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Abstract—One of the effective ways of optimising the evaluation 
function of a chess game is by tuning each of its parameters. 
Recently, evolutionary algorithms have become an appropriate 
choice as optimisers. 

In the past works related to this domain, the values of the 
parameters are within a fixed boundary which means that no 
matter how the recombination and mutation operators are 
applied, the value of a given parameter cannot go beyond its 
corresponding interval.  

In this paper, we propose a new strategy called “dynamic 
boundary strategy” where the boundaries of the interval of each 
parameter are dynamic. A real-coded evolutionary algorithm 
that incorporates this strategy and uses the polynomial mutation 
as its main exploitative tool is implemented. 

The effectiveness of the proposed strategy is tested by competing 
our program against a popular commercial chess software. Our 
chess program has shown an autonomous improvement in 
performance after learning for hundreds of generations. 

Keywords—evaluation function, evolutionary algorithm, chess 
program. 

I.  INTRODUCTION  
Chess, or “The Game of the Kings”, is a classic strategy 

board game involving two players. It consists of 32 chess 
pieces and an 8 x 8 squares board, where the goal of the game 
is to capture the opponent’s king. The first chess playing 
machine was built in 1769. Amazingly, the first ever chess 
program was written before computers were invented and this 
has gone onto become one of the popular research areas in 
computational intelligence. Since then, researchers have been 
trying to find a solution that allows the machine to play a 
perfect chess game. 

In order to achieve this, the machine is required to traverse 
the chess game’s search tree up to depth 100 (where each 
player is allowed to move no more than fifty times in a game). 
This is simply computationally impossible, as the average of 
possible moves (branching factor) per turn is around 35 
moves. 

Searching all the way down to the bottom of the search tree 
is still computationally impossible even after using pruning 
techniques (such as alpha-beta pruning) to cut off unnecessary 
branches of the tree. Therefore, practitioners would normally 
limit the search depth and apply some evaluation function to 
estimate the score of a given move. The setup of such an 
evaluation function can be done by iteratively tuning it until it 
reaches an optimum state. The search space of the possible 
values of the evaluation function, being so large, suggests the 
use of evolutionary algorithms might be applicable. 

In this work, we use an evolutionary algorithm to search for 
a good evaluation function. Using the mutation operator and 
applying it on a dynamic interval, we try to evolve an adequate 
weight (denoting the importance) for each chess piece.  

This paper is organised as follows. Section 2 briefly 
presents the implemented chess program. Section 3 describes 
the key modelling concepts of our application. The 
chromosomal representation, the selection method, and the 
mutation technique are all discussed. In particular, the 
dynamic boundary strategy is explained. Experimental designs 
and their results are discussed in section 4. Finally, section 5 
gives the concluding remarks of this work. 

II. THE CHESS ENGINE  
A chess program is implemented to support our 

experiments. The positions of the chessboard are represented 
by a matrix of size 8x8, where each of its variables 
corresponds to a square on the chessboard. The basic rules of 
the chess game are implemented in the chess program to 
prevent illegal moves. 

The chess program determines each move by evaluating the 
quality of each possible board position using an evaluation 
function. The evaluation function used in this work is a slight 
modification of the one used in [1] which is a simplified 
version of Shannon’s evaluation function [5]. 

 



         

The evaluation function, given below in (1), calculates the 
sum of the material values a) for each chess piece, b) the 
number of two pawns existing on the same column (double 
pawn) and c) the number of available legal moves (mobility). 
Different weights are assigned to each of the chess pieces, 
double pawn, and mobility variables. These weights are to be 
tuned later by a learning process in order to optimise the 
evaluation function. 
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Where: 
Q, W = Quantity, Weight. 
Q [7] = {Q king, Q queen, Q rook, Q bishop, Q knight, Q 

pawn, Q double pawn, Q mobility} 
W [7] = {W king, W queen, W rook, W bishop, W knight, 

W pawn, W double pawn, W mobility} 

The alpha-beta pruning procedure detailed in [9] is used to 
search for the best move from the chess game tree. The depth 
of the search is set to 3 ply.  

In addition, for each chess piece captured and before the 
move is committed, a quiescence check operation is carried 
out.  This process provides another 3 ply search.  

The game is terminated when one of the three conditions is 
fulfilled: a checkmate state, no legal moves for a given player, 
or both players have reached 50 moves without winning. A 
player receives 1 point for a win and 0 for a draw or a loss. 

III. METHOD 
We use an evolutionary algorithm to optimise the evaluation 

function. An individual is represented by a real vector of 
dimension 6. Each vector element represents the weight of 
either a chess piece other than the king and the pawn (which 
are assigned constant weights of 1000 and 1 respectively), a 
double pawn, or a mobility. 

There are five individuals in any given population. They all 
compete with each other for survival. Two individuals (two 
chess programs using two different evaluation functions) play 
each other in a two round game where each one will take turns 
in starting the game first. If an individual wins, it is awarded 
+1, otherwise 0. Based on the points collected from this two-
round game, the winner is cloned and its clone mutated. Both 
the winner and its mutated version are copied into the next 
generation. This process continues until all individuals in the 
population converge to the same solution. 

A. Selection  
A vector population of five individuals is used where the 

selection process, a slight modification of the one in [1], is as 
follows. First we choose the first individual and make it 
compete with a randomly chosen individual from among the 

rest of the population. 

 

Figure 1.   An Example of Selection-Competition 

The winner is duplicated and overwrites the loser. Next, the 
second individual is selected and competes with a randomly 
chosen individual from the rest of the population excluding the 
first individual. This iterative procedure goes on until all the 
individuals have been considered. Figure 1 shows a complete 
selection of a vector population of five individuals. The 
shaded squares indicate the two competing individuals. In this 
experiment, and contrary to that in [1], the vector population is 
not reversed at the end of the selection so that the propagation 
of the fittest individual is slowed down.  

By using this iterative method for selection, the fittest 
individual will ultimately occupy the last slot of the vector 
population. 

B. Mutation  
In this experiment, a real-coded mutation operator is used 

as the main operator to tune the parameters of the evaluation 
function of each individual. We choose to use the polynomial 
mutation as devised in [11]. Its distribution parameterη is set to 
20. The mutated parameter y is given below.  
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The parameter iδ  is calculated from the polynomial 
probability distribution: 
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Where: 
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Member 1 vs. a random member (2 to 5) 

Member 4 won and replaced member 1 

1

Member 2 vs. a random member (3 to 5) 

Member 3 won and replaced member 2 

2

Member 3 vs. a random member (4 to 5) 

Member 3 won and replaced member 5 

1 

Member 4 vs. member 3 

Member 3 won and replaced member 4 

2 

1 2 43 5

4 2 43 5

4 3 43 5

4 3 43 3

4 3 33 3

The new population members 



         

x L
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)(  = parameter lower boundary 
η  = probability to mutate the parameter close to original 

parameter 
r  = random number in [0 1]. 
 
Recall that each individual consists of six parameters 

denoting the weights of the different chess pieces (except the 
king and the pawn), double pawn and mobility. For each 
parameter, a specific value of its probability of mutation is 
assigned to it. For instance, the mutation probabilities for 
queen, rook, bishop, and knight parameters were all set to 
25%, while the mutation probabilities for a double pawn and 
mobility parameters were set to 10%. Note that the mutation 
probabilities are relatively higher than the usual. This is to 
make sure that at least one parameter is mutated so that there 
will be no duplicated individuals in the population. 

C. Dy namic Boundary Strategy 
A good search method must promote diversity so that it is 

not trapped in a local optima. The search space in this 
application is very large. The diversity of a search method can 
be reflected by the standard deviations of each of the 
parameters. If the standard deviation is large then the diversity 
of the search method will be also large, whereas if the standard 
deviation is reduced, the diversity will also be reduced. 

To solve the problem of converging to a local optima, we 
propose a new approach called Dynamic Boundary Strategy. 
This strategy (at the same time) maintains and controls the 
diversity of the search throughout the generations. In other 
approaches [1], it is required to fix the upper and lower 
boundaries for each of the individual’s parameters. 

The basic idea of the dynamic boundary strategy is to have 
an adjustable boundary for each parameter. Consider the 
following individual with the initial parameters: 

 
Queen Rook Bishop Knight Double Pawn Mobility

9 5 3 3 0.5 0.1 

 
The boundaries for the domain of each parameter are 

dynamic, however the diameter of that domain is constant. For 
instance, the diameters of the domains of the queen, the rook, 
the bishop, and the knight are all set to the value 2. The double 
pawn’s domain is set the value 0.2. The Mobility’ boundaries 
are fixed however (upper boundary =0.5, lower boundary 
=0.01). For instance, if the weight of the queen is 9, then its 
upper boundary is 11 and its lower boundary is 7. If the weight 
of double pawn is 0.5, then its upper and lower boundaries are 
respectively 0.7and 0.3.  

For example, the parameters of the above individual after 
applying the polynomial mutation could be as the following: 

Queen Rook Bishop Knight Double Pawn Mobility

8.25 5 3 3 0.5 0.1 

 
Notice that the weight of the queen has been mutated from 9 

to 8.25. Then, the upper boundary of the queen will change to 
10.25 while its lower boundary will become 6.25. This means 
that when the next mutation occurs on the queen’s weight, the 
possible weight for the queen will range from 10.25 to 6.25.  

In order to speed up the learning process, the weight of the 
queen can be forced to be at least equal to the highest 
parameter of the individual (such as rook, bishop, or knight). 
This is because it is sensible to think that the weight of the 
queen must be higher than the weight of any other chess piece 
(other than the king) as it is the most useful piece in a chess 
game. For example, consider the following values of the 
parameters of a given individual: 

Queen Rook Bishop Knight Double Pawn Mobility

4.5 5 3 3 0.5 0.1 

Notice that the Rook’s weight is the highest. It is obvious 
that the Queen’s weight should be at least as higher as that of  
the Rook. Therefore, we can bring the Queen’s weight up to 5, 
which is now equal to the Rook’s weight. 

Queen Rook Bishop Knight Double Pawn Mobility

5 5 3 3 0.5 0.1 

The main advantage of dynamic boundary strategy is that 
the search space in one generation of learning is much smaller 
compared to that of other fixed boundary strategies.  

Indeed, the dynamic boundary strategy explores small 
portions of the search space at each generation. However, in 
the long run, it is still capable of exploring a huge part of the 
search space. This is due to its moving boundaries. The main 
idea is that at each generation, the search process is 
concentrated in one part of the search space.  

Without this strategy, one needs to set good boundaries for 
the parameter’s domain, otherwise, a sufficiently large domain 
must be thought of, which is not a trivial task. This is not 
required when using the dynamic boundary strategy 

IV. EXPERIMENTAL RESULTS 

A. Experimental Design 
A small population of five individuals is used for breeding a 

good solution. The values for each of the parameters were 
inserted manually to make sure that the initial population only 
consists of poor individuals (bad evaluation functions). The 
purpose was to see whether the dynamic boundary strategy 
would be able to ameliorate the fitness (evaluation function) of 
the individuals. The initial individuals of the population are 
shown in Table I. 



         

TABLE I.  THE INDIVIDUALS OF THE INITIAL POPULATION 

 Queen Rook Bishop Knight Double 
Pawn Mobility

Individual 1 3 3 3 3 0.5 0.1 
Individual 2 2.5 2.5 2.5 2.5 0.5 0.1 
Individual 3 2 2 2 2 0.5 0.1 
Individual 4 1.5 1.5 1.5 1.5 0.5 0.1 
Individual 5 1 1 1 1 0.5 0.1 

 

Recall from the section II that our chess program was 
designed to search 3 ply and we can extend the search another 
3 ply when the quiescence check operation is triggered. We 
run the program for 520 generations. The means and the 
standard deviations of the initial population are given below in 
Table II. 

B. Results  
After learning for 520 generations, the values of the 

parameters of the individuals have changed a lot. Figure 2 and 
Figure 3 respectively show the averages and the standard 
deviations of the parameters throughout the whole learning 
procedure (520 generations). 

The averages of the weights and their standard deviations at 
the end of the experiments are given in Table III. 

It is worth noting that in evolutionary algorithms that use a 
fixed boundary approach, the diversity of the search decreases 
gradually after many generations. Notice also that the standard 
deviations of the last population (using our strategy) shown in 
Table III have not changed too far from their initial standard 
deviations counterpart (shown in Table II).  

 

C. Success 
The weights of the Shannon’s evaluation function [5] are as 

follows: 

Queen Rook Bishop Knight Double Pawn Mobility

9 5 3 3 0.5 0.1 

After running our chess program for 520 generations, the 
learning process produced the fittest individual whose 
parameter values are as follows 

Queen Rook Bishop Knight Double Pawn Mobility

7.57 4.66 4.41 3.16 0.44 0.11 

TABLE II.  AVERAGES AND THE  STDEVS AT THE INITIAL POPULATION 

 Queen Rook Bishop Knight Double 
Pawn Mobility

Average 2 2 2 2 0.5 0.1 
STDEV 0.71 0.71 0.71 0.71 0.0 0.0 

TABLE III.  AVERAGES AND STDEVS AT THE LAST POPULATION. 

 Queen Rook Bishop Knight Double 
Pawn Mobility

Average 7.60 3.86 3.56 2.95 0.48 0.10 
STDEV 0.08 0.68 0.69 0.12 0.03 0.01 

 

This fittest individual was tested against a chess program 
that uses the Shannon’s evaluation function. The results are 
shown in Table IV.  

In the first game, the chess program based on the Shannon’s 
evaluation function dominated the game, but the game ended 
with a draw because both players have reached the 50 move 
limit. However, in the second game, the fittest individual of our 
chess program took control of the game and ended it in just 42 
moves (21 moves for each player). This result has shown that 
the fittest individual is strong enough to win against a well-
established evaluation function. 

We further tested our chess program based on the dynamic 
boundary strategy against a well-known commercial chess 
program called “Chessmaster 8000”. The Chessmaster 8000 
level of difficulty was set to players rating 1800, which falls in 
the A class in the USCF rating. The fittest individual of our 
chess program played as White player for two games and the 
results are shown in Table V. 

In the first game, the Chessmaster 8000 beat the fittest 
individual in 81 moves. We consider this as a promising result 
as our fittest individual was competitive enough to last this 
long.  

The second game ended with a draw because of the 50 
move limit. However, our fittest individual did very well in 
this round as it was dominating the game, and had the game  
been extended, it would have beaten the ChessMaster 8000. 
Our chess program was left with a rook and a pawn, while the 
Chessmaster 8000 was left with 2 pawns only.  

CONCLUSION 
In this paper, we have proposed the use a novel approach 

for the evaluation function of a chess playing game. This is 
called Dynamic Boundary Strategy  

This method is quite effective because those parts of the 
search space that are not promising would not be visited. 
However, it is important to make sure that the diameter of the 
interval (distance between upper and lower boundary) of the 
weight of a given parameter must be large enough so that the 

TABLE IV.  FITTEST INDIVIDUAL AGAINST SHANNON’ EVALUATION 
FUNCTION. 

 Play as Moves Result 
Fittest Individual White 100 moves Draw 
Fittest Individual Black 42 moves Win 
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Figure 2.  . Averages of each parameter throughout the learning process 

The Standard Deviation for each Evaluation Parameter in the 
Population
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Figure 3.  Standard deviations of each parameter throughout the learning process 

 

search is not trapped into a local optima.  

The fittest individual produced by our method is still unable 
to compete against a very good chess player (Chessmaster 
8000), but it has proven that the learning algorithm was able to 
optimise (to some extent) the evaluation function that is used 
to determine a good move. It has beaten the chess program 
that uses Shannon’s evaluation function.  

In our future work, we will extend the search depth, to 

incorporate heuristics, and use a more complex evaluation 
function. This, we hope, will produce a very competitive chess 
playing individual.   

 

TABLE V.  FITTEST INDIVIDUAL AGAINST CHESSMASTER 8000. 

 Play as Moves Result 
Fittest Individual White 81 moves Lost 
Fittest Individual White 100 moves Draw 



         

APPENDIX 
1st game: Fittest Individual (White) Vs. Chessmaster 8000 
(Black) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

e2e3  g8f6 
f1d3  d7d6 
d1f3  h8g8 
b2b3  b8d7 
b1c3  h7h5 
f3f5  a7a6 
g1f3  c7c5 
h2h3  e7e6 
f5f4  f6d5 
c3d5  e6d5 
f4f5  d8c7 
c1b2  d7f6 
f5f4  f6e4 
a2a4  g7g5 
f3g5  g8g5 
f2f3  c7a5 
a1d1  g5g2 
f3e4  c5c4 
e1f1  f8e7 
f1g2  c4d3 
b3b4  a5b4 
b2c3  b4a4 
d1a1  a4e4 
f4e4  d5e4 
c2d3  e4d3 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

a1a4  c8f5 
h1b1  b7b5 
b1b5  f5h3 
g2h3  e7f6 
c3f6  a6b5 
a4a8  e8d7 
h3h4  d7e6 
a8c8  e6f6 
h4h5  f6e6 
h5h4   e6e7 
e3e4  b5b4 
c8c7  e7f6 
h4g3  f6e5 
c7e7  e5d4 
g3g2  b4b3 
g2g3  b3b2 
e7b7  d4e4 
b7b2  f7f5 
b2b4  e4d5 
g3g2  f5f4 
b4f4  d5e5 
f4f7  e5d5 
f7f6  d5c5 
f6f7  c5d5 
g2g3  d5c5 

 
2nd game: Fittest Individual (White) Vs. Chessmaster 8000 
(Black) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

e2e3  g8f6 
f1d3  d7d6 
d1f3  h8g8 
b2b3  b8d7 
b1c3  h7h5 
f3f5  a7a6 
g1f3  c7c5 
h2h3  e7e6 
f5f4  f6d5 
c3d5  e6d5 
f4f5  d8c7 
c1b2  d7f6 

26 
22 
23 
24 
25 
27 
28 
29 
30 
31 
32 
33 

d2e3  f4g5 
h1g1  d8h4 
g1h1  d5e4 
d3c4  e4e3 
h1h2  h4f4 
g2h1  g5e7 
h1g2  e7e4 
g2f1  c8e6 
c4e2  e4e3 
b2c1  e6h3 
h2h3  e3h3 
f1f2  h3h4 

13 
14 
15 
16 
17 
18 
19 
20 
21 

f5f4  f6e4 
a2a4  g7g5 
f3g5  g8g5 
f2f3  g5g2 
f3e4  c7b8 
a4a5  b8c7 
e1f1  f8h6 
f1g2  h6f4 
e3f4  c7d8 

34 
35 
36 
37 
38 
39 
40 
41 

f2f1  e8c8 
c1e3  h4f6 
f1g2  f6a1 
e2h5  d8g8 
g2f3  a1f1 
f3e4  g8e8 
e4d5  e8e5 
d5d6 
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