the intersection between the
two arc primitives, we use two circle tangent methods that
utilise the radii of the arcs and the Pythagorean Theorem.
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Figure 7. Using the Pythagorean Theorem to resolve Figure 8. Using the Pythagorean Theorem to resolve
arc and arc intersections (method 1). arc and arc intersections (method 2).
@  CPb
B2 i Bl

An example of intersecting arcs in opposite orientations is
shown in Figure 7.

Given that rA is the radius of the free arc A1 — A2, and
rB is the radius of the locked arc B1 — B2, we can make
the following observations:

From Figure 7(a), when the arcs are intersecting, (rB —
rA) <h < (rA +1B), and

From Figure 7(b), when the intersection has been
resolved, h' = (rA +rB),
therefore,

yTranslation = (dy’ — dy),
where dy’ = sqrt((h’ xh’) — (dx * dx)). (6)

This intersection can then be resolved by translating arc A
by the result of formula (6).
A further arc and arc case we may have to solve involves
two arcs of similar orientation as shown in Figure 8.
Given that rA is the radius of the free arc A1 — A2, and
1B is the radius of the locked arc B1 — B2, the following
observations can be made:

From Figure 8(a), when the arcs are intersecting,
(tB—rA) <h < (rA+1B), and

From Figure 8(b), when the intersection has
been resolved, h' = (rB —rA),

therefore,

yTranslation = (dy — dy’),
where dy’ = sqrt((h’ xh’) — (dx xdx)). (7)

If the result of formula (7) is positive, applying this ver-
tical translation to arc A will resolve the overlap. It can be
seen that, whereas the first circle tangent resolution method
translates the free arc to the exterior of the locked arc circle,
the second method translates the free arc to be inside of the
arc circle. This is imperative for the correct manipulation
of both convex and concave arcs.

b CPb
() A2

3.2.5. Intersection Resolution Summary. We have
detailed the four possible intersection cases and have shown
that each case can be resolved by using the points in range
method by using formulae (1) and (2). This will always
resolve the intersection where two lines are involved (see
formula (3)). If arcs are involved, the point in range method
may not be sufficient to resolve intersections fully, and
supplementary tangent-based techniques may be employed.
When an arc and line are intersecting, we use the perpen-
dicular of the line primitive, displace it through the arc’s
centre point, and intersect it with the arc to find tangent
points. Where the arc is the “locked primitive” and the
line is the “free primitive,” we use formula (4) to calcu-
late the vertical translation required. Formula (5) is utilised
when the arc is the “free primitive” and the line is locked.
The final case, where two arcs are intersecting, introduced
two circle tangent methods that can resolve intersections.
The first method is calculated by formula (6) and results
in the respective arc’s parent circles being separate. The
second method results in the respective free arc’s parent
circle being contained by the locked arc’s parent circle
(formula (7)). The least expensive of the cases is where
two lines are involved, as no extra tangent calculations are
required. This presents optimisation possibilities (which we
include in our implementation) whereby, if there are many
intersecting pairs of primitives between two shapes, we
resolve the line only cases first. Although repeated applica-
tions of these techniques may be necessary to fully resolve
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the overlap between two shapes, this is more efficient and
accurate than the iterative grid method outlined in §2.1.

3.3. Contained Shapes

‘We now detail the special invalid case in which one shape is
completely contained within another. This requires another
resolution strategy as there are no intersecting primitives.
During the nesting process, it is possible that a shape may
become entirely contained within other already assigned
shape. In this circumstance, there are no intersecting primi-
tives to resolve so another approach is required. As the free
shape A is contained by locked shape B, we use the lowest
point on shape A, IpA, through which we then pass an infi-
nite vertical line. The resulting intersection of the infinite
vertical line and shape B gives us points cl,...,cn. The
translation we perform is defined by

yTranslation = min(cl.y —IpA , ..., cn.y —IpA)),
where (ci.y — lpA),) >0,i=1,...,n. (8)

Figure 9 shows an instance where employing this tech-
nique does not fully resolve overlap between the shapes.
However, shape A is no longer contained by shape B
and there are intersecting primitives once more allowing
the techniques for resolving primitive intersection to be
employed. This process continues until the shape intersec-
tion is completely resolved.

In resolving shape intersections, the vertical translations
employed may cause the free shape to intersect with other
already assigned shapes. These intersections must also be
resolved until the shape does not intersect and can be
assigned to the sheet, or until the shape has moved off the
top of the sheet. In the latter case, the shape must be trans-
lated back to the bottom of the sheet in the next x coordi-
nate, and the process continues until all of the shapes have
been placed.

Figure 9. Contained shape where overlap is not fully

resolved.

c4

I
|
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3.4. Summary—The Bottom-Left-Fill Algorithm

Given the functionality outlined in this section, we can de-
scribe the bottom-left-fill process using the following pseudo
code:

Input Sequence: shape[l..m][1..n],
where m = number of different shapes,

n =number of rotations for given shape[m]
sheetshape[1..q], where array holds placed shapes on the sheet
g = total number of shapes assigned to the sheet
x = current x position
resolution = x increment step value
Begin
q=1;

// place first shape
Place shape[1][1] at bottom left of sheet (0, 0);
sheetshape[g] = shape[1][1];
g++; // increment shapes added counter
for (i=2; i<m; i++) // start remaining shape placement
{
for (j=1j<n j++)
{
place shape[i][] at bottom left of sheet;
// find feasible position
while (Overlap(shapes|i][ /], sheetshape[1..4]))
{

// pack each allowable rotation, j

Get Intersecting Primitives of shape[i][;] and
sheetshape[1..q];

Resolve Overlapping primitives;

if (shape[i][/] off top of sheet)

{

x = x +resolution;
place shape[i][,] at (x, 0);
}
}

if (shape i in orientation j is the least costly
orientation seen so far)

{

// record best orientation seen so far
best orientation = j;

}
}

// assign shape i in best orientation to sheet
sheetshape[g] = shapel[i][best orientation];
q++;

}

Return Evaluation (total length of packing);
End

This bottom-left-fill placement algorithm takes a sheet
size and an input sequence of shapes and their allowable
rotations. The algorithm progresses packing by placing the
first shape in the lower left corner of the sheet in its most
efficient orientation (the orientation that yields the smallest
bounding rectangle width within the set of rotation crite-
ria). With subsequent shapes, if a copy of this shape has
not been placed on the sheet, the shape starts at the lower
left corner of the sheet. If a copy of the shape has previ-
ously been assigned to the sheet, then the new copy starts
from where the previous copy of the shape was placed.
A valid location for placement is found by testing for inter-
sections and containment. If the shape is not intersecting or
contained by (or containing) other already placed shapes,
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then the location of the shape is valid and therefore can be
assigned to the sheet. When a shape is in a position that
intersects with already assigned shapes, we use the resolu-
tion techniques described earlier in this section to resolve
the overlap in a positive vertical direction (up the y-axis of
the sheet). If resolving overlap results in the shape moving
off the top of the sheet, then it is returned to the bottom
of the sheet and is incremented along the positive x-axis
by a certain value (known as the resolution). The process
continues as before with overlap/intersection tests and res-
olution until the shape does not intersect and can be placed.
Packing is completed when all shapes have been assigned
to the sheet and the solution can be returned to the user.
Shapes are always packed in the order they appear in the
input sequence.

3.5. Local Search

It is usual to apply some sorting criteria to the shapes of a
given problem before packing, often by decreasing length
or area. Although these often yield solutions of reasonable
quality, further improvements can be found if a local search
mechanism is applied to generate new input orderings. This
approach was used during our experiments in §5 by apply-
ing hill climbing and tabu search for both area and length
pre-sorted arrangements.

We use a standard hill-climbing algorithm during our
experiments which simply applies operators to the current
solution to find a neighbour of increased quality. If an
improved neighbour is found, it is adopted as the current
solution and the search continues. If the neighbour is not
an improvement on the current solution, it is discarded and
the search continues with other neighbours. The best solu-
tion is returned at the end of the search. The tabu search
mechanism implemented for our experiments is similar in
nature to that described in Glover (1993). The process gen-
erates a given number of neighbours and moves to the best
solution in this subset of the neighbourhood. This best solu-
tion is then used to generate the next set of neighbours and
the cycle continues. The use of a tabu list means that we
will not revisit recently seen solutions within a given list
length. Throughout this paper, we use a neighbourhood size
of five solutions and a tabu list length of 200 solutions.
These values were chosen from a set of possible values
during initial experiments. The operators used throughout
both search techniques are 1 Opt, 2 Opt, 3 Opt, 4 Opt, and
N Opt. 1 Opt removes a randomly chosen shape and inserts
it at a random location in the sequence. 2 Opt swaps two
randomly chosen shapes in the order, although not two of
the same type as this would produce the same result. This
is extended to 4 Opt, where four randomly selected shapes
are swapped. N Opt selects a random number of shapes
to swap and is likely to produce a radically different solu-
tion, and thus diversify the search. The solution operator
is chosen by means of a random number selected, within
bounds, that is then compared to a weighted scale, which
gives the particular operator to be used. Each operator has

a different chance of selection—from 1 Opt which has the
largest chance of being selected, to N Opt, which has a
much lower chance of being selected. This is because the
less radical operators allow us to concentrate our search
and the highly radical operators, e.g., N Opt, enable us to
escape local optima.

The following pseudocode shows how both of our local
searches interface with bottom-left-fill:

INPUT Problem Shapes, Quantities and Allowable
Rotations, Sheet Size
current.ordering = Sort Ordering(decreasing area,
decreasing length)

Begin
current.evaluation = Bottom-Left-Fill(current.ordering);
best = current;
// Stopping criteria can be based on the numbers of iterations

or time
while (!Stopping Criteria)
{

opt = Select Operator (1, 2, 3, 4, N Opt);

if (TABU)

{

for (i =0; i <neighbourhood size; i++)
{
neighbour(i].ordering
= Generate NotTabu Neighbour(current ordering, opt);
neighbour(i].evaluation
= Bottom-Left-Fill(neighbour[i].ordering);

}

current = GetBestNeighbour(neighbour( ]);

}
else if (HILL CLIMBING)
{

neighbour.ordering

= Generate Neighbour(current.ordering, opt);
neighbour.evaluation = Bottom-Left-Fill(neighbour.ordering);
if (neighbour.evaluation < current.evaluation)

{ current = neighbour; }

}

if (current.evaluation < best.evaluation) { best = current; }

}

return best;
End

4. Benchmark Problems

4.1. Benchmark Problems from the Literature

To compare our new bottom-left-fill algorithm with the
state of the art, we have gathered all the relevant test prob-
lems from the literature (of which we are aware). Some of
these problems were first collected by Hopper (2000), and
are now featured on the EURO Special Interest Group on
Cutting and Packing (ESICUP) website (http://www.apdio.
pt/sicup/).

Hopper (2000) introduced 10 new problems, nine of
which were randomly generated and consist of varying
quantities of similar polygonal shapes (note that for these
nine “poly” problems, it is necessary to rotate the shapes
into their minimum bounding rectangle orientation before
applying the problems’ rotation criteria). Oliveira et al.
(2000) present five new problems, three of which are drawn
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Table 2. Length evaluated benchmark problems from the literature.
Problem No. of Rotational Sheet Best
Original authors name shapes constraints width length Best-result reference
Blazewicz et al. (1993) Blaszl1 28 0, 180 Absolute 15 27.3 Gomes and Oliveira (2002)
[called SHAPES?]
Ratanapan and Dagli (1997)  Dagli 30 90 Incremental 60 65.6 Hopper (2000) [using NestLib]
Fujita et al. (1993) Fu 12 90 Incremental 38 34 Fujita et al. (1993)
Jakobs (1996) Jakobsl 25 90 Incremental 40 13.2 Hopper (2000) [using SigmaNest]
Jakobs (1996) Jakobs2 25 90 Incremental 70 28.2 Hopper (2000) [S. annealing]
Marques et al. (1991) Marques 24 90 Incremental 104 83.6 Hopper (2000) [Naive evolution]
Hopper (2000) PolylA 15 90 Incremental 40 14.7 Hopper (2000) [using NestLib]
Hopper (2000) Poly2A 30 90 Incremental 40 30.1 Hopper (2000) [using NestLib]
Hopper (2000) Poly3A 45 90 Incremental 40 40.4 Hopper (2000) [using NestLib]
Hopper (2000) Poly4A 60 90 Incremental 40 56.9 Hopper (2000) [using NestLib]
Hopper (2000) Poly5A 75 90 Incremental 40 71.6 Hopper (2000) [using NestLib]
Hopper (2000) Poly2B 30 90 Incremental 40 33.1 Hopper (2000) [using SigmaNest]
Hopper (2000) Poly3B 45 90 Incremental 40 41.8 Hopper (2000) [using NestLib]
Hopper (2000) Poly4B 60 90 Incremental 40 52.9 Hopper (2000) [using NestLib]
Hopper (2000) Poly5B 75 90 Incremental 40 63.4 Hopper (2000) [using NestLib]
Hopper (2000) SHAPES 43 90 Incremental 40 63 Hopper (2000) [Simple heuristic]
Oliveira and Ferreira (1993) SHAPESO 43 0 Absolute 40 63 Dowsland and Dowsland (1993)
Oliveira and Ferreira (1993) SHAPES|1 43 0, 180 Absolute 40 59 Gomes and Oliveira (2002)
Oliveira and Ferreira (1993)  SHIRTS 99 0, 180 Absolute 40 63.13  Gomes and Oliveira (2002)
Oliveira et al. (2000) SWIM 48 0, 180 Absolute 5,752 6,568 Hopper (2000) [using NestLib]
Oliveira et al. (2000) TROUSERS 64 0, 180 Absolute 79 24575  Gomes and Oliveira (2002)
Table 3. Density evaluated benchmark problems from the literature.
Problem  No. of Rotational Sheet Best
Original authors name shapes constraints width density (%) Best-result reference
Albano and Sapuppo (1980) Albano 24 90 Incremental 4,900 86 Hopper (2000) [S. annealing]
Blazewicz et al. (1993) Blasz2 20 90 Incremental 15 68.6 Blazewicz et al. (1993)
Dighe and Jakiela (1996) Dighel 16 90 Incremental 100 72.4 Hopper (2000) [using NestLib]
Dighe and Jakiela (1996) Dighe2 10 90 Incremental 100 74.6 Hopper (2000) [Gen. algorithm]
Bounsaythip and Maouche (1997)  Mao 20 90 Incremental 2,550 71.6 Hopper (2000) [Gen. algorithm]

from the textile industry. Blazewicz et al. (1993), Jakobs
(1996), and Dighe and Jakiela (1996) introduce two prob-
lems each to the collection. The remaining problems have
been contributed by different practitioners. Table 2 shows
21 problems and provides the best-known results using a
length-based evaluation. Table 3 contains five problems,
where the best-known solution is evaluated by density
measures.

4.2. New Benchmark Problems

We have created 10 new benchmark problems for the irreg-
ular stock-cutting problem to encourage further research
and greater comparison between current and future meth-
ods. Table 4 gives the details of these new problems.
The new benchmark data can be found in Appendix C of
the Online Collection at http://or.pubs.informs.org/Pages/
collect.html.

Line and Arc—Profilesl to Profiles5. These new
problems introduce arcs and holes to the set of bench-
mark problems. Some of these shapes, in particular Pro-
filesl and Profiles2, have been chosen from a library of

standard shapes within the sheet metal profiling industry.
All of these problems contain at least one shape consist-
ing of one or more arcs and their optimal solutions are not
known.

Line Only—Profiles6 to Profiles10. A further five
problems have been created, some involving shapes with
holes, which can be tackled by nonarc implementations.
The optimal solutions are not known with the exception of

Table 4. New benchmark problems.

Problem No. of Rotational Sheet Optimal
name shapes constraints width known
Profiles1 32 90 Incremental 2,000 No
Profiles2 50 90 Incremental 2,500 No
Profiles3 46 45 Incremental 2,500 No
Profiles4 54 90 Incremental 500 No
Profiles5 50 15 Incremental 4,000 No
Profiles6 69 90 Incremental 5,000 No
Profiles7 9 90 Incremental 500 Yes
Profiles8 18 90 Incremental 1,000 Yes
Profiles9 57 90 Incremental 1,500 No
Profiles10 91 0 Absolute 3,000 No
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Density measures: (a) Straight line density
measure (Density1), (b) Hopper (2000) den-
sity measure (Density2).

Figure 10.

(®)

Profiles7 and Profiles8, which are “jigsaw” problems where
the optimal length is 1,000 units for both problems. Pro-
files9 is a novelty data set involving a subset of letters from
the English alphabet. Profiles10 combines polygons from
numerous literature benchmark problems.

5. Experiments

For the purposes of our experiments, we use our proposed
bottom-left-fill placement algorithm (§3.4) and local search
techniques (§3.5) to generate input shape orderings. Dur-
ing the search process, the generated solutions are eval-
uated by the total length of the packing. We also record

two different density measures: the first is a simple straight
line density (Densityl), while the second density measure,
used by Hopper (2000), is based on the union of all indi-
vidual shape bounding rectangles. This allows us to use a
nonrectangular final density measurement (Density2). Both
methods are pictured in Figure 10, where the thick line
represents the containing area.
Density can then calculated by

density = total shape area /containing area.

All of the experiments conducted in this paper were per-
formed on a PC with a 2 GHz Intel Pentium 4 processor
and 256 MB RAM.

5.1. Experiments on Literature Benchmark
Problems

We have divided the literature problems into two groups:
(1) those for which the best-known result is measured using
overall packing length, and (2) those which have been eval-
uated using density measures. In our results, we record
both measures for the two different data sets to allow eas-
ier comparison for future researchers. Each problem was
run 10 times using 100 iteration runs for both length and
area initial orderings (resulting in a total of 40 runs for
each problem). Due to space limitations, we only show a
summary of the best results from these 40 runs in Table 5,
where we detail the average times per nest, time taken

Table 5. Summary of the best results using 100 iteration runs.
Best result

Best Time/Nest  Time to Percentage
Problem literature Length Densityl (%)  Density2 (%) (s) best (s)  improvement (%)
Blasz1 27.3 27.80 77.7 81.0 0.32 21 —1.83
Dagli 65.6 60.57 83.7 89.0 2.04 188.8 7.66
Fu 34 32.80 86.9 90.8 0.24 20.78 353
Jakobsl 13.2 11.86 82.6 92.6 0.74 43.49 10.17
Jakobs2 28.2 25.80 74.8 83.3 2.13 81.41 851
Marques 83.6 80.00 86.5 89.3 0.25 4.87 4.31
PolylA 14.7 14.00 73.2 78.2 0.36 12.48 4.76
Poly2A 30.1 28.17 72.8 77.5 1.24 120.56 6.42
Poly3A 40.4 41.65 73.8 75.5 2.01 210.07 -3.10
Poly4A 56.9 54.93 74.6 75.9 243 203.17 347
Poly5SA 71.6 69.37 73.9 75.7 5.04 475.63 312
Poly2B 33.1 30.00 75.4 71.5 2.50 179.86 9.36
Poly3B 41.8 40.74 74.9 77.1 4.26 417.67 2.54
Poly4B 52.9 51.73 74.8 77.4 8.24 95.66 2.20
Poly5B 63.4 60.54 75.8 77.2 14.70 676.61 4.51
SHAPES 63 59.00 67.6 69.1 0.60 31.36 6.35
SHAPESO 63 66.00 60.5 62.6 0.93 21.33 —4.76
SHAPES|1 59 60.00 66.5 68.9 0.82 2.19 —1.69
SHIRTS 63.13 63.80 84.6 87.3 4.99 58.36 —1.06
SWIM 6,568 6,462.40 68.4 71.6 12.39 607.37 1.61
TROUSERS 245.75 246.57 88.5 90.1 7.89 756.15 —0.33
Albano 86.0% 10,292.90 84.6 86.5 1.18 93.39 0.5
Blasz2 68.6% 25.28 74.5 79.9 0.16 10.94 11.3
Dighel 72.4% 1,292.30 77.4 78.9 0.22 8.87 6.5
Dighe2 74.6% 1,260.00 79.4 84.3 0.10 7.12 9.7
Mao 71.6% 1,854.30 79.5 82.9 0.38 29.74 11.3
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“SWIM” 100 iteration solution (6,462.4
units, 607 seconds).

Figure 11.

to find the best solution, and the percentage improvement
on the best-known result from the literature. For problems
where we have improved on the best-known solution, we
have marked the percentage in bold. For the full results,
see Tables D1 and D2 in online Appendix D.

From our initial experiments, the proposed approach has
improved on 20 of the 26 available literature problems.
The best solution for data set SWIM was obtained in
607 seconds and is shown in Figure 11. The average overall
improvement over the 26 problems is slightly over 4% and
is nearer 6% for the 20 problems where we have found the
new best solution. On average, the best solutions have been
obtained within a few minutes of execution time, although
for many of the problems only a few seconds are necessary
due to the high performance of the presented algorithm.
The average time per nest compares favourably with other
literature approaches utilising the no-fit polygon. For exam-
ple, Gomes and Oliveira (2002) state that a solution for the
problem SHAPES] can be generated within 6.18 seconds
on a 450 MHz CPU, in comparison with 0.82 seconds for
a solution generated by our new nesting method.

We then extended our experiments on the problems for
which we have not set new benchmarks, namely, Blaszl,
SHAPES1, SHIRTS, and TROUSERS. For these extended
runs, we have used the durations 551.73 s, 2,019.77 s,

“TROUSERS” extended run solution (243.4
units, 3,612 seconds).

Figure 12.

6,367.57 s, and 13,613.67 s, respectively, as our upper lim-
its for each run, as noted by the authors who presented
the current benchmarks for these problems (Gomes and
Oliveira 2002). For the problems SHAPES and Poly3A, we
simply extended the experiment to 1,000 iterations per run,
as guidance on search times is not available in the litera-
ture. We then ran these extension experiments for a further
10 runs. Table 6 shows the best results of these runs, includ-
ing the time to best solution, the method that generated that
solution, and percentage improvement on the best-known
solution.

Of the six extended experiments, we set five new
benchmarks for Blasz1, Poly3A, SHAPES1, SHIRTS, and
TROUSERS. For the remaining problem, SHAPESO, our
solution matches the work of Gomes and Oliveira (2002)
(length of 65 units) but has not reached the best-known
solution of 63 units (Dowsland and Dowsland 1993).
Therefore, of the 26 problems from the literature, using our
new nesting algorithm, we have produced 25 new best solu-
tions. This is the first time any research paper in this area
has attempted such a broad range of problems with such
success. The solution obtained for TROUSERS is shown
in Figure 12. All best solutions obtained for the literature
problems are shown in online Appendix A.

5.2. Experiments on New Benchmark Problems

The next set of experiments we conducted involved setting
benchmarks for our new problems, Profilesl—Profiles10.
Each problem was run 10 times for 30 minute durations
with both hill climbing and tabu search (length and area
initial orderings) resulting in a total of 40 runs. Once again,
due to space limitations, the full results of these experi-
ments can be found in Table D3 in online Appendix D.

Table 6. Summary of the results from the extended experiments.
Best result )
Best Average Time to Percentage

Problem literature length Length  Densityl (%) Density2 (%) Method best (s) improvement (%)
Blaszl 273 27.47 27.20 79.4 80.7 Hill climb/Length 501.91 0.37
Poly3A 404 41.45 40.33 76.2 77.3 Tabu/Area 1,515.49 0.18
SHAPESO 63 65.68 65.00 61.4 63.6 Hill climb/Area 332.39 -3.17
SHAPES|1 59 60.53 58.40 63.3 71.5 Tabu/Area 1,810.14 1.02
SHIRTS 63.13 63.66 63.00 85.7 88.1 Tabu/Length 806.5 0.21
TROUSERS 245.75 246.40  243.40 89.6 91.1 Tabu/Area 3,611.99 0.96
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Table 7. Summary of the best results for new bench-
mark problems.
Best result

Problem Length Density1 (%) Density2 (%)
Profilesl 1,377.74 82.0 85.2
Profiles2 3,216.10 50.0 51.3
Profiles3 8,193.89 50.9 52.6
Profiles4 2,453.12 75.1 75.7
Profiles5 3,332.70 70.2 73.6
Profiles6 3,097.86 75.6 77.8
Profiles7 1,296.30 77.1 80.2
Profiles8 1,318.70 75.8 77.2
Profiles9 1,290.67 53.1 54.9
Profiles10 11,160.10 66.2 66.8
Figure 13.  Best solutions for “Profiles1” (1,377.74

units) and “Profiles9” (1,290.67 units).

Table 7 shows a summary of the best results from these
40 runs. Figure 13 shows the best solutions for data sets
Profiles1 and Profiles9. All best solutions obtained for these
new problems are shown in online Appendix B.

6. Summary

In this paper, we introduced a new technique of primitive
overlap resolution. We then demonstrated the steps required
for implementing an efficient bottom-left-fill nesting algo-
rithm that is able to handle profiles with both circular arcs
and holes. This algorithm produces nests for realistic prob-
lems quickly and to a level of accuracy that makes it a
strong candidate for industrial application. We have applied
our algorithm to 26 problems drawn from over 20 years
of cutting and packing research. The proposed algorithm,
using only simple local search mechanisms, was able to
produce the best-known results for 25 of the 26 problems.
The majority of these best solutions were generated within
100 search iterations and yielded an average improvement
of 5% over the existing best solutions from the literature.
To the authors’ knowledge, this is the first paper in the
field of two-dimensional irregular cutting and packing that
has attempted such a broad range of problems from the
literature. Furthermore, the paper introduces and sets initial

benchmarks for 10 new problems, some of which involve
profiles with both arcs and holes that have not previously
been represented within the literature.
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