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Cellular automata (CA) are an important modelling paradigm in the
natural sciences and an extremely useful approach in the study of complex
systems. Homogeneity, massive parallelism, local cellular interactions
and both synchronous and asynchronous models of rule execution are
some of their most prominent features, allowing scientists to model and
understand a variety of phenomena in, to name but a few, the physical,
chemical, biological, social and information sciences. An ubiquitous
problem related with the study of complex systems by means of CA is
that of parameter identification. In some cases, analytical methods are
available but in many others, due to the bottom-up complexity of the
underlying processes, the best route for CA identification is through
design optimization by means of a metaheuristic, such as an evolutionary
algorithm. In this work we report on a systematic methodology we
have developed to control the spatio-temporal behavior of a CA in
order to obtain a ‘designoid’ target pattern. Four independent CA-based
complex systems were used to assess our hypothesis which combines
clustering, fitness distance correlation and evolutionary algorithms.

1 INTRODUCTION

Understanding how nature produces and relies upon natural phenomena,
such as self-organization, evolution by natural selection, etc., to construct
the magnificent engineering solutions routinely found in nature (e.g. eyes,
lungs, brains, wings, etc.) is of enormous scientific and technical relevance.
Self-organisation, both in the temporal and spatial domain, is a common
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feature of many complex systems. Such systems have often been studied
by means of cellular automata [1, 2] and the design of CAs has often been
accomplished by means of evolutionary algorithms.

In this paper we are interested in the automated (evolved) design of the
parameter values a CA-based model of a complex system requires in order
to attain a specific target spatio-temporal behaviour. This goal is related to
the more general aim of designing and controlling complex systems [3]:

“. . . perhaps the greatest concern is how do we build artificial systems
(or manage natural ones) so that the properties that emerge are the ones
we want?”

To give a more accurate definition of our objective, we are interested in
producing target designoids of the spatio-temporal patterns that emerge from
the execution of a set of cellular automaton models. The term ‘designoid’
was introduced in [4] to refer to objects that seem to have been designed
but that were, in fact, evolved.

A CA is defined as an infinite, regular grid of cells, each of which can
be in one of a finite number of states. At a given time step, t , the state of a
cell is a function of that cell’s neighborhood at t-1. There are a number of
possible definitions of a neighbourhood in CA systems as depicted in Figure
1. For instance, the Moore neighbourhood uses the eight surrounding cells
of the cell in question for the update process, using these eight states as
input to the update function. The von Neumann neighbourhood only uses
the four cells – defined as north, south, east and west – that are strictly
adjacent to the central cell. The Margolus neighbourhood divides the grid
into groups of four cells, to which the update function is applied completely
locally (i.e. using only the information in this group of four cells). To
allow propagation through the grid, the actual grouping of cells (in the
2 × 2 arrangement) changes on each update. There are also some extended
models as the Extended Moore where the distance of the neighbourhood
is extended beyond a radius of one.

All the complex system models used in this work have been implemented
in the NetLogo [5] programming language. The first model is a cellular
automaton known as the coupled map lattice, referred to by NetLogo and
from hereonin as CA continuous. Like a standard CA, it consists of a
time-space representation, but the states are encoded as continuous rather
than discrete values [6, 7]. One of the applications of this system is the
modelling of the behaviour of a boiling liquid [8]. At each step, the
value of a cell is a function of its neighbours, in essence representing
the process of heat diffusion. The same mechanism is also widely used
for the study of complex dynamics in nonlinear chemical and biological
problems. The second CA model, called Turbulence, is also based on a
coupled map lattice. This model is used for investigating the relationship
between turbulence, laminarity and viscosity of a fluid flowing through
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FIGURE 1
Illustrations of Moore, von Newman and Margolus neighbourhoods.

FIGURE 2
Sample snapshots of spacio-temporal patterns from the CA Continuous (a), Turbulence (b),
Gas Lattice (c), and Meta-automaton models (d).

a pipe and how the roughness of the pipe surface can affect the fluid’s
behaviour. The third complex system is the Gas Lattice model (also known
as the Hardy, de Pazzis and Pomeau model [9]). This program can model
the propagation of circular waves. The underlying space is composed of
Margolus neighbourhoods, each containing a number of particles, each of
which belong to two spacio-temporally separate sublattices, one modelling
propagation, the other collision. The last model used in this work was
developed by the authors and is called the Meta-automaton. This system
is a one dimensional cellular automaton of radius 1. The purpose of this
system is to show how the change of dynamics along space and time
affects the information flow, to understand how rules behave in a given
configuration and how different combinations of rules could affect the
complexity of the system. Example patterns generated from all four of
these models are shown in Figure 2.

In the following section, a review of different works is presented. Then,
in section 3 a detailed outline of our methodology will be presented, i.e.
the evolutionary algorithm, the fitness correlation distance method and
clustering. After that, in section 4, a set of experiments, results and analyses
of our proposal will be presented. Finally, in section 5, discussions and
future work will be shown.
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2 RELATED WORK

Many examples can be found across theory and industrial applications
combining evolutionary algorithms with cellular automata. This section
looks back on a collection of those works presenting a brief description
of the underlying motivation, the models they used and their evolutionary
mechanisms.

Within the theoretical field, the work presented in [10] describes the
employment of an evolutionary algorithm to discover a new dynamic
2D universal automaton called R. The authors claim that R fulfil with
universality in the Turing sense as it is capable of building logic circuits and
simulating the Game of Life [11]. In this approach two genetic algorithms
were used to evolve a population of encoded CA in order to obtain a
cellular automaton capable of producing gliders and eaters. The evolved
individuals of the first GA result in a subset of CAs capable of producing
glider guns for almost every evolution of a random cell configuration. From
them, a candidate automaton called R0 is chosen. However, given that R0
is not able to produce eaters a second GA was utilised. Thus, using a
fitness function based on what the authors define as crash test performed
among R0 and periodic patterns, the outcome of the second GA ends up
in an automaton capable for both accepting glider guns and eaters.

In [12] the evolution of cellular automata using a genetic algorithm is
applied to mobile communications where the so called "reporting cell"
networking architecture for localization of mobile terminals is used as
the base model. In this paper, a one-to-one mapping between networking
cells and CA sites is performed and the evolution of one-dimensional CA
rules for optimizing the cost of location management in mobile networks
is carried out. The GA evolves rules applied over randomly initialized
one-dimensional uniform CA mapping networks of 16, 36 and 64 hexagonal
cells. The fitness value of the individuals is then given by an equation
applied to the cells’ states at the last timestep of the CA. This formula is
mainly composed by the number of location, number of paging, and the
vicinity value of each cell. Another interesting application of evolutionary
algorithms combined with a CA was carried put in [13] where a different
approach for tackling the classical problem of a synchronization task in a
one-dimensional CA is proposed. In this case, a GA is used for evolving
individuals encoding rules of non-uniform CA using two and four states. As
in the previous example, the evaluation of each individual takes place after
the evolution of the CA is done. The CA states are randomly initialized.
Then, the CA evolves for a certain number of timesteps and later on each
individual receives either a 1 or 0 subject to the final state its associated
cell has reached.
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In [14] three CA-related problems were tackled with genetic algorithms:
the Majority Problem, the AND (XOR) Problem, and bitmaps evolution. For
all of them, 2D-binary CA using Moore and von Neuman neighbourhoods
and a genetic algorithm with a population of binary strings representing
CA rules were employed. The first problem is stated as: given a random
initial state of a CA with a lattice size of N, a fixed number of timesteps
S and a parameter L, find a CA rule such that its execution results in
a configuration with all zero-state cells if L < 0.5 or with all one-state
cells otherwise. Thus, the fitness of an individual is defined as the relative
number of correct answers after evaluating the rule in the automata for a
certain number of times. In this context, it is said that an answer is correct
if the final state of the automata cells is either all zero-state or all one-state
otherwise. The AND (XOR) problem is defined as: given a square CA
with two input cell states located at the top left corner and bottom right
corner respectively, find a rule that iterates over the CA such that after
S timesteps all its cells’ states are in one if both (only one) inputs were
one or in zero otherwise. For these two problems, the employed CA had
width and height of 5 cells and S equal to 10. As it is expected, the
fitness of a rule is the number of cells in the lattice which have reached
the correct values after the last iteration. In particular, the authors have
discovered for these problems that using only mutation outperforms the
same GA using both crossover and mutation. Finally, the bitmaps evolution
problem is stated as: given an initial state and the desired state of a CA,
find a rule capable of making a transition between both states within S
timesteps. Once again, a CA with width and height of 5 was employed.
This time, the entire lattice was initialized with state value of zero with the
exception of the cell located at the centre of the lattice. In contrast with
the previous problems, experiments were run using only the von Neumann
configuration and without a crossover operator for the GA. As a general
result, authors have concluded that it is hard to get rules for asymmetric
desired states than for symmetric ones.

More examples in literature can be found in [15] where a GA was used
two evolve a non-uniform CA, a development of the CA paradigm where
each cell in the lattice does not use the same rule set. This makes the systems
considerably more complex, and thus presents the GA with a more difficult
problem, although the papers report that good CAs can still be evolved. In
this paper the obtained results were rule sets which allow the CA to generate
sophisticated emergent computational strategies subsequently analyzed with
regard to the interactions between the system particles. Related work is
described in [16] where a coevolutionary approach was used to evolve
non-uniform CAs via cellular programming [17] considering three models
of asynchrony among blocks of cells. In [18] and [19], the author reports
on the success of a GA in evolving the CA rules themselves (rather than
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parameters to these rules, as in our case). Particularly interesting is the
work based on the fault tolerance of the evolved systems, showing them
to have "graceful degradation" properties.

3 METHODOLOGY

In this section, we describe the methodology used to evolve designoid images
that capture the target spacio-temporal behaviour of the complex system in
question. The principal aim of our hypothesis is to present a protocol not only
for evolving target CA behaviours, but also, most crucially, for verifying
the robustness of this evolutionary process. The process, which combines
clustering, fitness distance correlation and evolutionary algorithms, seems
to be robust across the four different cellular automaton-based complex
systems we have investigated, and could have applications to many other
complex domains.

Motivation
In a complex system such as the four CA-based models described above,
the mapping from genotype to phenotype and then from phenotype to
fitness is a highly complex, non-linear relationship. Figure 3 shows the
three stage mapping process from genotype (the real numbered parameters)
onto a phenotype though the execution of the complex system (the CA
model) itself and then from this phenotype (a spacio-temporal pattern) onto
a numerical fitness value via the objective function.

Fitness Distance Correlation (FDC) is a measure of how effectively the
fitness of an individual correlates to its genotypic distance to a known
optimum. In other words, given two different genotypes, FDC measures the
correlation of the (numerical) Euclidian distance between these genotypes
against the value assigned by the objective function. If there is only a small
relationship between these two values, a parameter optimisation GA, or for
that matter any metaheuristic based on the same representation, will have
very little effect. Hence, FDC analyses the genotype – fitness relationship.
We must also analyse the phenotype – fitness relationship, in other words,

FIGURE 3
Diagram of mappings from genotype onto phenotype and from phenotype onto numerical
fitness value, and relationship to the analysis methods.
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we must verify that the objective function can effectively differentiate
between dissimilar phenotypes and effectively classify similar phenotypes
for the purpose of effective selection. If the fitness function cannot achieve
this, a parameter optimisation GA will have difficulty evolving towards
better solutions as the selection process will not have sufficient accurate
information to bias the search. For verification of the phenotype-fitness
relationship, we use clustering. Although FDC has been used in the past to
assess the quality of the representation vis-à-vis the fitness function, e.g.
[20], it has never been combined with a clustering process to obtain better
insight of the complex mappings represented in figure 3.

Such is the complexity of the genotype – phenotype mapping, that FDC
cannot be guaranteed to give a completely accurate picture. Indeed the
objective function itself is also only an approximation of two individuals’
phenotypic similarity. For these reasons, relying on only one of FDC or
clustering to validate an objective function would not be adequate. Hence,
we use both methods to show that a given function is suitable for use
in evolving designoid spacio-temporal behaviour patterns. Details of the
fitness function used, as well as details of the implementation of both the
FDC analysis and clustering methods are presented in the next section.

3.1 Genetic Algorithm
We have used a genetic algorithm whose aim is to generate a spatio-temporal
behaviour ‘closest’ to some specified target image.

Let T be a pre-defined set of real numbers that act as input parameters to
the CA model. These parameters give rise to a particular spacio-temporal
behaviour, captured in the pattern FT. We initialise the GA with a population
of parameter sets, P0, P1, . . . Pn (which each map to some spacio-temproal
behaviour, F0, F1, . . . , Fn) and evolve this population in the hope that
a parameter set D will emerge that produces a pattern, FD as similar as
possible to FT as shown by Figure 4 below.

Each candidate pattern (Fi ) is compared to the target pattern (FT) for
similarity using an information distance-based metric described in more
detail below. This metric returns a numerical representation of similarity
that is considered as the fitness of each individual.

We use a real-coded GA. That is, each individual’s chromosome (parameter
set) comprises a set of real numbers, as opposed to the more traditional bit
string. Not only is this a more intuitive representation in this context, but
research [21] suggests real-coded GAs may be more efficient than their
binary counterparts. During the evolution process, offspring are obtained
using uniform crossover [22] where, for each gene, the algorithm determines
randomly from which parent to draw an allele. Usually each parent has a
0.5 probability of being chosen. Mutation is implemented using the Breeder
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FIGURE 4
Interaction diagram for the evolution of a given target behaviour. The CA model receives
the parameters obtained by the evolutionary algorithm and the emergent pattern is evaluated
against the target.

Genetic Algorithm operator introduced in [23] that selects a value from a
constant-size distribution either side of the initial value.

Individuals are selected to be parents using roulette wheel selection [24]
which essentially assigns each individual a ‘slice’ of the roulette wheel
whose size is proportional to the individual’s fitness. Thus, fitter parents
have a greater probability of being selected when the virtual wheel is
spun, but all individuals in the population have some chance of selection.
The (µ + λ) replacement strategy is employed, where the children and
parents are considered together and the best (fittest) µ individuals are
chosen to form the next generation’s population. The GA is run over 100
generations with a population size of 20, i.e. µ = 20. At each generation,
10 offspring are created, i.e. λ = 10. Crossover between parents occurs
with 0.7 probability; mutation with 0.3.

Our GA system has been specially developed through the CHELLnet
project (http://www.chellnet.org) for optimising a range of design and
manufacturing problems. It is a server-based system and can be tailored to
solve a broad range of problems. The number and data type of genes in the
chromosome, along with the parameters for the GA (including the user’s
choice of a range of selection, replacement, recombination and mutation
operators and rates) can be specified in the web-based configuration module
which builds an XML script as output. This script, along with a plug-in-style
problem specification class (which, most importantly, defines the fitness
function), configures the GA to the specific problem to be optimised. The
execution of the GA can then be started and observed over the Internet
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FIGURE 5
Component diagram of the GA system.

through a Java servlet. As shown in Figure 5, this system enables a number
of users to run tailored instances of the GA in parallel on different problems.

3.2 The Universal similarity metric
The Universal Similarity Metric [25] is a measure of the similarity between
two objects based on Kolmogorov complexity. This function is a robust
compression-based mechanism and has been widely used in different topics
of research (see [26] and references therein).

The information distance between two objects is the amount of information
required to compute one object given the other. For our purposes, the
information distance was calculated with the Universal Similarity Metric
formulae presented in [26] and shown in equation 1, where K (oi ) is the
Kolmogorov complexity of the object oi . The Kolmogorov complexity of
an object is defined as the length of the shortest program for computing oi

by a universal Turing machine [27]. Since Kolmogorov complexity is not
computable, we have used the same approximation approach as proposed
in [26]. The fitness distance correlation and clustering processes described
below are used to show that the USM is an effective measure for comparing
the spacio-temporal images generated by our CA systems, and thus a robust
fitness function for a genetic algorithm.

d(o1,o2) = max{K(o1.o2), K(o2.o1)}
max{K(o1), K(o2)} (1)

3.3 Fitness distance correlation
Finding the most robust way for predicting when a GA will be an effective
method of optimisation is still an open topic of research in evolutionary
computation theory. One possible methodology, fitness distance correlation
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(FDC), is proposed in [28]. FDC is a statistical-based methodology which
performs a correlation analysis given a known target solution and samples
from the search space. Faced with a maximisation problem, a large positive
correlation value indicates that the problem may be effectively optimised
by a GA, whereas a large negative value suggests that GA optimisation
might not be as effective. Correlation values around zero indicate that a
more detailed analysis on a scatter plot of fitness versus distance should be
performed. The formula for the derivation of a correlation value is shown
in equation 2, where r is the correlation coefficient, n is the number of
individuals under consideration, fi is the fitness of individual i , and di is
its distance to the nearest global optimum, f and SF are the mean and
standard deviation of the set of fitnesses, and d and SD are the mean and
standard deviation of the set of distances. We performed fitness distance
correlation analysis of the USM as applied to the CA generated images in
order to extend our study of how effective it could be as a fitness function
in a GA when trying to generate a target spatio-temporal behaviour.

r =
(1/n)

n∑

i=1
( fi − f )(di − d)

SF SD
(2)

3.4 Clustering
In order to further assess the proficiency of the USM as a fitness function,
we use clustering. For this to be effective, the definition of a ‘similarity’
measure or, ideally, a metric is required. Thus, to cluster the spatio-temporal
images for each data set described in the next subsection, the distance
between each pair of spacio-temporal patterns was measured and recorded
in a distance matrix, M. Then, using this matrix, clustering [29] occurs by
processing the distance matrix produced above with the clustering algorithm
outlined in the Pseudocode 1. A number of different clustering methods
and representations are available. In our case, we have used the unweighted
arithmetic average method (UPGMA) and logarithmic tree representation
respectively. One such implementation of clustering can be found in [30].

3.5 Models and data sets
3.5.1 The models
The CA continuous model is a general dynamic system for the study
of complex behaviours such as boiling a liquid. It consists of a discrete
time-space representation whose cells take infinite continuous values,
but are limited by the precision of the computer. For this system, two
variables were considered for generation of the spacio-temporal behaviour:
PRECISION-LEVEL which gives the precision of the state values, ranging
from 1 to 16 decimal places and ADD-CONSTANT which is a constant
used in the calculation of each cell’s value.
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Pseudocode 1
Clustering procedure to assess the proficiency of the USM as a fitness function. Distances
between all possible pair of objects belonging to a set of spacio-temporal behaviour patterns
is stored in a matrix subsequently used in a clustering calculator.

The Turbulence model is a system designed for understanding how a
transition from order to disorder takes place when fluids flow through
pipes. Subject to the value of the cells around it, a cell in the lattice maps
to either a laminar or a turbulent behaviour. This model also consists of
two variables: COUPLING-STRENGTH which ranges continuously from
0 to 1 and determines the extent to which cells influence their neighbours
and ROUGHNESS which ranges from 0 to 0.025 and controls the friction
acting on the modelled fluid.

Finally, the Gas Lattice model is a complex system modelling how circular
propagation of particles takes place. Each cell of the underlying space
hosts a number of particles which are subject to collision and propagation
as governed by the rules of the automaton model. The variables controlling
the system are DENSITY which controls the number of particles per cell
and RADIUS which defines the size of the initial circular wave.

The Meta-automaton is a one-dimensional binary cellular automaton
composed of a toroidal square lattice of 100 rows by 100 columns where
each cell is associated with one of the so-called “256 elementary rules”
defined in chapter 3 of [8]. Each rule is encoded with a binary array of
length 8 where each bit is associated with a possible configuration given by
the state of the cell containing the rule and the state of its two immediate
surrounding cells. During runtime, the state of the first row of cells is
randomly initialized with either 0 or 1. After that, at every timestep t each
cell executes its rule considering its internal state plus the state of its two
adjacent cells, and changes the state of the cell at timestep t + 1 according
to the related value to that configuration. An example of the elementary
rule 145 is shown in Figure 6.

The Meta-automaton is a particular instance of the so called non-uniform
automaton [19]. In our case, the Meta-automaton also allows the user to
partition the system’s spatial and temporal dynamics using the variables
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Encoding of the elementary rule 145 

Neighbourhoods at t3

Output states at t4

FIGURE 6
Illustrative example of the Meta-automata executing elementary rule 145. Each possible
configuration of three cells is associated with an output state used as the new state for
the next timestep.

TABLE 1
Data set names, number of obtained groups per data set, number of images produced per
group, name of the NetLogo library, and name of the parameters used for the generation of
the spacio-temporal patterns.

Number of Number of NetLogo
Model Groups Images Library Parameters

CA continuous 11 5 per group CA Continuous PRECISION-LEVEL
ADD-CONSTANT

Gas Lattice 12 5 per group Gas Lattice COUPLING-STRENGTH
Automaton ROUGHNESS

Turbulence 10 5 per group Turbulence DENSITY
RADIUS

Meta-automaton 3 10, 9 and 4 K-TIMES
T-LIMIT

K-TIMES and T-LIMIT. That is, groups of k-consecutive cells can be
associated to the same rule and re-assignation of rules is allowed to take
place every t timesteps.

3.5.2 Data sets
For each of the four CA systems described above, we compiled a data set
comprising a number of groups of spacio-temporal patterns. For a given
model, all the parameters were fixed except one and a number of different
groups of images were produced such that the variable parameter was
altered for each group, and all the patterns in a given group were generated
using the same parameters. The notation used to identify a particular
spacio-temporal pattern in the paper is of the form xyz pQ where xyz refers
to the model itself, p to the group and Q to the pattern within that group.
For example, turb e5 refers to the fifth image in group e (i.e. the group
generated using parameter set e) using the Turbulence model. Table 1 lists
all the models, the number of data sets for each model, their parameters
and associated reference to the NetLogo implementation.
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4 EXPERIMENTS AND RESULTS

This section describes the analysis and experiments performed using the
methodology outlined above. The first part presents an analysis of the
USM as a fitness function through the Fitness Distance Correlation method.
Then, we present the results of clustering the spatio-temporal images using
the USM. Finally, the results of the GA applied to a set of ten target
spatio-temporal behaviour patterns will be described.

4.1 Fitness distance correlation
For each group of patterns obtained from the CA Continuous, Turbulence
and Gas Lattice models, each image in turn was considered as a target
designoid while the remaining images of the group were compared to it
using the USM. The resulting plots and correlation coefficients for some
of the groups are shown in Figure 7, with further results available at
http://www.cs.nott.ac.uk/∼gzt/edbcs. Overall, the correlation coefficients for
the three systems range from 0.2140 to 0.5342, showing that the USM
has a relatively high correlation with the genotype of the spacio-temporal
behaviour pattern. However, some scatter plots indicate that the USM may
only be effective in certain areas of the search space. For instance, we
found that plots of the Turbulence system suggest that the USM will be
effective only for target designoids with coupling-strength values between
0.400 and 0.800. In the second experiment, we considered all the patterns
in the data set as a single group. As before, each image, in turn, was
considered as a target designoid and the remaining images compared to
this target. In these results, some correlation coefficients were around zero
(and thus present an inconclusive result) from - 0.07 to 0.14, with certain
structures appearing in the scatter plots showing no relationship between
fitness and distance. However, other coefficients range from −0.2018 to
−0.2579 and from 0.1642 to 0.6695 with scatter plots suggesting that the
problem is suitable for optimisation by an evolutionary algorithm.

Consequently, we can conclude from these results, that FDC is not always
a completely reliable and clear indication of a fitness function’s suitability,
especially when the geneotype – phenotype mapping is as complex as it
is in these systems.

4.2 Clustering
The CA Continuous, Turbulence and Gas Lattice data sets were run four
times using the algorithm outlined in pseudocode 1. Clustering the eleven
groups of spacio-temporal patterns for the CA continuous model generated
the expected eleven clusters, corresponding with the eleven groups of
spacio-temporal patterns. The logarithmic cluster tree for this model is
shown in Figure 8. For Turbulence behaviour patterns, a similar result was
achieved. In this case, there was one outlier pattern, although its location is
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FIGURE 7
Graphics of the resultant scatter plots and correlation coefficients for the group e in the
Gas Lattice model and group f in the Turbulence model showing that the USM value has
a relatively high correlation with the genotype of the spacio-temporal behaviour pattern.
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FIGURE 8
Illustration of the logarithmic cluster tree for patterns belonging to the CA continuous model.
Clustering the fifty five images of patterns for the CA continuous model have generated
the expected clusters, corresponding with the eleven groups of spacio-temporal patterns.

close to the family group to which it belongs. This can be seen in Figure
9. Full cluster trees, as well as further supporting material for this research
can be found at the website referenced in subsection 3.1.

Another positive result was obtained with Gas Lattice patterns - eleven
groups were created. As a final experiment, the three data sets were
processed together. As expected, the characteristics of the three different
collections were detected and hence different clusters were created for
each group of our data set. Three different logical partitions locating the
Turbulence model objects in the top, the CA Continuous in the middle and
the Gas Lattice model instances at the bottom were easily identifiable (see
Figure 9).

Thus, we conclude that using the USM as part of the clustering process of
complex system patterns was successful. It captured not only the change of
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FIGURE 9
Illustration of the logarithmic cluster tree for patterns belonging to the Turbulence, CA
Continuous and Gas Lattice models. The characteristics of the three different collections
were detected giving three different logical partitions locating the Turbulence model objects
in the top, the CA Continuous in the middle and the Gas Lattice model instances at the
bottom. High resolution figure at http://www.cs.nott.ac.uk/∼gzt/edbcs/bigcluster.jpg.

behaviour that different values of a parameter produce in a complex system
but also the dissimilarities between different spacio-temporal behaviour
patterns.

As a general conclusion, the FDC plus clustering analysis pre-
sented in subsection 3.1 and 3.2 indicate that the use of USM –
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TABLE 2
GA results for the most successful of the five runs for each target image in groups e and f
of Turbulence patterns.

Target iF cF rF iT cT rT usm(F, T ) e(i) e(c) e(r) E

e1 62.90586 0.52350 0.00074 50.50000 0.50000 0.00100 0.95657 0.24566 0.04699 0.25948 0.18405
e2 69.47874 0.48819 0.00094 50.50000 0.50000 0.00100 0.95738 0.37582 0.02361 0.06288 0.15410
e3 51.97374 0.51587 0.01130 50.50000 0.50000 0.00100 0.95725 0.02918 0.03173 10.29811 3.45301
e4 71.83373 0.46997 0.00080 50.50000 0.50000 0.00100 0.95817 0.42245 0.06005 0.19738 0.22663
e5 43.03929 0.51941 0.00838 50.50000 0.50000 0.00100 0.95653 0.14774 0.03883 7.3825 2.52302
f1 55.92625 0.56941 0.00791 50.50000 0.60000 0.00100 0.95785 0.10745 0.05098 6.91322 2.35722
f2 65.98295 0.58869 0.01377 50.50000 0.60000 0.00100 0.95657 0.30659 0.01885 12.7747 4.36672
f3 68.37877 0.60256 0.01140 50.50000 0.60000 0.00100 0.95608 0.35404 0.00426 10.40107 3.58646
f4 53.86632 0.60256 0.00673 50.50000 0.60000 0.00100 0.95915 0.06666 0.00426 5.73318 1.93470
f5 48.21686 0.60334 0.00549 50.50000 0.60000 0.00100 0.95781 0.04521 0.00556 4.48623 1.51234
p 8.85724 0.54241 0.00356 6.98285 0.83854 0.00377 0.91980 0.26843 0.35314 0.05552 0.22569

with both the chosen representation and genotype to phenotype mapping –
are amenable for the evolutionary design of complex systems such as CAs.
However, the FDC analysis and scatter plots also reveal that some of
the target spatio-temporal patterns might be more difficult to evolve than
others. So we expect that the evolutionary algorithm will, in some cases,
find it difficult to evolve suitable patterns. In the next section we perform
evolutionary experiments to test this methodology.

4.3 Genetic Algorithm
Here we present the results of the GA experiments using the Turbulence
model as a first instance and the Meta-automaton model as a second test
case. These two models are particularly well-suited to evolutionary design
as the resultant pattern captures the entire spacio-temporal behaviour of
the system, i.e. each subsequent row of the image represents the system
behaviour at the next time step. This is not the case for the Gas Lattice model,
where each time step is associated with an entire image, which would make
similarity calculations prohibitively computationally and time-intensive. The
Turbulence model was run in preference to the CA continuous model as it
is a more complex, and therefore a more interesting model.

The Turbulence Model
For this experiment, the Turbulence model was initialized with the parameter
initial turbulence ranging from 0 to 100, coupling strength ranging from 0
to 1 and roughness from 0 to 0.025. All three parameters are free to take
any value in their range, each to an accuracy of 64 bits. The generation of
the spacio-temporal behaviour patterns from these parameters is automated
through a simple wrapper using NetLogo’s Java API [5].

We ran the GA five times (capped at 100 iterations) on two groups
(e and f ) of Turbulence patterns with each comprising five target images.
As explained in section 2.5.2, each target in a given group was generated
using the same parameters, but as the Turbulence model is stochastic, each
spatio-temporal pattern generated is somewhat different. Table 2 shows the
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values for the most successful of the five runs for each target image in
each group.

Given the three parameters for the Turbulence model, initial turbulence i ,
coupling strength c, and roughness r , for a given spacio-temporal behaviour
pattern, {F = iF cFrF } and a given target, {T = iT cT rT }, we define the
error for each gene, e(g) = abs(gT −gF )

gT
and the average error for a given

individual, E(F) = e(iF )+e(cF )+e(rF )
3 .

Visual inspection of Figure 10 shows that for groups eand f , the USM
values below 0.96 show that the resultant images are similar to the target in
terms of information distance, and there are certain visual features which
can be picked out; both resultant images share the targets’ density of light
pixels, with a number of dark triangles dispersed throughout the image and
the larger triangles at the top of Te5 have been succesfully represented in
the Fe5.

Looking at Table 2, it is evident that the GA has mixed success in
approximating the actual target parameters. The error margins range from
a most satisfactory 4.3% (c f 3) to a widely inaccurate 1277% (r f 2). It is
interesting to note that the worst errors are all for parameter r (roughness).
This suggests that it may be the case that r is the least influential in the
generation of the images, and indeed a brief experimentation with the
Turbulence program reveals that this is indeed the case, at least when
combined with these values of i (50.5) and c (0.5). It appears that when i ,
the initial turbulence, is high, as in this case, a change in r makes little
difference, but when i is low, r is far more influential. Indeed, this agrees
with the physical dynamics of fluid flow which the system is modelling –
if the fluid is initially perturbed, we can intuitively surmise that the
roughness of the pipe will have a lesser effect than when the fluid is
initially undisturbed. These observations show that, although an interesting
indication, exact approximation of the parameters is not necessarily a good
indication as to the similarly (or lack thereof) of two spacio-temporal
behaviours. This is just a further confirmation of the highly complex,
non-linear and stochastic nature of the genotype – phenotype mapping.

With images such as Te5 and T f 3, whose parameters are such that they
are not visually very different, the quality of the results is difficult to see.
However, if we use a target pattern which is more visually distinctive,
results are much clearer: A further target, TP was defined, giving a much
more distinctive image (with a low value for i , giving more influence to r ).
The results for this target (shown in Figure 10) are noticeably better - not
only is the resultant image visually very similar to the target (as indicated
by a USM value of 0.91980 - substantially lower than that of the previous
experiments), but the parameters have all been approximated to within
about 35% of the target with a combined error value E = 0.22569, and
interestingly, r is now the most accurate approximation (e(r ) = 0.05552).
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FIGURE 10
Snapshots of the target and designoid spacio-temporal behaviour patterns with annotations
showing particularly well-produced features for the Turbulence model.
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FIGURE 11
Target patterns produced by the Meta-automaton using the same rule in all cells. (a)
meta a1, (b) meta a2, (c) meta a3, (d) meta a4, (e) meta a5, (f) meta a6, (g) meta a7, (h)
meta a8, (i) meta a9, (j) meta a10.

FIGURE 12
Target patterns produced by the Meta-automaton changing dynamics over space with two
different rules: (a) meta b1, (b) meta b2, (c) meta b3, (d) meta b4, (e) meta b5, (f) meta b6,
(g) meta b7, (h) meta b8, (i) meta b9.

The Meta-automaton Model
Three groups of target patterns were defined using the meta-automaton
system. In the first set, all the cells have been initialized with the same
rule without considering dynamic rule reassignment. The target patterns
produced by the automaton are shown in Figure 11.

For the second group of target patterns, the spacial dynamics were divided
in two. That is, given two random rules chosen from the pool of 256 rules,
the first consecutive 50 cells were associated with one rule and the remaining
50 with the other. As in the previous data set, there is no reassignment
of rules during runtime. The obtained patterns are shown in Figure 12.
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In order to provide the GA with an even more challenging data set,
the spacial dynamics were divided into four for the last group of target
patterns. In this case, cells were divided in groups of 25 consecutive cells
and a randomly selected rule le from the pool of 256 was associated to
every cell belonging to the same group. The obtained patterns for this data
set are shown in Figure 13.

We ran the evolutionary algorithm on the meta-automaton once per
target pattern, each individual was evaluated 10 times per generation and
the mean USM value was taken as the fitness. The results for the first,
second and third experiments are shown in table 3, table 4 and table 5
respectively. The Patterns column identifies the target pattern, OR refers to
the set of original rules used to generate the target pattern and ER shows
the rules evolved by the GA. The USM column contains the fitness values
of the best individuals whilst the ST column (similarity type) classifies the
resemblance of the evolved pattern to the target image.

As shown in table 3, five out of ten experiments have evolved the expected
rule for the first data set. However, if we further analyse the remaining
results we see that in most of the cases where the expected rule was not
achieved, the evolved rule often results either in a mirror or otherwise
similar image. For example, as Figure 14 (a, b) shows the designoid target
patterns found for meta a2 and meta a4 are mirrors. Moreover, as depicted
in Figure 15 (a), it is clear that the diagonal black strips appearing in
meta a9 were well captured by the USM. We can argue, therefore, that
certain similarities between the target pattern and the designoid were found
in most cases. Contrarily, in the case of meta a6 and meta a7, no similarities
at all appear despite USM values close to 1.

In the case of the second data set, equivalent rules, mirrors and close
similarities are also found. As shown in table 4, none of the results have
reached exactly the correct rules. However, five results out of ten are
acceptable - three designoids end up producing mirror images and two
reproduce important features appearing in the target patterns. In fact, Figure
14 (c, d, e) show that a target rule plus an equivalent rule were found in the

FIGURE 13
Target patterns produced by the Meta-automaton changing dynamics over space with four
different rules: (a) meta c1, (b) meta c2, (c) meta c3.



TABLE 3
Genetic algorithm results for the Meta-automaton patterns using one rules.

Patterns OR ER USM ST

meta a1 [122] [122] 0.993958124 Correct
meta a2 [148] [6] 1.042744644 Mirror
meta a3 [181] [181] 0.984504855 Correct
meta a4 [120] [106] 0.983119009 Mirror
meta a5 [97] [97] 0.985429776 Correct
meta a6 [135] [195] 0.976343879 None
meta a7 [229] [195] 1.048922986 None
meta a8 [131] [131] 1.00218998 Correct
meta a9 [154] [169] 0.987069886 Captured

meta a10 [133] [133] 0.950053315 Correct

TABLE 4
Genetic algorithm results for the Meta-automaton patterns using two rules.

Patterns OR ER USM ST
meta b1 [177 132] [164 177] 0.818578016 Mirror
meta b2 [68 122] [122 100] 0.885830497 Mirror
meta b3 [65 135] [215 146] 0.948304844 None
meta b4 [5 57] [115 192] 0.870995252 None
meta b5 [25 60] [26 125] 0.96081944 None
meta b6 [60 102] [183 20] 0.964207074 None
meta b7 [147 2] [130 147] 0.905361748 Mirror
meta b8 [129 46] [126 16] 0.958283213 Captured
meta b9 [167 180] [91 167] 0.993560531 Captured

TABLE 5
Genetic algorithm results for the Meta-automaton patterns using four rules.

Patterns OR ER USM ST
meta c1 [49 34 84 147] [73 141 188 230] 0.907788419 Captured
meta c2 [61 251 23 165] [38 140 105 234] 0.917228868 Captured
meta c3 [41 183 195 110] [61 120 146 196] 0.940763235 Captured

FIGURE 14
Mirrored designoid patterns found for Meta-automata patterns using one and two rules:
(a) meta a2 and its mirror, (b) meta a4 and its mirror, (c) meta b1 and its mirror, (d)
meta b2 and its mirror, (e) meta b7 and its mirror.
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FIGURE 15
Captured similarities for the Meta-automata patterns using one and two rules: (a) meta a9
and its similar designoid, (b) meta b8 and its similar designoid, (c) meta b9 and its similar
designoid.

case of the mirrored meta b1, meta b2 and meta b7. On the other hand,
Figure 15 (b, c) show that in meta b8 the lightest areas are shown as the
darkest in the left hand side of the image whilst for meta b9 the USM
was able to capture the small dark triangles at the right hand side of the
image.

In the case of the third data set, mirrors were more difficult to produce
and, as table 5 reveals, none of the results have reached the correct rules.
However, a visual analysis of the obtained designoids supports the idea that
some relevant features were captured from the target patterns. For example,
in Figure 16 (a) it is interesting to note that two rules for producing the
inverted v-shape drawing in the middle were discovered (but with inverted
colouring and in a different position). Moreover, in Figure 16 (b) an
equivalent rule for the second strip was discovered at the fourth position
in the designoid and the chaotic behaviour of the last strip is represented
in the third position of the designoid. Finally, in Figure 16 (c) a similar
effect of colours inversion occurred between the second and third strip of
the target pattern and designoid respectively.

Even in those results where the exact rules have not been found, the nature
of the rules used in the Meta-automaton mean that a number of different
rules can have very similar spacio-temporal behaviour. Hence, as seen in
the results for the Turbulence models, a significantly different genotype
can, in fact, result in a similar phenotype – yet another illustration of
the complex, non-linear nature of the genotype-phenotype-fitness mapping
in these systems). It is evident from these experiments that, although the
USM’s information distance-based metric works well in many cases, it

FIGURE 16
Captured similarities for the Meta-automata patterns using four rules: (a) meta c1 and
its similar designoid, (b) meta c2 and its similar designoid, (c) meta c3 and its similar
designoid.
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has a number of shortcomings. As illustrated by the results above, one of
the most obvious is its blindness to negative images. (Intuitively, using
the description of conditional Kolmogorov complexity described above in
section 2.2, we can see how the amount of information needed to produce,
for example, a segment of black pixels, given a segment of white pixels is
equal to that needed to produce a segment of white pixels given a segment
of black pixels). Similarly, the USM does not differentiate between mirror
images – the actual information content of a mirrored image is identical to
its unmirrored counterpart. It is a logical progression, therefore, to extend
the fitness function using an additional measurement such as hamming
distance or an entropy analysis. Using a measure of Hamming distance
involves calculating the color difference between target and designoid on
a pixel-by-pixel basis. Alternatively, an image’s entropy is an estimate
of the distance between two images based on calculating the frequency
of the appearance of different sub-blocks or fragments of the images. In
either case, the fitness function would need to be extended to either a
multi-objective setting or a single weighted function.

5 DISCUSSION AND FUTURE WORK

In this paper we have presented a methodology to control the spatio-temporal
evolution of a CA in order to obtain a ‘designoid’ target spatio-temporal
behaviour by combining clustering, fitness distance correlation analysis and
an evolutionary algorithm.

We can conclude that the clustering and fitness distance correlation
together are good indicators of the quality of the encoding, i.e. genotype,
its mapping to phenotype and the fitness function evaluation of phenotypes.
The application of this methodology before starting long and expensive
evolutionary runs should be considered.

In the cellular automata examples we presented, the methodology gave
some support for the use of a compression-based information distance
metric such as the USM as a fitness. However, from the analysis of the FDC
and clustering, one could expect (and this was indeed confirmed by the
evolutionary runs) that there would be cases where the USM cannot properly
inform the evolutionary process. Moreover, an introspective analysis of the
cases where the FDC reported no or low correlation and where the USM
induced bad clustering can shed light of ways on improving the fitness
function used.

There are a vast number of systems that can be modelled by cellular
automata and we expect that the methodology described here could be
helpful in some of these cases.
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SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, 863–872, Philadelphia, PA, USA, 2003. Society for Industrial and Applied
Mathematics.

[26] Krasnogor N., and Pelta, D. A. (2004). Measuring the similarity of protein structures
by means of the universal similarity metric. Bioinformatics, 20(7), 1015–1021.

[27] Kolmogorov, A. N. (1965). Three approaches to quantitative definition of information.
Problemy Paredachi Informatsii, 1, 3–11.

[28] Jones, T., and Forrest, S. (1995). Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Proceedings of the 6th International Conference on
Genetic Algorithms, 184–192, San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

[29] Halkidi, M., Batistakis, Y., and Vazirgiannis, M. (2001). On clustering validation
techniques. J. Intell. Inf. Syst., 17(2–3), 107–145.

[30] Brzustowski, J. (2000). Clustering Calculator. U. Wilensky. NetLogo. Department of
Biological Sciences, University of Alberta. http://www2.biology.ualberta.ca/jbrzusto/
cluster.php


