
1-4244-0023-6/06/$20.00 ©2006 IEEE CIS 2006

Using an Evolutionary Algorithm for the Tuning of a
Chess Evaluation Function Based on a Dynamic

Boundary Strategy

Hallam Nasreddine and Hendra Suhanto Poh
Faculty of Engineering and Computer Science

The University of Nottingham, Malaysia Campus
Semenyih, Malaysia

kcznh@nottingham.edu.my, hendrasutanto@gmail.com

Graham Kendall
School of Computer Science and IT

The University of Nottingham, Jubilee Campus
Nottingham, UK

 gxk@cs.nott.ac.uk

Abstract—One of the effective ways of optimising the evaluation
function of a chess game is by tuning each of its parameters.
Recently, evolutionary algorithms have become an appropriate
choice as optimisers.

In the past works related to this domain, the values of the
parameters are within a fixed boundary which means that no
matter how the recombination and mutation operators are
applied, the value of a given parameter cannot go beyond its
corresponding interval.

In this paper, we propose a new strategy called “dynamic
boundary strategy” where the boundaries of the interval of each
parameter are dynamic. A real-coded evolutionary algorithm
that incorporates this strategy and uses the polynomial mutation
as its main exploitative tool is implemented.

The effectiveness of the proposed strategy is tested by competing
our program against a popular commercial chess software. Our
chess program has shown an autonomous improvement in
performance after learning for hundreds of generations.

Keywords—evaluation function, evolutionary algorithm, chess
program.

I. INTRODUCTION
Chess, or “The Game of the Kings”, is a classic strategy

board game involving two players. It consists of 32 chess
pieces and an 8 x 8 squares board, where the goal of the game
is to capture the opponent’s king. The first chess playing
machine was built in 1769. Amazingly, the first ever chess
program was written before computers were invented and this
has gone onto become one of the popular research areas in
computational intelligence. Since then, researchers have been
trying to find a solution that allows the machine to play a
perfect chess game.

In order to achieve this, the machine is required to traverse
the chess game’s search tree up to depth 100 (where each
player is allowed to move no more than fifty times in a game).
This is simply computationally impossible, as the average of
possible moves (branching factor) per turn is around 35
moves.

Searching all the way down to the bottom of the search tree
is still computationally impossible even after using pruning
techniques (such as alpha-beta pruning) to cut off unnecessary
branches of the tree. Therefore, practitioners would normally
limit the search depth and apply some evaluation function to
estimate the score of a given move. The setup of such an
evaluation function can be done by iteratively tuning it until it
reaches an optimum state. The search space of the possible
values of the evaluation function, being so large, suggests the
use of evolutionary algorithms might be applicable.

In this work, we use an evolutionary algorithm to search for
a good evaluation function. Using the mutation operator and
applying it on a dynamic interval, we try to evolve an adequate
weight (denoting the importance) for each chess piece.

This paper is organised as follows. Section 2 briefly
presents the implemented chess program. Section 3 describes
the key modelling concepts of our application. The
chromosomal representation, the selection method, and the
mutation technique are all discussed. In particular, the
dynamic boundary strategy is explained. Experimental designs
and their results are discussed in section 4. Finally, section 5
gives the concluding remarks of this work.

II. THE CHESS ENGINE
A chess program is implemented to support our

experiments. The positions of the chessboard are represented
by a matrix of size 8x8, where each of its variables
corresponds to a square on the chessboard. The basic rules of
the chess game are implemented in the chess program to
prevent illegal moves.

The chess program determines each move by evaluating the
quality of each possible board position using an evaluation
function. The evaluation function used in this work is a slight
modification of the one used in [1] which is a simplified
version of Shannon’s evaluation function [5].

The evaluation function, given below in (1), calculates the
sum of the material values a) for each chess piece, b) the
number of two pawns existing on the same column (double
pawn) and c) the number of available legal moves (mobility).
Different weights are assigned to each of the chess pieces,
double pawn, and mobility variables. These weights are to be
tuned later by a learning process in order to optimise the
evaluation function.

 ()∑
=

−=
7

0
][][][

i
BlackWhite iQiQiwEval (1)

Where:
Q, W = Quantity, Weight.
Q [7] = {Q king, Q queen, Q rook, Q bishop, Q knight, Q

pawn, Q double pawn, Q mobility}
W [7] = {W king, W queen, W rook, W bishop, W knight,

W pawn, W double pawn, W mobility}

The alpha-beta pruning procedure detailed in [9] is used to
search for the best move from the chess game tree. The depth
of the search is set to 3 ply.

In addition, for each chess piece captured and before the
move is committed, a quiescence check operation is carried
out. This process provides another 3 ply search.

The game is terminated when one of the three conditions is
fulfilled: a checkmate state, no legal moves for a given player,
or both players have reached 50 moves without winning. A
player receives 1 point for a win and 0 for a draw or a loss.

III. METHOD
We use an evolutionary algorithm to optimise the evaluation

function. An individual is represented by a real vector of
dimension 6. Each vector element represents the weight of
either a chess piece other than the king and the pawn (which
are assigned constant weights of 1000 and 1 respectively), a
double pawn, or a mobility.

There are five individuals in any given population. They all
compete with each other for survival. Two individuals (two
chess programs using two different evaluation functions) play
each other in a two round game where each one will take turns
in starting the game first. If an individual wins, it is awarded
+1, otherwise 0. Based on the points collected from this two-
round game, the winner is cloned and its clone mutated. Both
the winner and its mutated version are copied into the next
generation. This process continues until all individuals in the
population converge to the same solution.

A. Selection
A vector population of five individuals is used where the

selection process, a slight modification of the one in [1], is as
follows. First we choose the first individual and make it
compete with a randomly chosen individual from among the

rest of the population.

Figure 1. An Example of Selection-Competition

The winner is duplicated and overwrites the loser. Next, the
second individual is selected and competes with a randomly
chosen individual from the rest of the population excluding the
first individual. This iterative procedure goes on until all the
individuals have been considered. Figure 1 shows a complete
selection of a vector population of five individuals. The
shaded squares indicate the two competing individuals. In this
experiment, and contrary to that in [1], the vector population is
not reversed at the end of the selection so that the propagation
of the fittest individual is slowed down.

By using this iterative method for selection, the fittest
individual will ultimately occupy the last slot of the vector
population.

B. Mutation
In this experiment, a real-coded mutation operator is used

as the main operator to tune the parameters of the evaluation
function of each individual. We choose to use the polynomial
mutation as devised in [11]. Its distribution parameterη is set to
20. The mutated parameter y is given below.

 i
L

i
U

i
t

i
t

i xxxy δ)()()()1,1()1,1(−+= ++ (2)

The parameter iδ is calculated from the polynomial
probability distribution:

)||1)(1(5.0)(δ ηηδ m
mP −+= (3)

5.0r If

5.0r If
,)]1(2[1

,1)2(

i

i
)1/(1

)1/(1

>=
<







−−

−
= +

+

m

m

i

ir
ir

η

η

δ (4)

Where:

y t
i

)1,1(+ = new parameter after mutation

x t
i

)1,1(+ = parameter before mutation

x U
i

)(= parameter upper boundary

Member 1 vs. a random member (2 to 5)

Member 4 won and replaced member 1

1

Member 2 vs. a random member (3 to 5)

Member 3 won and replaced member 2

2

Member 3 vs. a random member (4 to 5)

Member 3 won and replaced member 5

1

Member 4 vs. member 3

Member 3 won and replaced member 4

2

1 2 43 5

4 2 43 5

4 3 43 5

4 3 43 3

4 3 33 3

The new population members

x L
i

)(= parameter lower boundary
η = probability to mutate the parameter close to original

parameter
r = random number in [0 1].

Recall that each individual consists of six parameters

denoting the weights of the different chess pieces (except the
king and the pawn), double pawn and mobility. For each
parameter, a specific value of its probability of mutation is
assigned to it. For instance, the mutation probabilities for
queen, rook, bishop, and knight parameters were all set to
25%, while the mutation probabilities for a double pawn and
mobility parameters were set to 10%. Note that the mutation
probabilities are relatively higher than the usual. This is to
make sure that at least one parameter is mutated so that there
will be no duplicated individuals in the population.

C. Dy namic Boundary Strategy
A good search method must promote diversity so that it is

not trapped in a local optima. The search space in this
application is very large. The diversity of a search method can
be reflected by the standard deviations of each of the
parameters. If the standard deviation is large then the diversity
of the search method will be also large, whereas if the standard
deviation is reduced, the diversity will also be reduced.

To solve the problem of converging to a local optima, we
propose a new approach called Dynamic Boundary Strategy.
This strategy (at the same time) maintains and controls the
diversity of the search throughout the generations. In other
approaches [1], it is required to fix the upper and lower
boundaries for each of the individual’s parameters.

The basic idea of the dynamic boundary strategy is to have
an adjustable boundary for each parameter. Consider the
following individual with the initial parameters:

Queen Rook Bishop Knight Double Pawn Mobility

9 5 3 3 0.5 0.1

The boundaries for the domain of each parameter are

dynamic, however the diameter of that domain is constant. For
instance, the diameters of the domains of the queen, the rook,
the bishop, and the knight are all set to the value 2. The double
pawn’s domain is set the value 0.2. The Mobility’ boundaries
are fixed however (upper boundary =0.5, lower boundary
=0.01). For instance, if the weight of the queen is 9, then its
upper boundary is 11 and its lower boundary is 7. If the weight
of double pawn is 0.5, then its upper and lower boundaries are
respectively 0.7and 0.3.

For example, the parameters of the above individual after
applying the polynomial mutation could be as the following:

Queen Rook Bishop Knight Double Pawn Mobility

8.25 5 3 3 0.5 0.1

Notice that the weight of the queen has been mutated from 9

to 8.25. Then, the upper boundary of the queen will change to
10.25 while its lower boundary will become 6.25. This means
that when the next mutation occurs on the queen’s weight, the
possible weight for the queen will range from 10.25 to 6.25.

In order to speed up the learning process, the weight of the
queen can be forced to be at least equal to the highest
parameter of the individual (such as rook, bishop, or knight).
This is because it is sensible to think that the weight of the
queen must be higher than the weight of any other chess piece
(other than the king) as it is the most useful piece in a chess
game. For example, consider the following values of the
parameters of a given individual:

Queen Rook Bishop Knight Double Pawn Mobility

4.5 5 3 3 0.5 0.1

Notice that the Rook’s weight is the highest. It is obvious
that the Queen’s weight should be at least as higher as that of
the Rook. Therefore, we can bring the Queen’s weight up to 5,
which is now equal to the Rook’s weight.

Queen Rook Bishop Knight Double Pawn Mobility

5 5 3 3 0.5 0.1

The main advantage of dynamic boundary strategy is that
the search space in one generation of learning is much smaller
compared to that of other fixed boundary strategies.

Indeed, the dynamic boundary strategy explores small
portions of the search space at each generation. However, in
the long run, it is still capable of exploring a huge part of the
search space. This is due to its moving boundaries. The main
idea is that at each generation, the search process is
concentrated in one part of the search space.

Without this strategy, one needs to set good boundaries for
the parameter’s domain, otherwise, a sufficiently large domain
must be thought of, which is not a trivial task. This is not
required when using the dynamic boundary strategy

IV. EXPERIMENTAL RESULTS

A. Experimental Design
A small population of five individuals is used for breeding a

good solution. The values for each of the parameters were
inserted manually to make sure that the initial population only
consists of poor individuals (bad evaluation functions). The
purpose was to see whether the dynamic boundary strategy
would be able to ameliorate the fitness (evaluation function) of
the individuals. The initial individuals of the population are
shown in Table I.

TABLE I. THE INDIVIDUALS OF THE INITIAL POPULATION

 Queen Rook Bishop Knight Double
Pawn Mobility

Individual 1 3 3 3 3 0.5 0.1
Individual 2 2.5 2.5 2.5 2.5 0.5 0.1
Individual 3 2 2 2 2 0.5 0.1
Individual 4 1.5 1.5 1.5 1.5 0.5 0.1
Individual 5 1 1 1 1 0.5 0.1

Recall from the section II that our chess program was
designed to search 3 ply and we can extend the search another
3 ply when the quiescence check operation is triggered. We
run the program for 520 generations. The means and the
standard deviations of the initial population are given below in
Table II.

B. Results
After learning for 520 generations, the values of the

parameters of the individuals have changed a lot. Figure 2 and
Figure 3 respectively show the averages and the standard
deviations of the parameters throughout the whole learning
procedure (520 generations).

The averages of the weights and their standard deviations at
the end of the experiments are given in Table III.

It is worth noting that in evolutionary algorithms that use a
fixed boundary approach, the diversity of the search decreases
gradually after many generations. Notice also that the standard
deviations of the last population (using our strategy) shown in
Table III have not changed too far from their initial standard
deviations counterpart (shown in Table II).

C. Success
The weights of the Shannon’s evaluation function [5] are as

follows:

Queen Rook Bishop Knight Double Pawn Mobility

9 5 3 3 0.5 0.1

After running our chess program for 520 generations, the
learning process produced the fittest individual whose
parameter values are as follows

Queen Rook Bishop Knight Double Pawn Mobility

7.57 4.66 4.41 3.16 0.44 0.11

TABLE II. AVERAGES AND THE STDEVS AT THE INITIAL POPULATION

 Queen Rook Bishop Knight Double
Pawn Mobility

Average 2 2 2 2 0.5 0.1
STDEV 0.71 0.71 0.71 0.71 0.0 0.0

TABLE III. AVERAGES AND STDEVS AT THE LAST POPULATION.

 Queen Rook Bishop Knight Double
Pawn Mobility

Average 7.60 3.86 3.56 2.95 0.48 0.10
STDEV 0.08 0.68 0.69 0.12 0.03 0.01

This fittest individual was tested against a chess program
that uses the Shannon’s evaluation function. The results are
shown in Table IV.

In the first game, the chess program based on the Shannon’s
evaluation function dominated the game, but the game ended
with a draw because both players have reached the 50 move
limit. However, in the second game, the fittest individual of our
chess program took control of the game and ended it in just 42
moves (21 moves for each player). This result has shown that
the fittest individual is strong enough to win against a well-
established evaluation function.

We further tested our chess program based on the dynamic
boundary strategy against a well-known commercial chess
program called “Chessmaster 8000”. The Chessmaster 8000
level of difficulty was set to players rating 1800, which falls in
the A class in the USCF rating. The fittest individual of our
chess program played as White player for two games and the
results are shown in Table V.

In the first game, the Chessmaster 8000 beat the fittest
individual in 81 moves. We consider this as a promising result
as our fittest individual was competitive enough to last this
long.

The second game ended with a draw because of the 50
move limit. However, our fittest individual did very well in
this round as it was dominating the game, and had the game
been extended, it would have beaten the ChessMaster 8000.
Our chess program was left with a rook and a pawn, while the
Chessmaster 8000 was left with 2 pawns only.

CONCLUSION
In this paper, we have proposed the use a novel approach

for the evaluation function of a chess playing game. This is
called Dynamic Boundary Strategy

This method is quite effective because those parts of the
search space that are not promising would not be visited.
However, it is important to make sure that the diameter of the
interval (distance between upper and lower boundary) of the
weight of a given parameter must be large enough so that the

TABLE IV. FITTEST INDIVIDUAL AGAINST SHANNON’ EVALUATION
FUNCTION.

 Play as Moves Result
Fittest Individual White 100 moves Draw
Fittest Individual Black 42 moves Win

The Average of each Evaluation Parameter in the Population

0

1

2

3

4

5

6
0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

Generation

W
ei

gh
t

Queen Rook Bishop Knight Double Pawn Mobility

Figure 2. . Averages of each parameter throughout the learning process

The Standard Deviation for each Evaluation Parameter in the
Population

0

0.5

1

1.5

2

2.5

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

Generation

St
an

da
rd

 D
ev

ia
tio

n

Queen Rook Bishop Knight Double Pawn Mobility

Figure 3. Standard deviations of each parameter throughout the learning process

search is not trapped into a local optima.

The fittest individual produced by our method is still unable
to compete against a very good chess player (Chessmaster
8000), but it has proven that the learning algorithm was able to
optimise (to some extent) the evaluation function that is used
to determine a good move. It has beaten the chess program
that uses Shannon’s evaluation function.

In our future work, we will extend the search depth, to

incorporate heuristics, and use a more complex evaluation
function. This, we hope, will produce a very competitive chess
playing individual.

TABLE V. FITTEST INDIVIDUAL AGAINST CHESSMASTER 8000.

 Play as Moves Result
Fittest Individual White 81 moves Lost
Fittest Individual White 100 moves Draw

APPENDIX
1st game: Fittest Individual (White) Vs. Chessmaster 8000
(Black)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

e2e3 g8f6
f1d3 d7d6
d1f3 h8g8
b2b3 b8d7
b1c3 h7h5
f3f5 a7a6
g1f3 c7c5
h2h3 e7e6
f5f4 f6d5
c3d5 e6d5
f4f5 d8c7
c1b2 d7f6
f5f4 f6e4
a2a4 g7g5
f3g5 g8g5
f2f3 c7a5
a1d1 g5g2
f3e4 c5c4
e1f1 f8e7
f1g2 c4d3
b3b4 a5b4
b2c3 b4a4
d1a1 a4e4
f4e4 d5e4
c2d3 e4d3

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

a1a4 c8f5
h1b1 b7b5
b1b5 f5h3
g2h3 e7f6
c3f6 a6b5
a4a8 e8d7
h3h4 d7e6
a8c8 e6f6
h4h5 f6e6
h5h4 e6e7
e3e4 b5b4
c8c7 e7f6
h4g3 f6e5
c7e7 e5d4
g3g2 b4b3
g2g3 b3b2
e7b7 d4e4
b7b2 f7f5
b2b4 e4d5
g3g2 f5f4
b4f4 d5e5
f4f7 e5d5
f7f6 d5c5
f6f7 c5d5
g2g3 d5c5

2nd game: Fittest Individual (White) Vs. Chessmaster 8000
(Black)

1
2
3
4
5
6
7
8
9

10
11
12

e2e3 g8f6
f1d3 d7d6
d1f3 h8g8
b2b3 b8d7
b1c3 h7h5
f3f5 a7a6
g1f3 c7c5
h2h3 e7e6
f5f4 f6d5
c3d5 e6d5
f4f5 d8c7
c1b2 d7f6

26
22
23
24
25
27
28
29
30
31
32
33

d2e3 f4g5
h1g1 d8h4
g1h1 d5e4
d3c4 e4e3
h1h2 h4f4
g2h1 g5e7
h1g2 e7e4
g2f1 c8e6
c4e2 e4e3
b2c1 e6h3
h2h3 e3h3
f1f2 h3h4

13
14
15
16
17
18
19
20
21

f5f4 f6e4
a2a4 g7g5
f3g5 g8g5
f2f3 g5g2
f3e4 c7b8
a4a5 b8c7
e1f1 f8h6
f1g2 h6f4
e3f4 c7d8

34
35
36
37
38
39
40
41

f2f1 e8c8
c1e3 h4f6
f1g2 f6a1
e2h5 d8g8
g2f3 a1f1
f3e4 g8e8
e4d5 e8e5
d5d6

ACKNOWLEDGMENT
The author Hendra Suhanto Poh thanks Nasa Tjan for his

assistance in developing the chess engine, and Gunawan for
providing a facility to run the experiments.

REFERENCES
[1] G. Kendall and G. Whitwell, “An evolutionary approach for the tuning

of a chess evaluation function using population dynamics,” Proceedings
of the 2001 Congress on Evolutionary Computation, vol. 2, pp. 995-
1002, May 2001.

[2] G. Whitwell, “Artificial Intelligence Chess with Adaptive Learning,”
Bachelor Degree Dissertation Thesis, the University of Nottingham,
May 2000.

[3] D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A self-learning
evolutionary chess program,” Proceeding of the IEEE, vol. 92, Issue 12,
pp. 1947-1954, Dec. 2004.

[4] D. Kopec, M. Newborn, and M. Valvo, “The 22d annual ACM
international computer chess championship,” Communication of the
ACM, vol. 35, Issue 11, pp. 100-110, Nov 1992.

[5] E. Shannon, Claude, “XXII. Programming a Computer for Playing
Chess,” Philosophical Magazine, Ser. 7, vol. 41, No. 314, Mar 1950.

[6] Z. Michalewicz, “Genetic algorithms + data structures = evolution
programs / Zbigniew Michalewicz,” Berlin: Springer-Verlag, 3rd Edition
revised and extended, 1996.

[7] S. J. Russel and P. Norvig, “Artificial Intelligence: A Modern
Approach,” Upper Saddle River, N.J.: Prentice Hall/Pearson Education,
2nd Edition, 2003.

[8] D. Goldberg, “Genetic Algorithms in Search, Optimization, and
Machine Learning/ David E. Goldberg,” Boston, Mass.: Addison,
Wesley, 1989.

[9] H. Kaindl, “Tree searching algorithms,” in Computers, Chess, and
Cognition, T. A. Marsland and J. Schaeffer, Eds. New York: Springer-
Verlag, pp. 133–168, 1990.

[10] F. G. Luger, “Artificial Intelligence: Structures and Strategies for
Complex Problem Solving,” Addison Wesley Publishing Company, 4th
Edition, p. 144 – 152, 1997.

[11] K. Deb and K. B. Agrawal, “Simulated Binary Crossover For
Continuous Search Space.” Complex System , vol 9, pp.115-148, 1994.

