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Imperfect Evolutionary Systems

Graham Kendall, Member, IEEE, and Yan Su

Abstract—In this paper, we propose a change from a perfect par-
adigm to an imperfect paradigm in evolving intelligent systems.
An imperfect evolutionary system (IES) is introduced as a new ap-
proach in an attempt to solve the problem of an intelligent system
adapting to new challenges from its imperfect environment, with
an emphasis on the incompleteness and continuity of intelligence.
We define an IES as a system where intelligent individuals opti-
mize their own utility, with the available resources, while adapting
themselves to the new challenges from an evolving and imperfect
environment. An individual and social learning paradigm (ISP) is
presented as a general framework for developing IESs. A practical
implementation of the ISP framework, an imperfect evolutionary
market, is described. Through experimentation, we demonstrate
the absorption of new information from an imperfect environment
by artificial stock traders and the dissemination of new knowledge
within an imperfect evolutionary market. Parameter sensitivity of
the ISP framework is also studied by employing different levels of
individual and social learning.

Index Terms—Artificial intelligence, environmental variables,
evolutionary computation (EC), imperfect evolutionary systems
(IESs), individual learning, social learning.

1. INTRODUCTION

T HAS BEEN a long-term aim for humans to build intelli-
I gent systems or humanoids just like ourselves. One of the
important features of being a human is the ability to learn new
things, i.e., the ability to accept new information from the en-
vironment and use it to update our existing knowledge. There
have been advances in creating such intelligence in recent years.
One of the notable works is BLONDIE24 developed by Chel-
lapilla and Fogel [1] and Fogel [2]. BLONDIE24 is an evolu-
tionary program that taught itself to play checkers from scratch,
without the input of human expert knowledge. BLONDIE24 de-
veloped its own game playing strategies to the level of a human
expert. The key advance in BLONDIE?24 is that the system did
not use any preprogrammed human expertise, which was the
significant difference between BLONDIE24, Chinook [3], [4],
and Deep Blue [5], [6]. BLONDIE24 was a major step forward in
answering Samuel’s challenge about machine learning without
pre-injected knowledge [7]. However, BLONDIE?24 is still a per-
fect end product, rather than adaptive intelligence. Fogel [2, p.
205] commented on BLONDIE24 as follows:

“... Remember that the graph doesn’t show the neural
network learning during the one hundred games. Every-
thing that it learned, it had learned during its evolution.
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The neural network was the same for game one hundred
as it was for game one ...”

Therefore, BLONDIE24 has not yet fully answered the chal-
lenge of learning with new information when the environment
evolves. As commented by Harley in his book review [8]:

“... An interesting point is that the end product which
looks intelligent is Blondie, yet she is not in fact the intel-
ligence. Like the individual wasp, Blondie is fixed in her
responses. If she played a million games, she would not
be one iota smarter. In this sense, she is like Deep Blue.
... Perhaps a better example of intelligence would be . . . a
human, who can adapt her behavior to any number of new
challenges ...”

Stanley et al. [9] developed another type of real-time com-
puter game, called NERO, where artificial agents are able to
improve and change themselves during the game. In NERO,
each player trains a team of virtual robots which engage with
other robots designed by other players. As the game is being
played, a real-time neuroevolution method is employed to con-
stantly evolve increasingly complex artificial neural networks
(ANNs) which the virtual robots use to construct fighting
strategies. NERO demonstrates the possibility of artificial
intelligence being adaptive in real time, i.e., being able to learn
and improve itself, while interacting with the environment.
However, note that the training of robots in NERO is controlled
by human players. The designers of NERO decide what inputs
should be used to construct the ANNSs that the virtual robots use
to fight. In other words, the artificial robots in NERO have the
option to improve themselves based on what they are given, but
they do not have the ability to decide what they should perceive
from their environments. If one of the robot teams developed
a new kind of weapon that could see through solid obstacles,
other teams that still use the old set of inputs, are likely to be
defeated.

We argue that the fundamental problem lies in the ignorance
of an intelligent entity’s relationship to its environment. More
precisely, it is a relationship to an imperfect environment.
By saying an environment is imperfect, we mean that the
environment is constantly changing and evolving as new infor-
mation and knowledge emerge over time. For example, in the
game-playing world, the problem facing a checkers player is
not only different opponents, with different skills and character-
istics, but also different types of games. A checkers player may
play a good game and ask himself what he can learn from the
game. The same player may also watch someone playing poker
and may want to learn to play poker. The same thing happens
to scientific researchers. The environment that a researcher
is facing is also evolving where new algorithms, techniques,
software, and hardware are continuously introduced into the
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Fig. 1. Imperfect evolutionary system.

environment. In order to answer the new challenges from their
research field, researchers need to constantly improve them-
selves. Therefore, an imperfect environment is an environment
that constantly presents new challenges to its participants.

Inside an imperfect environment, there exist imperfect indi-
viduals. By saying individuals are imperfect, we mean individ-
uals do not completely understand their environment due to the
complexity of the environment and the fact that every individual
has a (possibly) different view of the world. For example, a game
player may only know certain strategies when playing checkers
and does not know how to play poker at all. A researcher who
investigates genetic algorithms may have no idea how to design
an artificial neural network (ANN). A stock investor may know
how to use price moving-averages to predict future movement of
a market but may not understand the significance of trading vol-
umes. It is not necessary for individuals to be of perfect intelli-
gence, so long as what they know is enough for his/her survival.
However, when new challenges are placed upon an individual
by its imperfect environment, individuals may choose to adapt
to the new challenge, e.g., by learning a new skill, and hence
have a better chance of competing in the future.

Together, imperfect individuals existing in an imperfect envi-
ronment form an imperfect evolutionary system (IES). Imper-
fect individuals constantly learn new things in order to adapt
to the new challenges posed by the imperfect environment. The
imperfect environment constantly evolves because things that
were previously unknown become known and the unobservable
become observable. We define an IES as a system where intel-
ligent individuals optimize their own utility, with available re-
sources, while adapting themselves to the new challenges from
an evolving and imperfect environment.

Diagrammatically, we depict an IES in Fig. 1. An imper-
fect environment at time T, ET, represented as the large circle
(dashed), is defined as a set of information LZ, as shown in (1)

ET ={il i} i% .- ,in }. (D)

We define each z,TL as an environmental variable vf ; thus, an
imperfect environment 7 can also be represented as a set of
environmental variables, as shown in (2), where n is the number
of environmental variables in E7

ET:{vf7U;7W§7"'7WZ}' (2)
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Due to their imperfectness, imperfect individuals only partially
understand their environment. Every individual (I1) in ET,
represented as small circles (dashed) in Fig. 1, perceives a dif-
ferent set of information from its environment. Therefore, every
individual has a different observational space of the environ-
ment, as defined in (3). We use dashed lines for both the envi-
ronment and the individuals in Fig. 1 to indicate that none of
them are finite and static

IiT:{”’jT»"',’UkTU;kG"}' S

We use two examples to further illustrate EZ and I7 in Fig. 1.
For the first example, we use the game playing problem dis-
cussed above, where BLONDIE24 is unable to learn from its
environment. Assume Fig. 1 represents a particular part of a
human brain that is responsible for game playing. We call it
a game-playing mind. The imperfect environment, ET in this
case, is then a set of games. At time 7', all people that surround
this person/brain only play checkers. ET in Fig. 1(a) is shown
as in (4), where v§heckers js a particular feature used for playing

checkers, such as number of pieces on the game board

T checkers  checkers , checkers
E° = {vl , U5 , Uy } 4)

Individual I{ in Fig. 1(a) is a game strategy that makes use of
vgheekers and ygheckers Individual 17" is another checkers game
strategy that uses v§teckers and ygheckers T does nothing, as
shown in (5)

T _ checkers , checkers
I = U1 » V2 }
T _ checkers | checkers
Iy = (v » U3 }
T _
Iy ={}. 5)

From time 7' to time 7" + 1, this person/brain plays checkers
with people using different features and strategies, and even
has the opportunity to meet people who play poker. The imper-
fect environment of the game-playing mind evolves to E7+1 in
Fig. 1(b), as shown by (6)

T+ checkers checkers checkers checkers poker poker
ET = {vl U5 w3 KN U1 Vs .
(6)

During time 7' to T+1, individual /{ and individual /7 com-
pete so that better strategies will survive and bad strategies will
be discarded (or, in some sense, forgotten by the brain). In the
case of Fig. 1(b), both strategies (I and I7) survive. The in-
dividual IT survives by learning to use a new feature vgheckers,
as shown in (7), while individual I survives by refining itself
(if the game strategy is implemented in the form of neural net-
works, refining means the tuning of weights or changing the net-
work architecture). Individual I7 also adapts to the evolving en-
vironment by learning to play poker

IlT-l-l _ {,lﬁhcckcrs’ v , vzhockcrs}
IQT+1 — {U(l‘,he(‘,kers7 ,Ugheckers}

T+1 __ poker  poker
I _{v1 b } %)

checkers
2
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For the second example, we use the stock market where
traders use different market indicators for constructing their
trading strategies and evolve while new trading techniques
constantly emerge from the market. At time 7', the imperfect
evolutionary market only provides two market indicators in
ET, as shown in (8), where MA is the moving average of
stock prices and volume are the trading volumes (price is the
primitive stock prices)

ET = {price, MA, volume}

I = {price, MA}

I = {price, volume}

IT = {price}. 8)

At time T + 1, a new market indicator, rate of change (ROC),
is introduced to the market. The imperfect market evolves, as
shown in (9)

ET*! = {price, MA, volume, ROC}

It = {price, volume, MA, ROC}

IJ* = {price, MA,ROC}

I+ = {price, ROC}. ©)

Obviously, there exist a number of features for playing
checkers or poker, and there are more complicated market
indicators for trading stocks in markets. We only use a few
of them in the above example for the purposes of illustration.
It is also the case that the second example of an imperfect
evolutionary market is less complicated compared with the im-
perfect game-playing mind. This is because in the game playing
system, imperfect individuals will have multiple objectives,
i.e., playing checkers or playing poker, while in the imperfect
evolutionary market stock traders only have one objective, i.e.,
making a profit. Therefore, in this paper, as a first attempt in
developing IESs, we choose the stock market as a testbed to
study the evolutionary learning of imperfect individuals in an
imperfect environment.

Another reason we choose the stock market as the first testbed
for developing IESs is that the financial markets have been in-
tensively studied as imperfect information systems. The study
of information economics stresses a change from the conven-
tional perfect information paradigm to an imperfect information
paradigm and has demonstrated the profound effect it has had
on people’s understanding of many economic problems (please
refer to Stiglitz [10] and Arnott et al. [11] for comprehensive
discussions on information in economic studies). It is, in fact,
this change, i.e., from a perfect paradigm to an imperfect para-
digm, in economic studies that has inspired us to rethink artifi-
cial intelligence from an imperfect perspective.

In the next section, we will discuss IESs in the context of
artificial intelligence research and evolutionary learning. In par-
ticular, we discuss cultural algorithms that are similar to the in-
dividual and social learning paradigms (ISPs) proposed in this
paper for the implementation of IESs. In Section III, we de-
scribe the integrated ISP. Through the comparison between cul-
tural algorithms and the ISP learning paradigm, we further ex-
plain our idea of IESs. Section VI describes the implementation
of an imperfect evolutionary market based on the ISP learning

paradigm. Experimental studies and discussions are presented
in Section V. Through experiments, we demonstrate how im-
perfect artificial traders are able to learn new things and adapt
to new challenges from an imperfect environment. Conclusions
and future work are provided in Section VI.

II. RELATED WORK

There are a number of studies that have investigated un-
certain and dynamic environments in artificial intelligence
research, such as commonsense reasoning [12], [13], quali-
tative reasoning [14], probabilistic reasoning using Bayesian
networks [15], and fuzzy logic [16], [17], etc. Each of these
studies deals with the problem of modeling intelligence from
a different perspective. Commonsense reasoning generally
covers problems that are related to a human’s ability to use
common sense knowledge in daily life. Qualitative reasoning
studies problems that can only be described qualitatively rather
than quantitatively. Bayesian networks provide the means to
reason with probabilities and fuzzy sets make it possible to
describe the vagueness of a problem. In this paper, we propose
the concept of an IES with an emphasis on how to sustain the
continuous innovation of an intelligent system. For example, in
the context of Bayesian reasoning, the problem for a checkers
player would be, “If my opponent has a 30% probability to
move to A and 70% probability to move to B, what should I
do?” On the other hand, if we view the checkers player as an
IES, the problem would be “What can I learn from this oppo-
nent, or how do I learn to play this new game?” If Bayesian
networks are more about imprecision and probabilities, and
fuzzy logic is more about vagueness and possibilities, we
would say IESs are more concerned with incompleteness and
continuity, i.e., the imperfectness of intelligence.

Evolutionary computation (EC) [18]-[20] provides an alter-
native way to study adaptive intelligence. In [19, p. 245], the
author argues that evolution serves as a unifying description of
all intelligent processes. Every intelligent learning system in na-
ture adopts a functionally equivalent process of reproduction,
variation, competition, and selection. Intelligent systems evolve
and adapt their behaviors to achieve goals in a range of environ-
ments. Evolutionary learning is also unique in the sense that it
not only recapitulates human behaviors, but also generates new
behaviors and new solutions that are not currently known to hu-
mans. Fogel et al. [21] have recently guest edited a Special Issue
of the IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION
which presents advances in developing adaptive intelligence in
computer games using EC techniques.

Cultural algorithms [22], [23] are evolutionary learning
models that emulate cultural evolutionary processes. A cultural
algorithm consists of two levels of evolution: the microevo-
lution in a population space and the macroevolution in a
belief space. Through an acceptance function, the experiences
of individuals in the population space are used to generate
problem solving knowledge that is to be stored in the belief
space. The belief space manipulates the knowledge, which in
turn guides the evolution of the population space by means
of an influence function. Sternberg and Reynolds [24] use an
evolutionary learning approach based on cultural algorithms
to learn about the behavior of a commercial rule-based system
for fraud detection. The learned knowledge in the belief space
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Fig. 2. An integrated ISP.

of the cultural algorithm is then used to re-engineer the fraud
detection system. Cultural algorithms have also been used for
modeling the evolution of complex social systems [25], [26].

Reynolds and Saleem [27], Reynolds and Peng [28], and
Reynolds and Saleem [29] describe the application of cultural
algorithms for function optimization problems in dynamic
environments. In their experiments, the dynamic environment
is modeled as a two-dimensional (2-D) plane with four cones of
different heights and slopes randomly scattered on it. The four
cones shift their locations on the plane at certain generations, so
that the location of the optimum solution constantly changes.
Reynolds and Saleem [27] show that the cultural algorithm is
more effective than an evolutionary algorithm with only one
single-level evolution when they are applied to the problem of
finding the new optima in dynamic environments. Reynolds
and Peng [28] discuss how the learning of knowledge in the
belief space ensures the adaptability of cultural algorithms.
Reynolds and Saleem [29] further investigate the contributions
of different types of knowledge from the belief space in guiding
the search toward the best solutions in both deceptive and
nondeceptive environments.

Note that the dynamic environmental change described in
the above experiments is only caused by the change of values
of existing environmental variables, i.e., the heights, slopes,
and locations of cones. The dynamic environment in these
experiments is not a result of the emergence or the introduction
of new environmental variables over time. The dimension of
the problem observational space remains unchanged, i.e., it
remains a 2-D optimization problem. Other applications of
cultural algorithms in dynamic environments, with multia-
gent-based population space, are carried out in a similar way.
Reynolds and Ostrowski [30] combine the cultural algorithm
and agent-based computational economics for the evolution of
successful pricing strategies in an original equipment manufac-
turer-consumer market. The market is a dynamic environment
in the sense that a theta parameter, which indicates an economic
recession, is applied for various lengths of time.

The new challenge we discussed in Section I not only indi-
cates that the status, e.g., the values of current existing environ-
ment variables could change, but there is also the possibility of
the emergence of new environment variables that presents ad-
ditional problems for an intelligent entity. In other words, an

imperfect individual’s observational space, and therefore its re-
lated problem space and problem domain, could both change in
an IES (see our examples of the game-playing mind and the im-
perfect evolutionary market in Section I). In this paper, for the
implementation of an imperfect evolutionary market, we intro-
duce an integrated ISP that is described in next section.

III. AN INTEGRATED INDIVIDUAL AND
SOCIAL LEARNING PARADIGM (ISP)

Fig. 2 schematically depicts an integrated ISP, which consists
of four building blocks. Under the definition of IESs given in
Section I, individuals of such a system absorb information from
their environment and transfer the information into their own
knowledge. The knowledge will then be refined through indi-
vidual learning and disseminated within the society of imperfect
individuals through social learning. The four building blocks of
an IES are the following.

The Imperfect Environment (E): FE is as defined by (2). The
imperfect environment is the core of the IES. It has two func-
tions: the supplier of resources for the evolution and the medium
for the evolution. The environment provides its participants with
the information and knowledge that they need for their survival.
As an imperfect environment, it too also evolves when new in-
formation and knowledge become available, as shown in Fig. 1.
The imperfect environment also acts as the medium where evo-
lution occurs through the storage and dissemination of informa-
tion and knowledge by means of social learning.

The Imperfect Individuals (I;): I; is defined by (3). An
imperfect individual has two tasks. One is to optimize its own
utility, with the available resources, through an individual
learning process. The other task is to adapt to the changing
environment by the absorption of new emerging information
and knowledge from the imperfect environment, through a
social learning process.

Individual Learning Mechanism (IL): The individual
learning mechanism defines the evolutionary process of an
individual’s optimization of its own utility. Social Learning
Mechanism (SL): Social learning defines the evolutionary
process where participants of an imperfect environment learn
from each other, while the information and knowledge is
disseminated within the IES.
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In Fig. 2, imperfect individuals (I;) are represented as
dashed rectangles of different sizes. This indicates that the
observational spaces of individuals are of different dimensions
and nonstatic, depending on the information sets used by
individuals. The social learning mechanism (SL) works as the
channel through which individuals will learn from each other
so that information and knowledge, including new information
from the evolved environment, is disseminated among the
evolutionary intelligent entities. There are similarities between
the integrated ISP and cultural algorithms. For example, they
both evolve at the individual level and they both maintain a
knowledge repository. However, there are some fundamental
differences between these two learning paradigms.

* Imperfect environment—The ISP learning paradigm
stresses the importance of the awareness of an imperfect
environment by an intelligent agent. An imperfect envi-
ronment is always changing and evolving. Things that
were previously unobservable become observable. Things
that were previously unknown become known. An imper-
fect environment does not only mean possible changes
in quantity, but also the potential changes in quality. The
concept of an imperfect environment is not reflected in the
design of cultural algorithms.

* Imperfect individuals—More importantly, the design of
an IES is dependent on the development of imperfect in-
dividuals. It is only when an intelligent entity considers it-
self to be imperfect, rather than a perfect end product, that
it has the opportunity and motivation to learn and adapt to
the new challenges from the environment. Imperfect indi-
viduals also imply that each individual can only understand
its own world imperfectly and each one has a (possible) dif-
ferent view of the world. In terms of problem solving, this
implies the problem observational spaces of individuals in
an IES could have different dimensions because they use
different sets of information, and even different problem
domains, because they are looking at the world in different
ways. In cultural algorithms, there is no concept of imper-
fect individuals.

e Imperfect world—Compared with other evolutionary
learning paradigms in Al, IESs deal with learning prob-
lems from a different point of view. For example, imagine
we are building a simulated brain (we do not care if it
works as the way the human brain does, since we do not
yet know, exactly, how the brain works). If we employ
a cultural learning algorithm approach, the first thing
we need to do is to create a population space e.g., using
multipopulation genetic algorithms/genetic program-
ming (MGA/MGP). Each subpopulation/individual in the
MGA/MGP does a specialized task. The cultural algorithm
then evolves the population space and updates the belief
space. The question we now need to ask is how many
subpopulations we need create in order to cover all the
functions performed by the brain? There is no easy answer
to this question. Also, how does the cultural learning
system learn new things from its environment; by creating
a new subpopulation with a different problem domain, or
by modifying an existing subpopulation? Unfortunately,
neither of these two mechanisms exists in cultural algo-
rithms. On the other hand, if we employ an imperfect

evolutionary methodology, we can start with just one
individual that basically does nothing (a group of dummy
neural networks). When a new environmental variable
emerges in the environment, the imperfect evolutionary
“mind” perceives it and decides either to incorporate it
into current networks in the ISP, or create a new individual
for this piece of new information, or simply delete the
new information. We stress the change from a perfect
perspective where intelligence is viewed as a perfect end
product, to an imperfect perspective where adaptability is
the nature of intelligence in an imperfect world.

In this paper, as a first attempt in developing IESs, we imple-
ment a simple imperfect evolutionary market, where each ar-
tificial stock trader represents (possibly) different problem do-
mains depending on the information set the trader is using. We
will demonstrate how the ISP learning paradigm enables artifi-
cial traders to adapt to new environmental variables emerging
from the imperfect market by experimental studies.

IV. AN IMPERFECT EVOLUTIONARY MARKET

The stock market has been extensively studied as a complex
evolutionary system [31]-[35]. In [31], Palmer et al. point out
that evolutionary stock market models can be used as a fertile
testbed for exploring, not only financial markets, but also adap-
tive agents and a class of artificial lives. The imperfect evolu-
tionary market model described in this paper extends our pre-
vious studies in [36]-[38], where we investigated the adaptive
behaviors of imperfect traders in a simulated stock market. In
this paper, we implement an imperfect market environment by
means of gradually injecting new market indicators into the sim-
ulated stock market.

The implementation of the imperfect evolutionary market
consists of four parts, corresponding to the four building blocks
of an IES described in the previous section: imperfect stock
market, imperfect stock traders, an individual learning mecha-
nism, and a social learning mechanism.

A. Imperfect Market

The fundamental market scenario, such as stock prices,
market indexes, and trading volumes comprise 20 technical
indicators that will be used by artificial traders in the simulated
stock market for trading stocks. These 20 technical indicators
are the environmental variables of the imperfect evolutionary
market. Initially, the simulated market starts with ten indicators,
whereas the other ten indicators are gradually injected into the
simulated market approximately every two years. These gradu-
ally introduced technical indicators are the new challenges, in
the form of new information, for traders. Obviously, it is not
always true that every two years some new market indicators
are invented in real-world markets. However, we have designed
the experiments in this way for the purpose of simulating the
emergence of new challenges in an imperfect environment.

The imperfect market also acts as the medium for the evolu-
tion of information (indicators) and knowledge (trading strate-
gies) in the market. As well as trading, artificial traders will
also publish their successful trading strategies to the market so
that good trading strategies can be disseminated to other traders
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within the market. The trader will also assign credit to the in-
dicators and strategies they have used for successful trading so
that useful information and knowledge will be accessible by the
other artificial traders.

B. Imperfect Stock Traders

We use 50 artificial stock traders in the simulated stock
market. Each trader selects a set of indicators from the market
for creating their trading models, which are in the form of
multilayer feedforward perceptrons [36]-[38]. The imperfect
traders evolve (hopefully) better trading models through indi-
vidual learning. The imperfect traders also search for better
information and learn from the other traders in the market
through social learning. Initially, we give each trader £10 000
cash to start trading.

C. Individual Learning Mechanism

The individual learning mechanism in our experiments is
implemented using an evolutionary programming algorithm
[18] applied to evolve ANN models used by individual traders
(see [39] and [40] for comprehensive surveys on evolutionary
ANNSs). The feedforward ANNSs, with zero or one hidden
layers, take technical indicators as inputs. Each trader will
create ten random ANNs using the set of indicators the trader
has chosen. The aim of individual learning is to search for the
optimal relationship among the set of indicators that the trader
has chosen by finding a suitable set of weights utilizing the
evolutionary programming algorithm as a search mechanism.
During the trading period, before every five days of trading,
one model from the ten ANNS is selected to be used for making
trading decisions. After every five days trading, the trader
will calculate the selected model’s rate of profit (ROP) by
using (10), where W is the value of a trader’s current assets
(cash + shares). W’ is the value of the trader’s assets in the
previous trading session

|

ROP = ——

x 10. (10)

The ROP describes a trading model’s profitability. The se-
lection process of the EP algorithm selects four ANNs with the
lowest scores to be replaced by offspring produced by a muta-
tion operation on other ANNs. The pseudocode of the individual
learning algorithm is presented as follows; where m is a random
integer between 0 and the total number of connections in the se-
lected neural network; Aw is a random Gaussian number with
a mean of zero and standard deviation of 0.1.

1. Select a model to be eliminated;
2. Select a model to be mutated using roulette
wheel selection;
3. Decide number of connections to be mutated,
m;
4.1 =0;
5.While (i < m){
Randomly select a connection;
Weight = weight + Aw;
it =1+ 1;}
.With 1/3 probability add a hidden node;
.With 1/3 probability delete a hidden node;
. Replace the model to be eliminated with the
mutated model;

o J o
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D. Social Learning Mechanism

The social learning mechanism in the imperfect market is
implemented by a memory approach with a credit assignment
scheme. The market works as a memory of all indicators, in-
cluding newly introduced technical indicators, and the trading
strategies developed by traders during the evolution. During
the trading period, at the end of every 125 days trading, social
learning occurs. The social learning mechanism accomplishes
three main tasks.

* Traders self-assess their performance over the past six
months (125-day) trading and assign credit to indicators
and strategies that have been used in the past six months
trading.

* Preserve successful trading strategies and disseminate
them to the market.

* Traders detect new information that has recently been in-
troduced to the market and disseminate the recently ac-
quired information to others in the market.

The trader’s self-assessment, at the end of 125 days trading,
reflects how well the trader has performed in terms of his own
profitability and relative performance when compared with
others. The self-assessment process uses (11)—(13)

, R;
Sl =

—. 11
peer 49 ( )

First, the trader’s ROP for the past six months is calculated
by using (10), and the 50 traders are ranked from 0 to 49 (R;)
according to their ROP. Equation (11) gives each trader a score
in terms of peer pressure from other traders. In other words, this
score shows trader ¢’s performance compared with other traders

ROP — ROP'
100 ’

i _
self —

(12)

In (12), ROP is a trader’s rate of profit for the current six
months trading. ROP' is a trader’s rate of profit for the previous
six months. Equation (12) gives the trader a score in terms of his
own performance in the past six months compared with the pre-
vious six months. These two types of performance are then com-
posed into (13), which gives the overall assessment for trader :

1

1-8% )"

) (13)
+e self

_ qi
assessment; = S .., +

The final assessments (assessment;) for the 50 traders are
normalized into the range of [0, 1]. Depending on the value
of each trader’s assessment;, there will be traders who pub-
lish their successful trading strategies to the market, traders who
need to learn from other traders, and traders who search for new
information from the environment. The artificial traders’ social
learning behaviors are presented below.

1) If a trader’s assessment is 1, and the trader is not using
a strategy drawn from a central pool, then publish the
strategy into the pool. Go into the next six months trading
using the same strategy.

2) If a trader’s assessment is 1, and the trader is using a
strategy copied from the pool, do not publish it again, but
update this strategy’s score in the pool using their six-
month ROP. Go into the next six months trading using the
same strategy.
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TABLE I
FIVE SELECTED STOCKS TRADED IN THE SIMULATED STOCK MARKET

Company Symbol Market Sector Trading Period ?g;ﬁ? 5;;;{3

CHENG KONG (CK) 0001.hk | HKEx | Real Estate 25 (’;g’?(l)/ frzé‘i’n?g”ylsy)/ 03 410.46% | 109.76%

CAT(E‘/':‘T(; /fg)AlR 0293.hk | HKEx | Transports 25 81;’2%/ fi;?n?éi ‘;lsy)/ B 1 4621% | 109.76%

WHA%;I{E&BINGS 004hk | HKEx | Conglomerate | 2> 8‘7’?(1)/ fié‘i’n?g L;lsy)/ 03 134.11% | 109.76%

TOYO(TT’?)Q\IODTU; CORP 1 6201jp | TSE | Automobiles 15/(;"735y(;9tfa$£;g;;§)/03 122.6% | 72.16%

HKEXx refers to Hong Kong Stock Exchange. TSE refers to Tokyo Stock Exchange. Return refers to accumulated total return over
the whole trading period; Return (BnH) = Cumulative total return from employing the Buy and Hold strategy (BnH) on that stock,
Return (Bank) = Cumulative total return from investing all assets in bank savings over the same trading period (with an interest rate

of 5%, paid annually).

TABLE II
ENVIRONMENTAL VARIABLES—20 TECHNICAL INDICATORS
Technical Description Technical Description
Indicator Indicator
IND1 10 days Moving Average (price) IND11 14 days Relative Strength Index
IND2 20 days Moving Average (price) IND12 21 days Relative Strength Index
IND3 50 days Moving Average (price) IND13 Stochastic Oscillators (K%)
IND4 200 days Moving Average (price) IND14 Fast Stochastics (D%)
INDS Closing Price (normalised) INDI15 Slow Stochastics (slow D%)
IND6 Rate of Change (price) IND16 Primary Market Index Rate of Change
IND7 Oscillator (price) IND17 Relative performance to Primary Market Index
INDS 10 days bias (price) IND18 Secondary Market Index Rate of Change
IND9 20 days volume Rate of Change IND19 Relative performance to Secondary Market Index
IND10 10 days Relative Strength Index IND20 Third Market Index Rate of Change

All values are normalised in the range of [0, 1] before being used as inputs to the neural networks. For all stocks, the
Secondary Market Index refers to DJ INDU AVERAGE. For stocks from HKEX, the Primary Market Index refers to Hang
Seng Index; the Third Market Index refers to NIKKEI 225 index. For stocks from TSE, the Primary Market Index refers to
NIKKEI 225 index; the Third Market Index refers to Hang Seng Index.

3) If a trader’s assessment is less than 0.9, the trader has a 0.5
probability of copying a strategy from pool, which means
the trader will discard whatever model he is using, select a
better trading strategy from the pool using roulette wheel
selection, and go into the next six months trading with
this copied strategy. Or, with a 0.5 probability, the trader
will decide to discard whatever strategy he is using, select
another set of indicators as inputs, build ten new models,
and go into next six months of trading with these ten new
models.

4) If the assessment is between 0.9 and 1.0, the trader is rea-
sonably satisfied with his performance over the past six
months. With 0.7 probability the trader will continue using
the same set of indicators. With 0.3 probability the trader
will decide to try a new set of indicators.

Traders will also update the scores of indicators they have
used based on their performance over the past six months using
(14) below

I = I + ROP (14)

where ¢ is the ¢th trader, 7 is the nth indicator used by trader %
in the current six-month trading, and ROP is the rate of profit
of trader # in the current six months trading. This mimics the
public opinion of the technical indicators in the market.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Imperfect Environment With New Challenges

1) Absorption and Dissemination of New Information:
Table I lists the five stocks traded in the imperfect evolu-
tionary market. Details of the 20 technical indicators are given
in Table II. As discussed in Sections I and II, an imperfect
environment constantly evolves and changes. Environmental
variables that form an imperfect environment change when
new information and knowledge are introduced or discovered.
When new technical indicators are introduced into the simu-
lated stock market, in the form of new environmental variables,
the problem observational space of the artificial stock traders
expands. The absorption and dissemination of new information
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and knowledge among imperfect individuals becomes crucial
to the evolutionary process. An evolutionary system becomes
meaningless if it cannot perceive and digest new information
from its environment.

The 20 indicators from Table II are divided into two groups:
INDI1-IND10 (the static variables) and IND11-IND20 (the
new challenges). The group of ten indicators from INDI1 to
IND10 are given to the simulated stock market as initial
settings, i.e., from the start of the evolutionary system. The
remaining ten indicators are injected into the imperfect market
as a new environmental variable every two generations, i.e.,
indicator IND11 is introduced to the market at generation 2,
indicator IND12 is introduced to the market at generation 4,
and so on. Thus, the market is gradually injected with new
techniques such as stochastic oscillators and new knowledge
such as Hang Seng Index, Nikkei 225 Index, and the Dow
Jones Industry Average. This conforms to the real-life market,
as technical indicators are not all invented at the same time.
The environmental space of artificial traders expands as the
number of environmental variables increases. Generations here
refer to the generations of social learning, i.e., each generation
consists of 125 days trading.

In the ISP, social learning acts as a mechanism through
which the absorption and dissemination of new information
into the trading society occur. During the social learning stage,
besides being able to publish their successful trading strate-
gies, traders with poor performances have the opportunity to
discard the old set of indicators they used, and select a new set
of indicators from the environment, which possibly includes
newly introduced indicators. In addition, for traders who are
satisfied with their performance, besides allowing them to
keep their old trading models, we also give these traders the
opportunity to try out other new indicators from the market,
as shown in Section IV-D. When good trading strategies are
developed through the use of new indicators, these good trading
strategies will also be published to the market and learned by
other traders. Thus, the new indicators are disseminated among
the trading society. In order to put pressure on the use of new
information, we assign the newly introduced indicators with
the highest score among the current environmental variables,
which mimics the phenomenon that new techniques appearing
in a market usually attract public attention.

We define U (e) as the utility of an environmental variable. In
the imperfect evolutionary market, an indicator’s U(e) simply
equals the number of times that it has been selected for use
by traders. By examining the changes in an indicator’s utility
U(e), we will be able to see if a piece of new information in
the environment has been perceived and absorbed by the im-
perfect evolutionary market. Ten simulations are run on each of
the five selected stocks with the dynamically changing environ-
mental variables. Figs. 3-5 depict 20 indicators’ U(e) from the
best run on each stock. The U(e) of indicators INDI-IND10
are recorded starting from generation 1. For indicators IND11
and IND20, U (e) is recorded starting from the generation before
they are introduced into the market. For example, IND20 is in-
troduced in generation 20, and its U(e) is depicted starting from
generation 19, when it has the value of 0. Therefore, the utility
of indicators IND11-IND20 start with the value of 0, which, in
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fact, indicates that they represent new variables emerging in the
environment.

Fig. 3(a) shows the utility of the static variables from the sim-
ulation run on the CK stock with five randomly selected indi-
cators’ U(e) from IND1 to IND10. Fig. 3(b) shows the traders’
response to the new challenges in the environment from the sim-
ulation on the CK stock with five randomly selected indicators’
U(e) from IND11 to IND20. In Fig. 3(a), the indicators are static
environmental variables given to the market at the beginning of
the evolution. Each line in Fig. 3(a) starts at generation 1 with a
nonzero value, which indicates the frequency at which the indi-
cator is selected in the very first round of social learning. Since
a trader is allowed to select an indicator more than once, we
see some indicators’ U (e) start with a value that is greater than
50. As the evolutionary process continues, indicators’ utility in-
creases.

In Fig. 3(b), each indicator is introduced to the market at a dif-
ferent time. Before it is introduced, the indicator does not exist
in the market. Each U(e) line in Fig. 3(b) starts at a different
point on the = axis, which corresponds to the generation before
it is introduced to the market, and has a utility of 0. When it
comes to the generation in which the indicator is injected, the
social learning mechanism will put pressure on the traders to try
this new indicator for building new trading models. This results
in the increase in U (¢) values after the starting point of each line.
As shown in Fig. 3(b), new indicators are gradually selected and
used by traders. If an indicator is useful for trading, it will be
accepted by more traders through the social learning process,
and subsequently has a high utility, such as IND16 in Fig. 3(b).
If the new information is not as useful, it gradually loses favor
with traders, such as IND12 in Fig. 3(b). Therefore, it is clearly
demonstrated in Fig. 3(b), the absorption and dissemination of
new environmental variables by the trading society during the
simulation on CK stock. Similar phenomena can also be ob-
served on the CATHAY stock [Fig. 3(c) and (d)], the WHARF
stock [Fig. 4(a) and (b)], the TOYOTA stock [Fig. 4(c) and (d)],
and the SONY stock [Fig. 5(a) and (b)].

Some indicators’ utility stayed at zero for a few generations
after they have been injected to the market, such as IND12 in
Fig. 3(b) and IND18 in Fig. 4(b). This is because they were
not selected for use by traders after they were introduced to the
market. There are two factors that could be responsible for a new
environmental variable remaining undetected by the imperfect
individuals: 1) the randomness in the selection procedure of so-
cial learning and 2) at the time when a new variable emerges,
the traders are generally doing well and there is little pressure on
social learning. Interestingly, by looking at Figs. 3(b), (d), and
4(b), we find that IND16, IND18, and IND20 are generally well
accepted by the artificial stock traders. Referring to Table II,
these three indicators are rates of change of the three major
market indexes. It is generally accepted by investors in the stock
market that market indexes have a significant impact on the
stock prices. Often stock prices simply rise and fall along with
the rise and fall in major market indexes regardless of the com-
pany’s actual performance. We want to stress that the new chal-
lenges (IND11-IND20) are gradually introduced to the market
as black boxes, i.e., the traders do not know what these indica-
tors represent. The traders are only aware that some new infor-
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Fig. 3. The usage of environmental variables and absorption of new information [CK(a/b) and CATHAY (c/d)].

mation has appeared. Through evolution, artificial agents find
the best way to make use of the new information and transfer
it into skills and knowledge. As a summary, the experiments
clearly demonstrate the absorption and dissemination of new
information and knowledge within the imperfect evolutionary
market using the ISP learning paradigm, and the adaptation of
artificial stock traders to the new challenges from their imper-
fect environment.

2) Static Environment Versus Imperfect Environment: In
Table III, we compare the performance of imperfect traders
who evolve under the static 20 environmental variables, against
traders who evolve with dynamically changing environmental
variables. We use four criteria for the comparison of artificial
stock traders’ performance against two benchmark investment
strategies: Buy and Hold Strategy (BnH) and Bank Savings.

The BnH strategy requires stock investors to buy and hold a
stock over a long period in the hope that time will eventually
ride out the volatility in the stock price. The four criteria used
are: number of traders who outperformed the BnH strategy;
number of traders who outperformed the risk-free bank savings;
the best trader’s cumulative total return; the average cumulative
total return of 50 traders from the best run.

Clearly, from Table III, traders using dynamic environmental
variables performed poorly compared with traders using static
environmental variables. This is understandable as the traders
with the static environmental variables have more opportuni-
ties to make use of indicators IND11-IND20 from the begin-
ning of the evolution, whereas, the traders with dynamic en-
vironmental variables are only able to make use of indicators
IND11-IND20 when they are introduced to the market. Obvi-
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Fig. 4. The usage of environmental variables and absorption of new information

ously, traders in an imperfect environment are disadvantaged in
terms of knowledge and time. The comparison shows that for
many scientific problems, people know what the exact obser-
vational space of a problem is. However, for real-life problems,
observational spaces, and therefore their related problem spaces,
are generally not of a static shape and a static domain. Dealing
with an imperfect environment with new challenges is a problem
that should not be ignored.

B. Individual Learning and Social Learning With Different
Frequencies

The social learning mechanism in the IES plays an important
role in ensuring artificial agents’ adaptation to a changing envi-
ronment. In the next set of experiments, we study the sensitivity
of the parameters in the ISP learning paradigm by letting the in-
dividual and social learning occur at different frequencies.
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[WHARF(a/b) and TOYOTA(c/d)].

As shown in Table IV, we let individual learning occur every
5 trading days or every 25 trading days. We let social learning
occur every 125 trading days or every 250 trading days. A
five-day trading period is approximately one week trading
(sometimes, it is shorter, e.g., when there is a public holiday).
A 125-day trading period is approximately a six-month trading
period. The simulation of trading is run on each of the five
stocks from Table I, with the four different frequencies shown
in Table IV. Ten runs are carried out on each frequency setting.
The results from the best runs of each stock are depicted in
Figs. 6 and 7.

We use the same four criteria for the comparison of the
traders’ performance with difference frequencies in individual
and social learning: the number of traders who outperformed
the benchmark BnH strategy shown in Fig. 6(a); the number of
traders who outperformed the risk-free bank savings shown in
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Fig. 5. The usage of environmental variables and absorption of new informa-
tion (SONY).

Fig. 6(b); the top trader’s cumulative total return, as shown in
Fig. 7(a); and the average cumulative total return of 50 traders
from the best run, as shown in Fig. 7(b). As shown in Table I,
the classical BnH strategy does not suit every stock. CATHAY
and SONY are two stocks which have suffered serious losses in
the past few years due to the economic climate or a failed cor-
porate development strategy. The apparent choice for investors
in this case is to leave their money in the bank. Nevertheless,
the artificial active stock traders in the simulated stock market,
who use ANNSs as trading models to detect buy and sell signals
from the market, have developed successful trading strategies
that beat investments in bank savings in the case of CATHAY
and SONY, as shown in Fig. 6(b), and beat the BnH strategy in

the case of CK, WHAREF, and TOYOTA, as shown in Fig. 6(a).
With five different types of stocks, the results demonstrate the
robustness of the ISP learning paradigm in the IES.

With regard to the effect of changing frequencies in individual
and social learning, Figs. 6 and 7 clearly show that the learning
ability of artificial traders declines when the frequency of so-
cial learning is reduced. Simulations with more frequent social
learning (5-125 and 25-125) generally improve the agents’ per-
formance significantly in all four criteria. This phenomenon can
be explained in two ways.

1) The reduction in the frequency of social learning results in
less opportunities for agents to learn from other successful
agents, and hence it takes agents much longer to find a good
trading strategy in which time they may suffer from serious
losses from which they may never recover.

2) The reduction in social learning also means less successful
trading strategies are developed in the society as agents
have less opportunities to publish their good strategies to
the society and have less opportunities to discard infe-
rior information and select new sets of indicators from the
market for building new models.

However, the effects of individual learning occurring at dif-
ferent frequencies are not so clear. For example, considering CK
in Fig. 6(a), more frequent individual learning improves the per-
formance of the best trader when social learning also occurs fre-
quently, whereas more frequent individual learning did not actu-
ally improve the performance when the social learning process
occurs less frequently. However, for WHARF in Fig. 6(a), when
individual learning occurs at higher frequencies, better results
are produced under both social learning settings. We also see
mixed results on other stocks with other criteria regarding the ef-
fects of different frequencies in individual learning. Apparently,
it is not reasonable to simply assert that individual learning
should occur more frequently or less frequently. The mixed re-
sults on individual learning are due to several reasons. When in-
dividual learning occurs more frequently, it accelerates the dis-
covery of good trading models, and also enables traders to adapt
to changes in the market more quickly. However, as the per-
formance of artificial traders is evaluated using a trader’s profit
from the past week, or the past six months, there are problems
that the fitness of a trading model may not be completely re-
flected within a short time. As an example, during the correc-
tion of a stock market, the stock prices will drop from a pre-
vious high, but are usually followed by another surge in the
stock price. A good trading strategy in a period like this is to
buy stocks when the prices have dropped to a certain resistance
level, and wait for a bull market. The correction of a market may
take a few weeks, or a few months. An individual learning over
a short timescale, of (say) five trading days, will not fully re-
flect the trading strategy’s profitability. This causes the possible
loss of good trading strategies, and the evolution may move in
a wrong direction.

In fact, what the results show us is that a dynamic individual
and social learning scheme might be more appropriate in the
ISP paradigm. Instead of designing the agents to learn at a cer-
tain time, the learning entities should have the right to decide
when they need individual learning or when they need to turn to
the society for help. Thus, every individual within the dynamic
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TABLE III
COMPARISON OF RESULTS ON STATIC AND IMPERFECT ENVIRONMENT (ARTIFICIAL TRADERS’ TRADING PERFORMANCE)
Static Environments Dynamically Changing Environmental Variables
Stock Outperform | Outperform Best Average Outperform | Outperform Best Average
BnH BS Return (%) Return (%) BnH BS Return (%) Return (%)
C.K. 44 50 2953.47 947.21 28 49 1862.19 672.33
CATHAY 50 49 1155.03 413.88 34 19 440.9 98.3
WHARF 50 50 1639.89 732.79 34 40 1312.99 280.17
TOYOTA 42 49 417.14 228.23 16 33 359.94 102.93
SONY 49 38 718.07 175.75 49 27 591.99 109.79

Results are taken from the best run out of 10 runs on each stock under different conditions, i.e., static environmental parameters and
dynamically changing environmental parameters. .
Return refers to accumulated total return over the whole trading period; Outperform BnH = number of traders outperform the Buy and
Hold strategy (BnH) out of the 50 traders, Outperform BS = number of traders outperform bank savings (BS) out of the 50 traders, Best
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Return = maximum return from the 50 traders, Average Return = average return from the 50 traders.

TABLE IV
INDIVIDUAL AND SOCIAL LEARNING OCCURRING AT DIFFERENT FREQUENCIES
Timescale Description

Individual learning occurs every 5 trading days
5-125 . : .

Social learning occurs every 125 trading days

Individual learning occurs every 25 trading days
25-125 . : .

Social learning occurs every 125 trading days
5.250 Individual learning occurs every 5 trading days

Social learning occurs every 250 trading days

Individual learning occurs every 25 trading days
25-250 . : .

Social learning occurs every 250 trading days

imperfect environment will adjust their learning frequencies de-
pending on their own evolutionary process. In addition, forward
learning methods, i.e., evaluate a trading model’s fitness by cal-
culating its future profitability, should be used in coordination
with backwards learning in order to offset the problems caused
by fitness evaluation timescales.

Note that Fig. 7(a) shows the cumulative return of the best
performer from ten simulations on each stock over 15 years
trading. The figures may look abnormally high, for example, the
CK stock achieved a nearly 3000% cumulative return. However,
if we calculate an approximate annual return on the CK stock
over the 15-year trading, we have the value as 3000%/15 =
200% per year. Assuming an initial investment of £1000 at the
beginning of a year, a trader then needs to make £3000 at the
end of the year to achieve an annual return of 200%. For a good
market timer in the real-world stock markets, it is not difficult to
achieve such a performance. For our artificial traders, we give
each trader £10 000 cash to start with, where the effect of com-
pound interest is more significant. For more discussions on ac-
tive trading and market timing, please refer to Bodie et al. [41,
pp- 919-923].

VI. CONCLUSIONS AND FUTURE WORK

We have described an imperfect environment as an environ-
ment that constantly presents new challenges to its participants.
Inside an imperfect environment there exist imperfect individ-
uals who do not completely understand their environment due
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Fig. 6. Performance of artificial stock traders with different frequencies of in-
dividual and social learning.

to the complexity of the world surrounding them and every im-
perfect individual has a (possibly) different view of their envi-
ronment. An IES consists of imperfect individuals living in an
imperfect environment where intelligent individuals optimize
their own utility, with the resources available, while adapting
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themselves to the new challenges from the evolving and imper-
fect environment. We have used two examples to illustrate our
concept of IESs. One example demonstrated a simple imper-
fect evolutionary market and we discussed how imperfect evo-
lution enables stock traders to learn new investment techniques.
We also described a simulated game-playing “brain,” and how it
would be possible for a brain to learn from the games it played
and also to learn different kinds of games. We propose IESs as
a change from a perfect perspective to an imperfect perspective
in designing intelligent systems. The comparison between the
cultural learning algorithm and the ISP further stresses that an
IES concerns the incompleteness and continuity of intelligence,
i.e., how to sustain the continuous innovation of an intelligent
system.

In this paper, as a first attempt in developing IESs, we imple-
mented an imperfect evolutionary market based on an integrated
individual and social learning algorithm. Through experiments,
we clearly demonstrate the absorption and dissemination of new
information and knowledge within the imperfect evolutionary
market under the ISP learning paradigm, and the adaptation of

imperfect artificial traders to the new challenges from their en-
vironment. The ISP learning paradigm demonstrates its robust-
ness under various market scenarios. However, there are still a
number of aspects where the ISP learning paradigm can be im-
proved, e.g., the knowledge evolution in the social pool and the
credit assignment problem in both individual and social learning
processes.

Blondie24 is successful because it solved the problem of ma-
chine learning without preinjected human knowledge. However,
does it mean we have created intelligence when we develop ma-
chines that can play games at expert levels or even beat human
world champions? Not quite. Many people play checkers, but
not all of them to an expert level. Nevertheless, they are intel-
ligent. Under the IES methodology, we believe it is possible to
develop a computer game-playing program that learns from the
games it plays, and also learns to play different kinds of games.
However, there are still many practical questions that need to be
answered. For example, in the imperfect evolutionary market,
the intelligent system only has one objective, i.e., to make a
profit. If we are going to learn different kinds of games, we will
have multiple objectives in one intelligent system, e.g., playing
checkers or playing poker. How do we create a new individual,
i.e., a new functional section, in the simulated game-playing
mind for a new game? How can the ISP learning paradigm be
improved to accomplish this? How do we differentiate infor-
mation? Should the functional sections in the simulated “brain”
interact with each other? And how? The development of the
concept on IESs, presented in this paper, provides a new per-
spective in designing adaptive intelligent systems. To imple-
ment more complex [ESs still requires many practical problems
to be solved.
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