Chapter #

HYPER-HEURISTICS: AN EMERGING
DIRECTION IN MODERN SEARCH
TECHNOLOGY

Authors :

Edmund Burke!, Emma Hart?, Graham Kendall®, Jim Newall?,

Peter Ross” and Sonia Schulenburg?
Affiliations : 1The University of Nottingham, UK; 2Napier University, UK

Abstract:

Key words:

1.

This chapter introduces and overviews an emerging methodology in search
and optimisation. One of the key aims of these new approaches, which have
been termed hyper-heuristics, is to raise the level of generality at which
optimisation systems can operate. An objective is that hyper-heuristics will
lead to more general systems that are able to handle a wide range of problem
domains rather than current meta-heuristic technology which tends to be
customised to a particular problem or a narrow class of problems. Hyper-
heuristics are broadly concerned with intelligently choosing the right heuristic
or algorithm in a given situation. Of course, a hyper-heuristic can be (often is)
a (meta-)heuristic and it can operate on (meta-)heuristics. In a certain sense, a
hyper-heuristic works at a higher level when compared with the typical
application of meta-heuristics to optimisation problems i.e. a hyper-heuristic
could be thought of as a (meta)-heuristic which operates on lower level (meta-
)heurigtics. In this chapter we will introduce the idea and give abrief history of
this emerging area. In addition, we will review some of the latest work to be
published in thefield.

Hyper-heuristic, meta-heuristic, heuristic, optimisation, search

INTRODUCTION

Meta-heuristics have played a key role at the interface of Artificial
Intelligence and Operational Research over the last 10-15 years or so. The
investigation of meta-heuristics for a wide and diverse range of application

1

2 Chapter #

areas has strongly influenced the development of modern search technol ogy.
Indeed, applications of meta-heuristic development can be found in such
diverse areas as scheduling, data mining, stock cutting, medical imaging and
bio-informatics, and many others. However, while such developments have
deepened our scientific understanding of the search process and the
automatic solution of large complex problems, it is true to say that the
practical impact in commercial and industrial organisations has not been as
great as might have been expected some years ago. Many state-of-the-art
meta-heuristic developments are too problem-specific or too knowledge-
intensive to be implemented in cheap, easy-to-use computer systems. Of
course, there are technology provider companies that have brought such
developments to market but such products tend to be expensive and their
development tends to be very resource intensive. Often, users employ
simple heuristics which are easy to implement but whose performance is
often rather poor. There is a spectrum which ranges from cheap but fragile
heuristics at one extreme and knowledge-intensive methods that can perform
very well but are hard to implement and maintain at the other extreme. Many
small companies are not interested in solving their optimisation problems to
optimality or even close to optimality. They are more often interested in
“good enough — soon enough — cheap enough” solutions to their problems.
There is a current school of thought in meta-heuristic and search technology
that contends that one of the main goals of the discipline over the next few
years is to raise the level of generaity at which meta-heuristic and
optimisation systems can operate. This would facilitate the development of
easy to implement (and cheap to implement) systems that can operate on a
range of related problems rather than on one narrow class of problems. Of
course, many papers in the literature discuss meta-heuristic and heuristic
development on just one problem instance. Such papers provide a valuable
insight into meta-heuristic development but they offer little assistance to a
small company that simply cannot afford the significant amount of resources
that are required to tailor make special purpose meta-heuristics for the
company’s own version of whatever optimisation problem it has.

This chapter is concerned with hyper-heuristics which is an emerging
search technology that is motivated, to a large extent, by the goal of raising
the level of generality at which optimisation systems can operate. The term
has been defined to broadly describe the process of using (meta-)heuristicsto
choose (meta-)heuristics to solve the problem in hand. The majority of
papers in the (meta-)heuristics area investigate the use of such approachesto
operate directly on the problem. For example most of the papers on
Evolutionary Computation in timetabling consider populations of timetables
and the basic idea is that the population will evolve over a number of
generations with the aim of generating a strong population. However, a

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 3
MODERN SEARCH TECHNOLOGY

hyper-heuristic Evolutionary approach to timetabling [18, 1] would deal with
a population of (meta-)heuristics for the timetabling problem and, over a
number of generations, it is these (meta-)heuristics that would evolve.
Another example of the use of hyper-heuristics is presented in [2] where a
genetic algorithm evolves the choice of heuristic (in open shop scheduling)
whenever atask isto be added to the schedule under construction. Of course,
in 1994, the term hyper-heuristic did not exist and the process was called
“evolving heuristic choice.” These examples are discussed in more detail
later in the chapter. There are many more examples of such approaches and
indeed one of the main purposes of this chapter is to give an overview of
them.

One of the main motivations for studying hyper-heuristic approaches is
that they should be cheaper to implement and easier to use than problem
specific special purpose methods and the goal is to produce good quality
solutions in this more genera framework. Of course, the overall aim of the
hyper-heuristic goal goes beyond meta-heuristic technology. Indeed, thereis
current work which is investigating the development of machine learning
approaches (such as case-based reasoning) to intelligently select heuristics
according to the situation in hand [3, 4]. Such an approach is very much
concerned with the same goal that motivates hyper-heuristic development.
Actually, there is considerable scope for hybridising meta-heuristics with
such machine learning approaches to intelligent heuristic selection [4].

This chapter is not intended to be an intensive survey of all the scientific
papers which are related to the basic hyper-heuristic definition and that seek
to satisfy the same objective. Rather, it isintended to give a brief overview
of the idea and to set it within the context of the current state-of-the-art in
meta-heuristic technology.

2. THE EMERGENCE OF HYPER-HEURISTICS

21 The concept and itsorigins

This section builds on the concept of hyper-heuristics and describes some
early examples.

For many real-world problems, an exhaustive search for solutions is not
a practical proposition. The search space may be far too big, or there may
not even be a convenient way to enumerate the search space. For example,
there may be elaborate constraints that give the space of feasible solutions a

4 Chapter #

very complex shape. It is common then to resort to some kind of heuristic
approach, sacrificing a guarantee of finding an optimal solution for the sake
of speed and perhaps aso a guarantee of obtaining at least a certain level of
solution quality. Enormous numbers of heuristics have been devel oped over
the years, each typically justified either by experimental results or by an
argument based on the specific problem class for which the heuristic in
question had been tailored.

The term 'heuristic’ is sometimes used to refer to a whole search
algorithm and is sometimes used to refer to a particular decision process
sitting within some repetitive control structure. Viewing heuristics as search
algorithms, some authors have occasionally tried to argue for the absolute
superiority of one heuristic over another. This practice started to die out
when in 1995 Wolpert and MacReady [5] published their “No Free Lunch
Theorem” which showed that, when averaged over all problems defined on a
given finite search space, al search agorithms had the same average
performance. This is an intuitively natural result since the vast majority of
possible problems have no exploitable structure whatsoever, such as some
form of globa or local continuity, differentiability or regularity. They can
only be defined by a complete lookup table. The “No Free Lunch Theorem”
helped to focus attention on the question of what sorts of problems any given
algorithm might be particularly useful for.

Long before the theorem was published it was clear that individual
heuristics, however valuable, could have interesting quirks and limitations.
Consider, for example, the topic of one-dimensional bin-packing. In its
simplest incarnation there is an unlimited supply of identical bins and there
isaset of objectsto be packed into as few bins as possible. Each object has
an associated scalar (think of it as the object’ s weight) and a bin cannot carry
more than a certain total weight. The general task of finding an optimal
assignment of objects to bins is NP-hard. A commonly used heuristic is
largest first, first fit’: sort the objects into decreasing order of weight, then,
taking them in this order, put each object into the first bin into which it will
fit (the bins in use are ordered too, according to when they first came into
use). This heuristic has the benefits of simplicity and cheapness; it may not
produce a solution that uses the minima number M of bins, but it is known
that it will not use more than 11M/9+4 bins [6]. See [7] for a good survey of
such results. A worst-case performance guarantee of this sort can be very
reassuring if, for example, money is at stake. However, the following
example due to Ron Graham of AT&T Labs shows that even this simple
heuristic contains surprises. In this problem, the bins have capacity 524 and
the 33 objects have the weights shown in table #-1.

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 5
MODERN SEARCH TECHNOLOGY

Table#-1. A bin-packing problem

442 252 127 106 37 10 10
252 252 127 106 37 10 9
252 252 127 85 12 10 9
252 127 106 84 12 10

252 127 106 46 12 10

Y ou can easily verify that the 'largest first, first fit' heuristic will produce
a solution that uses seven bins, exactly filling all of them. However, if the
object of weight 46 is removed from the problem, leaving only 32 objects to
pack, the algorithm now uses eight bins. It is counter-intuitive that the
heuristic should produce a worse result on a sub-problem than it does on the
strictly larger problem.

As an example of heuristicsthat are tailored to specific types of problem,
consider another one-dimensional bin-packing heuristic due to Djang and
Finch [8], called by them 'Exact Fit'. The heuristic fills one bin at atime, as
follows. Objects are taken largest first, and placed in the bin until the binis
at least one-third full. It then sets an allowable wastage w, initially w=0. The
heuristic searches for one object that fills the bin to within w of its capacity.
If this fails it searches for any two objects that fill the bin to within w. If this
fails it searches for any three objects that fill the bin to within w. If thisalso
fails it sets wlw+1l and repeats. As reported by the authors, this
outperforms a variety of earlier heuristics on a large set of benchmark
problems. However, these benchmark problems are of a particular sort: all
the objects have a weight that is a significantly large fraction of a bin's
capacity. Benchmark problems tend not to involve many objects with very
small weights, because those objects can be treated as a form of ‘sand’ that
can be used to fill up otherwise wasted space. It should be clear that the
'Exact Fit' heuristic can perform very badly on problems in which the
objects are all very small. For example, consider a problem in which the
bins have capacity 100 and there are 1000 objects each of weight 1. In the
optimal solution ten bins are needed; the 'Exact Fit' heuristic will put at most
37 abjectsin any one bin and so will use 28 bins.

It would be plausible to argue that any self-respecting bin-packing
heuristic should not start anew bin if there were existing partially-filled bins
till capable of holding further items. Such heuristics would never use more
than 2M bins because, if they did, there would be at least two bins whose
combined contents fitted into one bin and so the heuristic should have at
least been able to combine their contents or otherwise ensure that at least one
of them was better filled. So thereisalarge class of heuristics whose worst-

6 Chapter #

case performance on a large class of problems is better than that of 'Exact
Fit’, even though 'Exact Fit’ is very successful on benchmark problems that
are generally acknowledged to be hard (but see [9] for adissenting view).

2.2 The concept of hyper-heuristics

Since different heuristics have different strengths and weaknesses, it
makes sense to see whether they can be combined in some way so that each
makes up for the weaknesses of another. A simplistic way of doing this
would be as shown in figure #-1.

If (problemType(P) ==pl)
apply(heuristicl, P);
eseif (problemType(P) == p2)
apply(heuristic2, P);
ese...
Figure#-1. A naive way to combine heuristics

One logical extreme of such an approach would be an agorithm
containing an infinite switch statement enumerating al finite problems and
applying the best known heuristic for each. There are many more practical
problem-solving frameworks than this, such as the greedy randomised
adaptive search procedure GRASP [10] which repeatedly fabricates a
candidate solution C from parts on a so-caled 'restricted candidate list’,
conducts alocal search starting from C to find a locally optimal answer, and
uses that to update information about desirability of parts and thus revise the
restricted candidate list.

The key ideain hyper-heuristicsis to use members of a set of known and
reasonably understood heuristics to transform the state of a problem. The
key observation is a simple one: the strength of a heuristic often liesin its
ability to make some good decisions on the route to fabricating an excellent
solution. Why not, therefore, try to associate each heuristic with the problem
conditions under which it flourishes and hence apply different heuristics to
different parts or phases of the solution process? For example, it should be
clear from the preceding discussion that in bin-packing, some combination
of the 'Exact Fit' procedure and the 'largest first, first fit' procedure should
be capable of outperforming either of them alone.

The dert reader will immediately notice an objection to this whole idea.
Good decisions are not necessarily easily recognizable in isolation. It is a
sequence of decisions that builds a solution, and so there can be considerable

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 7
MODERN SEARCH TECHNOLOGY

epistatis involved - that is, a non-linear interdependence between the parts.
However, many general search procedures such as evolutionary algorithms
can cope with a considerable degree of epistasis, so the objection is not
necessarily fatal. And, on the positive side, there are some real potentia
benefits as far as real-world use is concerned. For example, in attempting to
find a way to combine heuristic ingredients it can be possible to start from a
situation in which a single, pure and unalloyed heuristic is used throughout
the solution process. |If it fails to survive the search process that is
attempting to combine ingredients from different heuristics, it is because it
wasn’t good enough; the process has discovered something better.

Here, therefore, is one possible framework for a hyper-heuristic
algorithm:

1. start with a set H of heuristic ingredients, each of which is
applicable to a problem state and transforms it to a new problem
state. Examples of such ingredients in bin-packing are a single
top-level iteration of 'Exact Fit' or a single top-level iteration of
largest firgt, first fit';

let the initial problem state be S

if the problem state is § then find the ingredient that is in some
sense most suitable for transforming that state. Apply it, to get a
new state of the problem S_;

1+17

4. if the problem is solved, stop. Otherwise go to 3.

There could be many variants of this, for example in which the set H
varies as the agorithm runs or in which suitability estimates are updated
across the iterations or in which the size of a single state transformation
varies because the heuristic ingredients are dynamically parameterised.
There is very considerable scope for research here.

2.3 Some historical notes

Intellectually, the concept of hyper-heuristics owes a debt to work within
the field of Artificial Intelligence on automated planning systems. The
earliest of such systems tried to devise a series of actions to achieve a given
goal, usualy a goal composed of a conjunct of required state features, by
finding actions which would reduce the difference between the current state
of the world and the desired state. This hill-climbing approach suffered all

8 Chapter #

the familiar problems of such a method. Later systems such as the DART
logistical planning system [11] were much more sophisticated; DART was
used in the Gulf War and was later judged by the US Chamber of Commerce
to have saved more money than the US Government had spent on funding all
forms of Al research over the previous 30 years. The focus eventually
turned towards the problem of learning control knowledge; perhaps the best-
known example is Minton’s PRODIGY system [12] which used explanation-
based learning to learn what action would be best to apply at each decision
point.

This thread of Al research on planning and scheduling led to one of the
earliest examples of a hyper-heuristic approach, the LR-26 scheduler within
the COMPOSER system [13] was used for planning satellite communication
schedules involving a number of earth-orbiting satellites and three ground
stations. The problems involved are far from trivial. For example, certain
satellites must communicate at some length with a ground station several
times per day, with a predetermined maximum interval between
communications, and yet the communication windows and choice of ground
stations are constrained by the satellites’ orbits. LR-26 treats the problem as
a 0-1 integer programming problem involving hundreds of variables and
thousands of linear constraints. The system handles many of the constraints
by Langrangian relaxation, that is, by converting them to weighted
components of the objective function that is to be maximised, so that if a
constraint is violated the consequence is that the objective function value
will be reduced by some amount that depends on the associated weight. The
scheduler works by finding a partial schedule that may not satisfy all
constraints, finding uncommitted variables within unsatisfied constraints and
proposing values for them, and searching through a stack of such proposals
to find good extensions to the partial schedule.

There are various possible heuristics used for each of several decision
stepsin this process. In particular, there are four different weight-adjustment
heuristics, 9 primary and 9 secondary heuristic methods of ordering the set
of unsatisfied constraints, 2 heuristic methods for proposing possible
solutions to unsatisfied constraints and 4 heuristic methods for stacking these
proposals for consideration. There are thus 4x9x9x2x4=2592 possible
strategies. To evaluate any one strategy properly meant testing it on 50
different problems which, the authors calculate, would have meant spending
around 450 CPU days to evaluate all the strategies. Instead, COMPOSER
applied a simple hill-climbing strategy thus restricting the search to
4+2+(9x4)+9=51 dtrategies, at a tolerable cost of 8.85 CPU days. The
outcome was “a significant improvement in performance’, in terms of
solution speed and quality and in the number of problems that could be
solved at al, compared to the originally-used strategy. A potential

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 9
MODERN SEARCH TECHNOLOGY

disadvantage of the approach lies in the assumption that the training set isin
some way representative of future problems. In the area of satellite
communication scheduling this is unlikely to be true — new satellites can
have new orbits and different and potentially |ess demanding communication
window requirements, for example.

A second example of the use of a hyper-heuristic approach concerns
open-shop scheduling problems. In such problems there are, say, j jobs each
consisting of a certain number of tasks. A task consists of visiting a certain
machine for a certain task-specific length of time. The tasks associated with
ajob can be done in any order — if it was a fixed job-specific order then it
would be a job-shop problem instead. Fang et a [2] used a genetic
algorithm which built solutions as follows. A chromosome was a series of
pairs of integers [t,h,t,h,...] interpreted from left to right and meaning, for
each i, ‘consider the t;-th uncompleted job (regarding the list of uncompleted
jobs as circular, so that this is always meaningful) and use heuristic h to
select atask to insert into the schedule in the earliest place where it will fit'.
Examples of heuristics used included:

¢ choose the task with largest processing time;
¢ choose the task with shortest processing time;

« of those tasks which can be started as early as possible, choose
the one with largest processing time;

e among those operations which can be inserted into any gap in
the schedule, pick the one that best fillsagap (that is, leaves as
little idle time as possible);

e andsoon.

This approach, termed evolving heuristic choice, provided some excellent
results on benchmark problems including some new best results at that time.
Nevertheless, there are some caveats. First, what is the nature of the space
being searched? It islikely that in many cases, severa heuristics might lead
to the same choice of task, so it may be that the search spaceis not nearly as
large as it might first seem. Second, is the genetic algorithm necessary or
might some simpler, non-population-based search algorithm do as well?
Third, if there are n tasks then there are effectively n-1 pairs of genes (there
is no choice when it comes to inserting the very last task), so if nislarge the
chromosome will be very long and there is areal risk that genetic drift will
have a major impact on the result. Fourth, the process evolves solutions to

10 Chapter #

individual problems rather than creating a more generally applicable
algorithm.

Schaffer [14] carried out an early investigation into the use of a genetic
algorithms which select heuristics. The paper describes the Philips FCM
SMD robot and the heuristic selection genetic algorithm.

In [15] Hart and Ross considered job-shop scheduling problems. The
approach there relies on the fact that there is an optimal schedule which is
active - an active schedule is one in which, to get any task completed sooner
you would be forced to ater the sequence in which tasks get processed on
some machine, and to do that you would force some other task to be delayed.
The optimal schedule might even be non-delay, that is, not only active but
also such that no machine is ever idle when there is some task that could be
started on it. There is a widely-used heuristic algorithm due to Giffler and
Thompson [16] that generates active schedules:

let C = theset of all tasks that can be scheduled next

2. lett = the minimum completion time of tasks in C, and let m=
machine on which it would be achieved

3. let G = theset of tasksin C that are to run on m whose start time
is<t

4, choose amember of G, insert it in the schedule

gotol

Note that step 4 involves making a choice. This agorithm can be
simplified so as to generate non-delay schedules by only looking at the
earliest-starting tasks:

the set of all tasks that can be scheduled next
the subset of C that can start at the earliest possible time

let C
let G
choose a member of G, insert it in the schedule

A W D P

gotol

Note that step 3 also involves making achoice. Theideain[15] isto use
a chromosome of the form [a ,h,,a,,h,,...], where the chromosome is again
read from left to right and a is O or 1 and indicates whether to use an
iteration of the Giffler and Thompson algorithm or an iteration of the non-
delay agorithm to place one more task into the growing schedule, and h,
indicates which of twelve heuristics to use to make the choice involved in

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 11
MODERN SEARCH TECHNOLOGY

either algorithm. Again, this produced very good results on benchmark
problems when tested on a variety of criteria. The authors looked at the
effective choice at each stage and found that fairly often, there were only one
or two tasks to choose between, and never more than four. The space being
searched is thus much smaller than the chosen representation would suggest;
many different chromosomes represent the same final schedule. The authors
also observed that, in constructing a schedule, it is the early choices that
really matter. For example, if the first 50% of choices are made according to
what the evolved sequence of heuristic choices suggests, but the other 50%
are made at random, then the result is till a very satisfactory schedule. This
suggests at least a partial answer to the worry raised above about using very
long chromosomes: quite simply, do not do it. Instead, use a much
shortened chromosome just to evolve the early choices and then resort to
using afixed heuristic to complete the construction.

A real-world example of using a hyper-heuristic approach is described in
[17], where the problem is to schedule the collection and delivery of live
chickens from farms al over Scotland and Northern England to one of two
processing factories, in order to satisfy the set of orders from supermarkets
and other retailers. The customer orders would change week by week and
sometimes day by day. The task was to schedule the work done by a set of
‘catching sgquads’ who moved around the country in mini-buses, and a set of
lorries who would ferry live chickens from each farm back to one of the
factories. The principal aim was to keep the factories supplied with work
without requiring live chickens to wait too long in the factory yard, for
veterinary and legal reasons. This was complicated by many unusual
constraints. For example, there were several types of catching squad,
differentiated by which days they worked, when they started work, what
guaranteed minimum level of work they had been offered and what maximal
amount they could do. There were constraints on the order in which farms
could be visited, to minimise potential risks of spreading diseases of
chickens. There were constraints on the lorry drivers and on how many
chickens could be put into a single 'module’ (a tray-like container) and
variationsin the number of such modules different lorries could carry, and so
on. Overall, the target was not to produce optimal schedules in cost terms,
because the work requirements could anyway change at very short notice but
it was not generally practicable to make very large-scale changes to staff
schedules at very short notice. Instead, the target was to create good
schedules satisfying the many constraints, that were also generally similar to
the kinds of work pattern that the staff were already familiar with, and to do
so quickly and reliably. The eventual solution used two genetic algorithms.
One used a heuristic sdlection approach to decompose the total set of

12 Chapter #

customer orders into individual tasks and assign those tasks to catching
squads. The other started with these assignments and evolved the schedule
of lorry arrivals at each factory; from such schedules it was possible to
reason backwards to determine which squad and lorry had to arrive at each
farm at which times, and thus construct a full schedule for all participants.
In the first genetic a gorithm, the chromosome specified a permutation of the
customer orders and then two sequences of heuristic choices. The first
sequence of choices worked through the permutation and split each order
into loads using simple heuristics about how to partition the total customer
order into convenient workload chunks; the second sequence of choices
suggested how to assign those chunks to catching squads. The end result did
meet the project’s requirements but, like many other practically-inspired
problems, it was not feasible to do a long-term study to determine just how
crucia each of the ingredients was to success. However, the authors report
that a more conventional permutation-based genetic algorithm approach to
this scheduling task had not been successful.

In the above examples (apart from the hill-climbing approach used in the
LR-26 satellite communication scheduler), a genetic algorithm was used to
evolve a fine-grained sequence of choices of heuristics, with one choice per
step in the process of constructing a complete solution. Although the end
results were generally good, thisis still somewhat unsatisfactory because the
method evolves solutions only to specific instances of problems and may not
handle very large problems well. A different kind of hyper-heuristic
approach that begins to tackle such objections is described in [18]. That
paper is concerned with solving large-scale university exam timetabling
problems. There are a number of fixed time-slots at which exams can
happen, and there are rooms of various sizes. Two exams cannot happen at
the same time if there is any student who takes both; more than one exam
can happen in aroom at the same time if no student takes both and the room
is large enough. Certain exams may be constrained to avoid certain time-
slots when, for example, an appropriate invigilator is unavailable. There are
also some ‘soft’ constraints which it would be good to respect but which can
be violated if necessary. For example, it is desirable that no student should
have to sit exams in consecutive time-slots on the same day and it is often
desirable that very large exams should happen early so as to permit more
time for marking them before the end of the whole exam period. Such
problems can involve thousands of exams and tens of thousands of students.

The approach taken in [18] is to suppose that there is an underlying
timetable construction algorithm of the general sort shown in figure #-2.

/0Do first phase of construction /7
while(condition(X) == FALSE)

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 13
MODERN SEARCH TECHNOLOGY

{
event = apply_event_heuristic(H1);
timeslot = apply_slot_heuristic(H2,event);
add_to_timetable(event, timeslot);

}

/00Do second phase of construction /7

while(not(completed()))

{
event = apply_event_heuristic(H3);
timeslot = apply_slot_heuristic(H4,event);
add_to_timetable(event, timeslot);

}

Figure #-2. A two-phase timetable building algorithm

The idea is to use a genetic agorithm to evolve the choices of H1, H2,
H3 and H4 and the condition X which determines when to switch from the
first phase to the second. Some of the heuristics and possible conditions
involved further parameters, such as whether and how much to permit
backtracking in making a choice, or switching to phase 2 after placing N
events. The rationale for using such an algorithm is that many timetabling
problems necessitate solving a certain sort of problem initially (for example,
a bin-packing problem to get the large exams well packed together if room
space is in short supply) but a different sort of problem in the later stage of
construction. Soft constraints are handled within the heuristics, for example,
in order to cut down the chances of a student having examsin adjacent time-
dlots an heuristic might consider time-slots in some order that gave adjacent
dotsavery low priority.

A chromosome was evaluated by constructing the timetable and
assessing the quality of the result. Interestingly, this method solved even
very large timetabling problems very satisfactorily in under 650 evaluations.
The authors also conducted a brute-force search of the space of
chromosomes in order to check whether the genetic algorithm was delivering
very good-quality results (at least as far as the chosen representation would
permit) whilst visiting only a tiny proportion of the search space, and were
able to confirm the truth of this. However, they did not also examine
whether the discovered instances of the framework described in figure #-2
could be applied successfully to other problems originating from the same
university; thisisatopic for further research.

14 Chapter #
3. HYPER-HEURISTIC FRAMEWORK

This section describes a particular hyper-heuristic framework that has
been presented in [19,20,25,26,27,28]. As has been discussed earlier, ameta-
heuristic typically works on the problem directly, often with domain
knowledge incorporated into it. However, this hyper-heuristic framework
operates at a higher level of abstraction and often has no knowledge of the
domain. It only has access to a set of low level heuristics that it can call
upon, but with no knowledge as to the purpose or function of a given low
level heuristic. The motivation behind this suggested approach is that once a
hyper-heuristic algorithm has been developed then new problem domains
can be tackled by only having to replace the set of low level heuristics and
the evaluation function, which indicates the quality of a given solution.

A diagram of ageneral hyper-heuristic framework is shown in figure #-3.

Hyper-heuristic

Non-domain data flow

Domain Barrier

Non-domain data flow

Set of low level heuristics

() e ()

Evaluation Function

Figure #-3. Hyper-heuristic Framework

The figure shows that there is a barrier between the low level heuristics
and the hyper-heuristic. Domain knowledge is not allowed to cross this
barrier. Therefore, the hyper-heuristic has no knowledge of the domain
under which it is operating. It only knows it has n low level heuristics on
which to call and it knows it will be passed the results of a given solution
once it has been evaluated by the evaluation function.

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 15
MODERN SEARCH TECHNOLOGY

There is, of course, a well defined interface between the hyper-heuristic
and the low level heuristics. The reasons for this are two-fold

1

It allows the hyper-heuristic to communicate with the low level
heuristics using a standard interface, otherwise the hyper-heuristic
would need a separate interface for each low level heuristic whichis
obviously nonsensical. In addition, it facilitates the passing of non-
domain data between the low level heuristics and the hyper-heuristic
(and vice versa). For example, the interface developed in [25]
includes components such as the result of the evauation function
and the CPU time taken by the low level heuristic (which, equally,
could be calculated by the hyper-heuristic). In addition, we have also
included a component that allows us to “tell” alow level heuristic
how long it has to run. The motivation behind this idea is that we
call each heuristic in turn giving it a specified amount of time and
the heuristic that performs the best, in the time allowed, is the one
that is applied to the current solution. In conjunction with this
component, the interface also defines if the low level heuristic
should apply its changes to the current solution or if it should just
report what effect it would have if it did apply those changes. The
idea is that the hyper-heuristic can ask each low level heuristic how
well it will do against a given solution. The hyper-heuristic can then
decide which heuristic (or set of heuristics) should be allowed to
update the solution. We have not fully explored these ideas yet but
the interface will allow us to investigate them at an appropriate time.

It allows rapid development for other domains. When implementing
a new problem, the user has to supply a set of low level heuristics
and a suitable evaluation function. If the low level heuristics follow
astandard interface the hyper-heuristic does not have to be altered in
any way. It is able to simply start solving the new problem as soon
as the user has supplied the low level heuristics and the evaluation
function. That is, as stated above, we aim for a hyper-heuristic to
operate at a higher level of abstraction than a meta-heuristic
approach.

An example of a hyper-heuristic operating at a higher level of abstraction
can be seen in the work of Cowling, Kendall and Soubeiga [19,25,26,27]. In
[25] a hyper-heuristic approach was devel oped and applied to a sales summit
problem (a problem of matching suppliers to potential customers at a sales
seminar). In [25] the hyper-heuristic had access to 10 low level heuristics
which included removing a delegate from a meeting with a particular
supplier, adding a delegate to supplier to allow them to meet and remove

16 Chapter #

meetings from a supplier who has more than their allocation. In [26] the
hyper-heuristic was modified so that it automatically adapted some of its
parameters but, again, the sales summit problem was used as a test bench. In
[27], the hyper-heuristic remained the same but a new problem was
introduced. This time, the problem was scheduling third year undergraduate
project presentations for a UK university. Eight low level heuristics were
developed, which included replace a staff member in a given session, move
one presentation from one session to another and swap the 2™ marker for a
given session. The changes were such that only the low level heuristics and
the eval uation function was changed. The hyper-heuristic remained the same
in the way that it chose which low level heuristic to call next. Good quality
solutions were produced for this different problem domain.

This idea was further developed in [19] when the same hyper-heuristic
approach was applied to nurse rostering.

The only information that the hyper-heuristic has access to in this
framework is data which is common to al problem types and which it
decides to record as part of its internal state. For example, the hyper-
heuristic might store the following

* How much CPU time agiven heuristic used when it was last called?

¢ The change in the evaluation function when the given heuristic was
caled?

* How long (possibly in CPU time) has elapsed since a given heuristic
has not been called?

The important point is that the hyper-heuristic has no knowledge as to the
function of each heuristic. For example, it will not know that one of the
heuristics performs 2-opt for the Traveling Salesman Problem. Indeed, it
does not even know that the problem being optimised is the Traveling
Salesman Problem.

Of course, the hyper-heuristic designer is allowed to be as imaginative as
he/she wishes within the constraints outlined above. For example, the
internal state of the hyper-heuristic could store how well pairs of heuristics
operate together. If the hyper-heuristic calls one heuristic followed by
another, does this lead to a worsening of the evaluation function after the
first call but a dramatic (or even dlight) improvement after the second
heuristic has been called? Therefore, one hyper-heuristic idea might be to
store data about pairs (triples etc.) of heuristics that appear to work well
when called consecutively but, if called in isolation, each heuristic, in
general, performs badly.

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 17
MODERN SEARCH TECHNOLOGY

Using itsinternal state, the hyper-heuristic has to decide which low level
heuristic(s) it should call next. Should it call the heuristic that has led to the
largest improvement in the evaluation function? Should it call the heuristic
that runs the fastest? Should it call the heuristic that has not been called for
the longest amount of time? Or, and more likely, should it attempt to balance
all these factors (and more) to make an informed decision as to which low-
level heuristic (or pairs, triples etc.) it should call next.

The internal state of the hyper-heuristic is a matter for the designer, asis
the process to decide on which heuristic to call next, but once a suitable
hyper-heuristic is in place then the hope is that it will perform reasonably
well across a whole range of problems and not just the one for which it was
originally implemented.

The hyper-heuristic framework described above is the framework
adopted in [25,26,27], where the hyper-heuristic maintains an interna state
which is accessed by a choice function to decide which low level heuristic to
call next. The choice function is a combination of terms which considers
recent performance of each low level heuristic (denoted by f;), recent
performance of pairs of heuristics (denoted by f,) and the amount of time
since a given heuristic has been called (denoted by f3). Thus we have

f(H) = afy(Hy) + Ba(H;, Hi) + Ks(Ho)
where

H, isthe k™ heuristic

a, fand oare weights which reflect the importance of each term. It
is these weights that are adaptively changed in [26].

f1(Hy) isthe recent performance of heuristic Hy

fo(H;,Hy) is the recent performance of heuristic pair Hj,Hy

f3(Hy) is a measure of the amount of time since heuristic Hy was
called.

f, and f, are aiming to intensify the search while f; attempts to add a
degree of diversification. The maximal value, f(Hy), dictates the heuristic
which is called next.

A different type of hyper-heuristic is described in [28] where a genetic
algorithm is used to evolve a sequence of callsto the low level heuristics. In
effect, the genetic algorithm replaces the choice function described above
and each member of the population (that is, each chromosome) is eval uated
by the solution it returns when applying the heuristics in the order denoted

18 Chapter #

by the chromosome. In later work by Han, Kendall and Cowling [20] the
chromosome length is allowed to adapt and longer chromosomes are
penalised on the basis that they take longer to evaluate.

However, in [20] and [28] the concept of the domain barrier remains and
the genetic algorithm has no knowledge of the problem. It simply tries to
evolve a good sequence of heuristic calls.

4. MODERN HYPER-HEURISTIC APPROACHES

There has been much recent research directed to the various aspects of
Hyperheuristics. An example that follows the framework described in
Section 2.2 can be found in [21]. The focus here is on learning solution
processes applicable to many problem instances rather than learning
individual solutions. Such process would be able to choose one of various
simple, well-understood heuristics to apply to each state of a problem,
gradually transforming the problem from its initial state to a solved state.
The first use of such model has been applied to the one-dimensional bin-
packing problem described in Section 2.1. In this work, an accuracy-based
Learning Classifier System (XCS) [22] has been used to learn a set of rules
that associates characteristics of the current state of a problem with, in this
case, eight different heuristics, two of which have been explained in Section
2.1 (largest-first-first-fit and exact-fit). The set of rules is used as follows:
given the initial problem characteristics P, a heuristic H is chosen to pack a
bin, gradually altering the characteristics of the problem that remains to be
solved. At each step, a rule appropriate to the current problem state P’ is
chosen, and the process repeats until all items have been packed.

The approach is tested using 890 benchmark bin-packing prablems, of
which 667 were used to train the XCS and 223 for testing. The combined set
provides a good test of whether the system can learn from a very varied
collection of problems. The method (HH) achieved optimal results on 78.1%
of the training problems, and 74.6% of the remaining test solutions. This
compares well with the best single heuristic (the author’s improved version
of exact-fit) which achieved optimality 73% of the time. Largest-first-first-
fit, for instance, achieves optimality in 62.2%, while another one of the
heuristics used named ‘next-fit' reaches optimality in 0% of the problems.
Even though the results of the best heuristic might seem close to HH, it is
also noteworthy that when HH is trained purely on some of the harder
problems (which none of the component heuristics could solve to optimality
alone), it manages to solve seven out of ten of these problems to optimality.

Improvements over thisinitial approach are reported in [23], where anew
heuristic (R) that uses a random choice of heuristics has been introduced to

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 19
MODERN SEARCH TECHNOLOGY

compare results of HH. R solves only 56.3% of the problems optimally,
while HH reaches 80%. This work also looks more closely at the individual
processes evolved arising from two different reward schemes presented
during the learning process of HH. The behaviour of HH is further analysed
and compared to the performance of the single heuristics. For instance, in
HARDS9, one of the very difficult problems used in the set, HH learned that
the combination of only two of the eight single heuristics (here called hl to
h8) reaches optimality when none of the heuristics used individualy
achieved it. The solution found by HH used only 56 bins, while the best of
the individual heuristics used alone needs 58 bins. The best reported resuilt,
using a method not included in any of the heuristics used by HH, used 56
bins (see [24], Data Set 3). Improvements of this type were found in alarge
number of other problems, including al the HARD problems. The approach
looks promising and further research is being carried out to evauate it in
other problem domains.

Cowling, Han, Kendall and Soubeiga (previous section) propose a hyper-
heuristic framework existing at a higher level of abstraction than meta-
heuristic local search methods, where different neighbourhoods are selected
according to some “choice function”. This choice function is charged with
the task of determining which of these different neighbourhoods is most
appropriate for the current problem. Traditionally the correct
neighbourhoods are selected by a combination of expert knowledge and/or
time consuming trial and error experimentation, and as such the automation
of this task offers substantial potential benefits to the rapid development of
algorithmic solutions. It naturally follows that an effective choice functionis
critical to the success of this method, and this is where most research has
been directed [19,25,26,27]. See the previous section for a more detailed
discussion.

The approach of Cowling, Kendall and Han to a trainer scheduling
problem [28] also fits into this class of controlling the application of low
level heuristics to construct solutions to problems. In this approach a
“Hyper-genetic algorithm” is used to evolve an ordering of 25 low-level
heuristics which are then applied to construct a solution. The fithess of each
member of the genetic algorithm population is determined by the quality of
the solution it constructs. Experimental results show that the method
outperformed the tested conventional genetic and memetic algorithm
methods. It also greatly outperformed any of the component heuristic
methods, abeit in a greatly multiplied amount of CPU time.

Another approach proposed by Burke and Newall to examination
timetabling problems [29] uses an adaptive heuristic to try and improve on
an initial heuristic ordering. The adaptive heuristic functions by first trying

20 Chapter #

to construct a solution by initially scheduling exams in an order dictated by
the original heuristic. If using this ordering means that an exam cannot be
acceptably scheduled, it is promoted up the order in a subsequent
construction. This process continues either until the ordering remains static
(all exams can be scheduled acceptably), or until a pre-defined time limit
expires. The experiments showed that the method can substantially improve
quality over that of the original heuristic. The authors also show that even
when given a poor initial heuristic acceptable results can still be found
relatively quickly.

Other approaches that attempt to harness run-time experience include the
concept of Squeaky wheel optimisation proposed by Joslin and Clements
[30]. Here a greedy constructor is applied to a problem, followed by an
analysis phase that identifies problematic elements in the produced solution.
A prioritiser then ensures that the greedy constructor concentrates more on
these problematic elements next time, or as the authors phrase it: "The
squeaky wheel gets the grease". This cycle is iterated until some stopping
criteria are met. Selman and Kautz propose a similar modification to their
GSAT procedure [31]. The GSAT procedure is a randomised local search
procedure for solving propositional satisfiability problems. It functions by
iteratively generating truth assignments and then successively "flips' the
variable that leads the greatest increase in clauses satisfied, in a steepest
descent style. The proposed modification increases the "weight” of clausesif
they are still unsatisfied at the end of the local search procedure. This hasthe
effect that on subsequent attempts the local search element will concentrate
more on satisfying these clauses and hopefully in time lead to full
satisfaction of all clauses.

Burke et a [3] investigate the use of the case based reasoning paradigm
in a hyper-heuristic setting for selecting course timetabling heuristics. In
this paper, the system maintains a case base of information about which
heuristics worked well on previous course timetabling instances. The
training of the system employs knowledge discovery techniques. This work
is further enhanced by Petrovic and Qu [4] who integrate the use of Tabu
Search and Hill Climbing into the Case Based Reasoning system.

5. CONCLUSIONS

It is clear that hyper-heuristic development is going to play a major role
in search technology over the next few years. The potential for scientific
progress in the development of more general optimisation systems, for a
wide variety of application areas, is significant. For example, Burke and
Petrovic [32] discuss the scope for hyper-heuristics for timetabling problems

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 21
MODERN SEARCH TECHNOLOGY

and this is currently an application area that is seeing significant research
effort [1,3,4,18,25,29,32]. Indeed, in 1997, Ross, Hart and Corne [1] said,
“However, al this naturaly suggests a possibly worthwhile direction for
timetabling research involving Genetic Algorithms. We suggest that a
Genetic Algorithm might be better employed in searching for a good
algorithm rather than searching for a specific solution to a specific problem.”
Ross, Hart and Corn€'s suggestion has led to some important research
directions in timetabling. We think that this suggestion can be generalised
further and we contend that a potentially significant direction for meta-
heuristic research is to investigate the use of hyper-heuristics for a wide
range of problems. As this chapter clearly shows, this work is already well
underway.

ACKNOWLEDGEMENTS

The authors are grateful for support from the UK Engineering and
Physical Sciences Research Council (EPSRC) under grants GR/N/36660,
GR/N/36837 and GR/M/95516.

REFERENCES

[1] P.Ross, E.Hart and D.Corne. Some Observations about GA-based Exam Timetabling. In
LNCS 1408, Practice and Theory of Automated Timetabling Il : Second International
Conference, PATAT 1997, Toronto, Canada, August 1997, sdlected papers (eds Burke E.K.
and Carter M), Springer-Verlag, pp 115-129

[2] H-L Fang, P.M.Ross and D.Corne. A Promising Hybrid GA/Heuristic Approach for Open-
Shop Scheduling Problems”, in Proceedings of ECAI 94: 11" European Conference on
Artificial Intelligence, A. Cohn (ed), pp 590-594, John Wiley and Sons Ltd, 1994

[3] EK.Burke, B.L.MacCarthy, S.Petrovic and R.Qu. Knowledge Discovery in a Hyper-
heuristic for Course Timetabling using Case Based Reasoning. To appear in the
Proceedings of the Fourth International Conference on the Practice and Theory of
Automated Timetabling (PATAT 02), Ghent, Belgium, August 2002

[4] S.Petrovic and R.Qu. Case-Based Reasoning as a Heuristic Selector in a Hyper-Heuristic
for Course Timetabling. To appear in Proceedings of the Sxth International Conference
on Knowledge-Based Intelligent Information & Engineering Systems (KES 2002), Crema,
Italy, Sep 2002

[5] D.Wolpert and W.G.MacReady. No Free Lunch Theorems for Optimization. |IEEE
Transactions on Evolutionary Computation, 1(1) : pp 67-82, 1997

[6] D.S.Johnson. Near-optimal bin-packing algorithms. PhD thesis, MIT Department of
M athematics, Cambridge, Mass., 1973

22 Chapter #

[7] E.G.Coffman, M.R.Garey, and D.S. Johnson. Approximation agorithms for bin packing:
a survey. In D. Hochbaum, editor, Approximation algorithms for NP-hard problems, pp
46-93. PWS Publishing, Boston, 1996

[8] P.A.Djang and P.R.Finch. Solving one dimensiona bin packing problems. Available as
http: //www.zi anet.com/pdjang/binpack/paper.zip

[9] I. P.Gent. Heuristic solution of open bin packing problems. Journal of Heuristics, 3(4): pp
299-304, 1998

[10] L.S.Pitsoulis and M.G.C.Resende. Greedy randomized adaptive search procedures. In
P.M.Pardalos and M.G.C.Resende, editors, Handbook of Applied Optimization, pp 168—
181. OUP, 2001

[11] SE.Cross and E.Walker. Dart: applying knowledge-based planning and scheduling to
crisis action planning. In M.Zweben and M.S.Fox, editors, Intelligent Scheduling. Morgan
Kaufmann, 1994

[12] S.Minton. Learning Search Control Knowledge: An Explanation-based Approach.
Kluwer, 1988

[13] J.Gratch, S.Chein, and G.de Jong. Learning search control knowledge for deep space
network scheduling. In Proceedings of the Tenth International Conference on Machine
Learning, pp 135-142, 1993

[14] J.D.Schaffer, Combinatorial Optimization by Genetic Algorithms: The Vaue of the
Phenotype/Genotype Distinction. In First International Conference on Evolutionary
Computing and its Applications (EVCA’'96), E.D.Goodman, V.L.Uskov, W.F.Punch IlI
(eds), Russian Academy of Sciences, Moscow, Russia, June 24-27 1996, pp.110-120.
Publisher: Ingtitute for High Performance Computer Systems of the Russian Academy of
Sciences, Moscow, Russia

[15] E.Hart and P.M.Ross. A heuristic combination method for solving job-shop scheduling
problems. In A.E.Eiben, T.Back, M.Schoenauer, and H-P.Schwefd, editors, Parallel
Problem Solving from Nature V, LNCS 1498, pages 845-854. Springer-Verlag, 1998

[16] B.Giffler and G.L. Thompson. Algorithms for solving production scheduling problems.
Operations Research, 8(4): pp 487-503, 1960

[17] EHart, P.M.Ross, and J. Nelson. Solving a real-world problem using an evolving
heuristically driven schedule builder. Evolutionary Computation, 6(1): pp 61-80, 1998

[18] H.Terashima-Marin, P.M.Ross, and M.Vaenzuda-Renddn. Evolution of constraint
satisfaction strategies in examination timetabling. In W.Banzhaf etal., editor,
Proceedings of the GECCO-99 Genetic and Evolutionary Computation Conference, pp
635-642. Morgan Kaufmann, 1999

[19] P.Cowling, G.Kendall and E.Soubeiga. Hyperheuristics: a robust optimisation method
applied to nurse scheduling. Technical Report NOTTCS-TR-2002-6 (submitted to PPSN
2002 Conference), University of Nottingham, UK, School of Computer Science & IT,
2002

[20] L.Han, G.Kendall and P.Cowling. An Adaptive Length Chromosome Hyperheuristic
Genetic Algorithm for a Trainer Scheduling Problem. Technical Report NOTTCS-TR-
2002-5 (submitted to SEAL 2002 Conference), University of Nottingham, UK, School of
Computer Science & IT, 2002

[21] P.Ross, S.Schulenburg, J.G.Marin-Blazquez and E.Hart. Hyper-heuristics: learning to
combine simple heuristics in bin-packing problems. Accepted for Genetic and
Evolutionary Computation Conference (GECCO 20020) 2002, New York, July 9-13 2002

[22] SWilson. Generdisation in the XCS classifier system. In proceedings of the Third
Genetic Programming Conference (J.Kozaed.), pp 665-674, Morgan Kaufmann, 1998.

#. HYPER-HEURISTICS: AN EMERGING DIRECTION IN 23
MODERN SEARCH TECHNOLOGY

[23] S. Schulenburg, P. Ross, J.G. Marin-Blézquez and E. Hart. A hyper-heuristic approach to
single and multiple step environments in bin-packing problems. To appear in Proceedings
of the Fifth International Workshop on Learning Classifier Systems 2002 (IWLCS-02.

[24] http://bwl.tu-darmstadt.de/bwl 3/forsch/projekte/binpp

[25] P.Cowling, G.Kendall, E.Soubeiga. A Hyperheuristic Approach to Scheduling a Sales
Summit. In LNCS 2079, Practice and Theory of Automated Timetabling Il : Third
International Conference, PATAT 2000, Konstanz, Germany, August 2000, selected
papers (eds Burke E.K. and Erben W), Springer-Verlag, pp 176-190

[26] P.Cowling, G.Kendall and E.Soubeiga. A Parameter-Free Hyperheuristic for Scheduling
a Sales Summit. In proceedings of 4th Metahuristics International Conference (MIC
2001), Porto Portugal, 16-20 July 2001, pp 127-131

[27] P.Cowling, G.Kendall and E.Soubeiga. Hyperheuristics: A Tool for Rapid Prototyping in
Scheduling and Optimisation. In LNCS 2279, Applications of Evolutionary Computing :
Proceedings of Evo Workshops 2002, Kinsale, Ireland, April 3-4, 2002, (eds : Cagoni S,
Gottlieb J, Hart E, Middendorf M, Gunther R), pp 1-10, ISSN 0302-9743, ISBN 3-540-
43432-1, Springer-Verlag

[28] P.Cowling, G.Kendal and L.Han. An Investigation of a Hyperheuristic Genetic
Algorithm Applied to a Trainer Scheduling Problem. In proceedings of Congress on
Evolutionary Computation (CEC2002), Hilton Hawaiian Village Hotel, Honolulu, Hawaii,
May 12-17, 2002, pp 1185-1190, ISBN 0-7803-7282-4

[29] E.K.Burke and JP.Newadl. A new adaptive heuristic framework for examination
timetabling problems. Technica Report NOTTCS-TR-2001-5 (submitted to Annas of
Operations Research), University of Nottingham, UK, School of Computer Science & IT,
2002

[30] D.E.Jodlin and D.P.Clements Squeaky Whedl Optimization, Journal of Artificial
Intelligence Research, Volume 10, 1999, pp 353-373

[31] B.Sdman and H.Kautz, Domain-independent extensions to GSAT: Solving large
structured satisfiability problems, Proc. of the 13" Intl Joint Conf. on Artificial
Intelligence, 1993, pp 290-295

[32] E.K.Burke and S.Petrovic, Recent Research Directions in Automated Timetabling. To
appear in the European Journal of Operational Research, 2002

