

A Monte Carlo Hyper-Heuristic To Optimise Component Placement
Sequencing For Multi Head Placement Machine

Masri Ayob And Graham Kendall
ASAP Group, CSiT, University of Nottingham, Nottingham NG8 1BB, UK

mxa|gxk@cs.nott.ac.uk

Abstract: In this paper we introduce a Monte Carlo based hyper-heuristic. The
Monte Carlo hyper-heuristic manages a set of low level heuristics (in this case just
simple 2-opt swaps but they could be any other heuristics). Each of the low level
heuristics is responsible for creating a unique neighbour that may be impossible to
create by the other low level heuristics. On each iteration, the Monte Carlo hyper
heuristic randomly calls a low level heuristic. The new solution returned by the low
level heuristic will be accepted based on the Monte Carlo acceptance criteria. The
Monte Carlo acceptance criteria always accept an improved solution. Worse
solutions will be accepted with a certain probability, which decreases with worse
solutions, in order to escape local minima. We develop three hyper-heuristics based
on a Monte Carlo method, these being Linear Monte Carlo Exponential Monte Carlo
and Exponential Monte Carlo with counter. We also investigate four other hyper-
heuristics to examine their performance and for comparative purposes. To
demonstrate our approach we employ these hyper-heuristics to optimise component
placement sequencing in order to improve the efficiency of the multi head placement
machine. Experimental results show that the Exponential Monte Carlo hyper-
heuristic is superior to the other hyper-heuristics and is superior to a choice function
hyper-heuristic reported in earlier work.

Keywords: Intelligent Search, Heuristic, Printed Circuit Board Assembly,
Optimisation.

1. Introduction
SMD (surface mount device) placement machines
are used to assemble components onto a PCB
(printed circuit board). Optimising the pickup and
placement sequence is a significant factor in
determining the efficiency of an SMD placement
machine. In this work, we study a component
placement sequencing problem of a multi head
SMD placement machine. The machine has a fixed
feeder carrier, a fixed PCB table and a positioning
arm head that is equipped with a number of nozzles
that is used to grasp the components. The feeder
carrier consists of several feeder slots where the
components are located. The PCB table holds the
PCB in a locked position during a pick-place
operation. The head and arm (or sometimes called
robot arm) is movable in the X-Y direction
simultaneously. The tour of the robot arm begins by
picking up a number of components from the
feeder. Then, it travels in the X and Y direction
simultaneously and positions itself at the point
where the component will be mounted. Then the
robot arm moves down (Z-direction) and mounts the
component on the board before returning to its
original position and repeating these steps for the
next locations on the board that have to be mounted

on the same tour. After completing a tour, the robot
arm returns to the feeder location to begin another
tour. Figure 1 is an example of multi head
placement machine.

Figure 1: An Example Of Pick Place Multi Head
Placement Machine (Taken From [1])

 Various methods have been applied to improve
the efficiency of SMD placement machines such as
[2,3,4], but none have used a hyper-heuristic
approach. Hence, we are going to introduce a new
hyper-heuristic approach based on a Monte Carlo
method [5], to optimise the component placement
sequencing in order to improve the efficiency of the
multi head SMD placement machine.
 The motivation for investigating the hyper-
heuristic approach instead of the other meta-
heuristics is that the hyper-heuristic framework

Noppakarn Srisukwattananun
- 132 -

Sakgasit Ramingwong
Copyright (c) 2003 International Conference on Intelligent Technologies 2003 (InTech'03); ISBN 974-658-151-1

provides a way to combine many heuristics in
solving a problem. This feature is useful for solving
the component placement sequencing problem of a
multi head SMD placement machine since this
problem requires a number of heuristics. Most
previous works on hyper-heuristics (such as
[6,7,8,9,10,11]) focus on sequencing the calls of the
low level heuristics (LLHs). They report successful
results. However, in this work we investigate on
improving the acceptance criteria. Of course, the
sequence of LLH is important but in our problem
domain we are dealing with the LLHs that randomly
create the neighbour solutions. Since the
neighbour’s solution is randomly generated by the
LLHs, we cannot measure the performance of each
LLH based on the historical performance as the
quality of the obtained solution does not represent
the efficiency of the LLH. This statement is
supported by the experimental results from this
work where the Choice-Function described in [7]
does not perform well in all test problems.
 There are many determining factors in
minimising the assembly cycle time of multi head
placement machine such as optimisation of the
pickup sequence, the placement sequence, nozzle
assignment, sub-tour grouping and sequencing the
sub-tour. However, optimising one factor may
increase the cost of another factor(s). The
complexity of this problem causes a difficulty in
devising a good strategy to minimise the assembly
cycle time. The advantage of using the hyper-
heuristic, compared to the other meta-heuristics, is
the ability to combine a number of heuristics. By
applying a hyper-heuristic approach, we do not have
to concern ourselves with the trade-off between the
optimisation of the important factors as this will be
catered for within the hyper-heuristic.

2. The Scheduling Model
The quality of a schedule can be evaluated by a
placement time function, known as the assembly
cycle time, for a pick and place multi head
placement. We model a pick place multi head
placement machine that has a single head equipped
with G number of nozzles, fixed PCB table and
fixed feeder carrier (same as in [12,13]). This
placement machine was categorised in [14] as a
multi head placement machine that has an arm and
head which can move in the X-Y axis
simultaneously but the feeder carrier and PCB table
are fixed. The following notations are used to
describe the scheduling model:

CT : the assembly cycle time to assemble all

components;
N : the number of PCB points on the PCB;
Q : the total number of available PCB points to be

scheduled, where Q ≤ N.
K : the number of component types (each feeder

slot holds multiple copies of one component
type);

G : the number of nozzles per head;
B : the total number of sub tours;
M : the total number of feeder slots where K ≤ M;
c(j,h)x,y : the X,Y coordinate on the PCB which will

have a component placed there in the hth
placement sequence of the j th sub tour;

V : the robot speed (average); �
 : the time for picking up a component; �
 : the time for placing a component;

r : the rth slot number where r � { 0,1,2,…,(M-1)} ;
i : the i th component type where i � { 1,2,…,K} ;
k : the kth pickup sequence in a sub tour where k �

{ 1,2,…,G} ;
h : the hth placement sequence in a sub tour where

h � { 1,2,…,G} ;
j : the j th sub tour number where j � { 1,2,…,B} ;
I(j,k) : the time taken for the robot arm to travel from

feeder carrier to PCB point and place a
component in the kth placement sequence of the
j th sub tour;

P(j,k) : the time taken for the robot arm to travel from
PCB point to feeder carrier and pick a
component in the kth pickup sequence of the j th
sub tour; �

i(j,k) : the nozzle used to pick i th component in the kth
pickup sequence of the j th sub tour; �

i(j,h) : the nozzle used to place i thcomponent in the hth
placement sequence of the j th sub tour;

S(r) : the rth slot distance referring to the origin of
feeder slot, s(0) where s(0)=0 and r� K;

R(j,k) : the slot distance for the kth pickup sequence of
the j th sub tour;

d(j,h) : the max{ |d(j,h)x|, |d(j,h)y|} where x and y is the
X,Y robot traveling distance to place a
component in the hth placement sequence of the
j th sub tour, where the distance is measured as a
Chebychev distance (dictated by the maximum
of X or Y traveling distance as the robot arm
moves concurrently in X-Y axis);

m(j,k) : the max{ |m(j,k)x|, |m(j,k)y|} where x and y is the
X,Y robot traveling distance to pick a
component in the kth pickup sequence of the j th
sub tour, where the distance is measured as a
Chebychev distance ;

F : the gap between each two adjacent feeder slots;
L : the gap between each two successive (adjacent)

nozzles.

 The objective function is to minimise the
assembly cycle time, CT, by minimising the
traveling distance of the robot to perform pick
and place operation:

Minimise (1)

s.t.

�
=

�
=

�
=

+= ��	
��B

j

G

k

G

k
kjIkjPCT

1 1 1
),(),(

Each feeder slot may hold
one component type only. ;r,1irg

K

1i
∀≤

=

(2)

Assuming no feeder duplication. ;i,1irg
1M

0r
∀=

� −

=
(3)

1 : if component type i is assigned
to feeder slot r,

0 : otherwise
gir= (4)

Noppakarn Srisukwattananun
- 133 -

�
i(j,k) � {0,1,2,..(G-1)}; � (j,k)≠ � (j,l) if k� l;

 j=1,2,..,B; k = 1,2,..,G; �
i(j,h) � {0,1,2,..(G-1)}; � (j,h)≠ � (j,l) if h� l;

 j=1,2,..,B; h =1,2,..,G;

 �
i(j,k)=

�
i(j,h)

where:

 The assembly cycle time, CT is a function of
robot traveling distance divided by the robot speed,
plus a components’ pickups (�) and a
placements’ (�) time. In our model, all elements are
fixed (that are the PCB table, feeder carrier and
nozzles) except the arm and head that moveable in
X-Y axis concurrently. Since the robot (i.e. the arm
and head of SMD placement machine) can move

simultaneously in the X-Y axis, the robot traveling
distance dictates by the maximum of X or Y
traveling distance (i.e. a Chebychev distance). A
complete tour of a robot consists of B sub tours and
each sub tour has at most G pairs of pick and place
points (equation 1).

3. Monte Carlo Algorithm
Let us define a solution space S, an objective
function f and a neighbourhood structure n. A basic
Monte Carlo (MC) method for minimisation
problem can be expressed by the following
algorithm [5]:

Step 1: (Initialisation)

(A) Choose a starting solution S0 � S;
(B) Record the best obtained solution, Sbest = S0

and f(Sbest)= f(S0);
Step 2: (Choice and termination)

(A) Randomly choose Sc � n(S0);
(B) Compute � = f(Sc) - f(S0);
(C) If � � 0 then accept Sc (and proceed to Step 3);
(D) Else: Accept Sc with a probability that

decreases with increases in � . If Sc is rejected
and stopping condition=false, then return to
Step2(A);

(E) Terminate by a stopping condition.
Step 3: (Update)
 Re-set S0 = Sc, and if f(Sc)<f(Sbest), perform

Step1(B). Return to Step2 if stopping
condition=false.

Figure 2: A Basic Monte Carlo (MC)
Algorithm[5]

 In this work, we develop three types of
acceptance probability (referring to Step2(D) Figure
2):
i. Linear Monte Carlo (LMC). The probability is

computed by (M-) where M is a constant valued
between 0 and 100. Based on our preliminary
test, the LMC works well with M=5 (for our test
data, different values of M may be required for
different problem instances). The test shows that
the LMC is parameter sensitive. The LMC will
perform almost similar to a steepest descent
approach with a small value of M since the
probability of accepting worse solution is too
small. On contrary, larger M will more likely to
accept worse solution and cannot converge. The
new solution, Sc is accepted if a generated
random number is less than (M-).

ii. Exponential Monte Carlo (EMC). The probability
is computed by e-
 where 	 =f(Sc)-f(S0). The
probability of accepting a worse solution
decreases as the 	 increases. The new solution, Sc
is accepted if a generated random number is less
than e-
 .

iii. Exponential Monte Carlo with counter (EMCQ).
The probability is computed by e- � /� where
 = 	 * t

Q/G if Q MOD G=0;

1 + Q/G if Q MOD G� 0;
B = (12)

);,(*)
),(

(),(kjz
V

kjm
kjP λ+= (13)

;)k,j(z*)
V

)k,j(d
()k,j(I θ+= (14)

0 – [c(j-1,G)] if k=1, j>1;

0 otherwise
m(j,k)y = (17)

c(j,h)y if h=1;

[c(j,h)y – c(j,h-1)y] if h>1;
d(j,h)y = (18)

[]�
=

=
1-M

0r
k)(j,

r
b*S(r)k)R(j, (20)

(19) F* r S(r) =

1 : if there is a nozzle assigned to
pick or place a component in the
kth sequence of j th sub tour.

0 : otherwise

z(j,k) =
(8)

() ;Gkj,z
G

1k

≤
�

=

(9)

1: if there is a component to be picked
up from feeder slot r in the kth
pickup sequence of the j th sub tour,

0 : otherwise

br(j,k)=
(10)

;k,j,1
1M

0r
)k,j(rb ∀∀≤

� −

=
(11)

Only one component
can be picked up in
each pickup sequence.

(5)

(6)

(7)

R(j,k) – � (j,k)*L

[R(j,k)–� (j,k)*L] –
 [c(j-1,G)x- � (j-1,G)*L]

[R(j,k)–R(j,k-1)] –
[(� (j,k)- � (j,k-1))*L]

m(j,k)x=

(15)
if j=k=1;

if k=1, j>1;

if k>1;

[c(j,h)x–R(j,G)] –
[(� (j,h)- � (j,G))*L]

[c(j,h)x–c(j,h-1)x] –
[(� (j,h)- � (j,h-1))*L]

d(j,h)x =

(16)

if h=1;

if h>1;

Noppakarn Srisukwattananun
- 134 -

and � =ρ(Q). t is a computation time (in our case
we use minutes as a unit time).
 and � are defined
such that we ensure that the probability of
accepting a worse solution decreases as the time
increases and 	 increases. The factor of time is
included in this formulation as an intensification
factor. At the beginning of the search, the
moderately worse solution is more likely to be
accepted but as the time increases the worse
solution is unlikely to be accepted. However, the
probability of accepting a worse solution
increases as the counter of consecutive none
improvement iterations, Q increases. This is a
diversification factor. ρ(Q) is a function to
intelligently control the Q. In this work we use

� =v*Q where 0
�

v
�

1, in order to limit the
acceptance probability. However, our preliminary
experiment on parameter sensitivity of v shows
that the EMCQ algorithm with v=1 performs the
best. Therefore, we set � =Q. The new solution, Sc
is accepted if a generated random number is less
than e- � /� .

 The formulation of the acceptance probability of
EMC and EMCQ is quite similar to the acceptance
criteria of a simulated annealing approach. The
difference, for the EMC and EMCQ is that we do
not have a cooling schedule. EMCQ will
exponentially increase the acceptance probability as
we have been unable to find a better solution for a
long time (i.e. too long being trapped in local
optima). However, the EMCQ will exponentially
reduce the acceptance probability as the searching
time increases (similar to a simulated annealing
approach). As the EMC and EMCQ do not have
parameters which have to be tuned (all the
parameters are automatically controlled based on
the solution quality (with exploring time and the
duration of being trapped in local optima in the case
of EMCQ)), these methods are simple and robust
heuristic technique.
 The EMC and EMCQ algorithm work as
follows. First, an initial solution is chosen. Then, for
each iteration, a neighbour of the current solution is
generated. The ‘qualities’ of the two solutions are
compared. A decision is made whether the new
solution should be accepted. An improved solution
is always accepted. However, in order to escape
from the local optima we accept a worse solution
with a probability that depends on 	 (and the
duration we have been trapped in the local optima
in the case of EMCQ). A worse solution is more
likely to be accepted if the 	 is small (and we cannot
find a better solution for a long time for the case of
EMCQ). The idea of EMCQ is to ensure that we
only accept a moderately worse solution after most
of the neighbours of the current solution have been
explored and none of them is better than the old

solution. Table 1. shows the difference among the
three proposed approaches.

Method Acceptance Probability
LMC x<(M- �)
EMC e-�
EMCQ e-� /� where

�
= � * t and � =Q

4. Hyper-heuristic
Many heuristics are problem-dependent [15].
However, there are some heuristics that are not
problem-specific such as hyper-heuristic [6,7,8]
approaches that aims to be a general-purpose
heuristic that can handle a wide range of problems.
Hyper-heuristics are (meta-)heuristics that can
operate on (meta-)heuristics [8].
 The motivation for investigating hyper-heuristic
approaches is that the hyper-heuristic framework
provides a way of combining many heuristics in
solving a problem. The hyper-heuristic framework
manages a set of low level heuristics which operates
at a higher level of abstraction without having
access to the problem domain-knowledge [8].
Generally, the low level heuristics (LLH) are a
simple local search, k-opt operator or other
heuristics that are problem-dependent. In this work
we develop six 2-opt operators as LLHs. Each LLH
is responsible for creating a unique neighbour that
may be impossible to reach by other LLHs. In fact,
each LLH plays a unique role in minimising the
cycle time. For example, one aims to optimise the
pickup sequence, whilst others aim to optimise the
placement sequence, the pickup nozzle assignment,
the sub-tour’s grouping etc. Whatever factor is
being optimised the overall aim is to minimise CT.
There is no good strategy for selecting which LLH
to apply at a given time. However, continuously
applying single LLH will quickly lead to a local
optima. Previous work has attempted to combine
simple heuristics (in a hyper-heuristic framework)
using a Choice-Function [6] and Hyper-genetic
algorithm (Hyper-GA) [9]. The Choice-Function
hyper-heuristic [6] adaptively ranks the LLHs based
upon the historical performance of individual LLHs
in order to suggest the next LLH to apply. The
Hyper-GA hyper-heuristic [9] evolves the sequence
of calling the LLHs by representing a gene in a
chromosome with a LLH. The chromosome is
evaluated by the quality of the solution obtained
when applying the LLHs in the sequence denoted by
the chromosome. Other works in the hyper-heuristic
area can be found in [10,11]. A general framework
of hyper-heuristic is shown in Figure 3.

Table 1: A Comparison Of Acceptance
Probability For LMC, EMC And EMCQ.

Noppakarn Srisukwattananun
- 135 -

 The communication between the hyper-heuristic
and the LLHs uses a standard interface. Only non-
domain specific data such as the solution’s quality
and the computation time is allowed to cross the
barrier between the hyper-heuristic and the LLHs.
The hyper-heuristic only knows that it has a certain
number of heuristics on which to operate and
whether the objective function is being minimised
or maximised. The general structure of the hyper-
heuristic algorithm is shown in Figure 4.

Step 1: (Initialisation)

(A) Choose a starting solution S0 � S;
(B) Define H as a set of LLH;
(C) Record the best obtained solution, Sbest = S0

and F(Sbest)= F(S0);
Step 2: (Choice and termination)

(A) Choose an Hc � H;
(B) Apply Hc to produce Sc � n(S0);
(C) Compute � = f(Sc) - f(S0);
(D) If the acceptance criteria is true, then accept Sc

(and proceed to Step 3);
(E) If Sc is rejected and stopping condition=false,

then return to Step2(A);
(F) Terminate by a stopping condition.

Step 3: (Update)
 Re-set S0 = Sc, and if f(Sc)<f(Sbest), perform

Step1(C). Return to Step2 if stopping
condition=false.

Figure 4: A General Structure Of A Hyper-
Heuristic Algorithm

 In this work, we investigate seven hyper-
heuristic approaches with different acceptance
criteria (see 2(D), Figure 4):
1) AM (All Move): Randomly select LLH and

accept any solution returned by the LLH.
2) OI (Only Improving): Randomly select LLH

and only accept an improved solution returned
by the LLH.

3) OICF (Only Improving Choice Function):
Select LLH based on historical performance [7]
and only accept an improved solution returned
by the LLH.
F(Nk)=max{ � * f1(Nk)+ β* f2(Nj,Nk)+ � * f3(Nk)}
Where

F(Nk) is a Choice Function of the kth LLH
that has the largest F(Nk.). f1(Nk) is the
cumulative performance rate of heuristic Nk,
f2(Nj,Nk) is the cumulative performance rate
of consecutive pairs of heuristics (heuristic
Nj followed by Nk) and f3(Nk) is the CPU
time which has elapsed since heuristic Nk
was last called. Details of the algorithm can
be found in [6,7] . If the time taken by each
LLH to make a swap is too short
(approximate to zero millisecond), then we
set the duration as 1.

4) AMCF (All Move Choice Function): Same as
OICF but in this case we accept all solution
returned by the LLH.

5) LMC (Linear Monte Carlo): Randomly select
LLH and accepts Sc returned by the LLH based
on the accepting criteria in Table 2.

6) EMC (Exponential Monte Carlo): Randomly select
LLH and accepts Sc returned by the LLH based on
the accepting criteria in Table 2.

7) EMCQ (Exponential Monte Carlo with Counter):
Randomly select LLH and accepts Sc returned by the
LLH based on the accepting criteria in Table 2.

 The LMC, EMC and EMCQ algorithms have
been discussed in Section 3. Table 2 shows the
difference among these hyper-heuristics.

Hyper-
heuristic

Accepting Criteria

AM Accept all moves.
OI Accept Sc if � � 0, otherwise reject Sc.
OICF Accept Sc if � � 0, otherwise reject Sc.
AMCF Accept all moves
LMC Accept Sc if � � 0, otherwise accept Sc if

x<(M- �) where � =f(Sc) -f(S0).
EMC Accept Sc if � � 0, otherwise accept Sc if x

<e-� where � =f(Sc) -f(S0).
EMCQ Accept Sc if � � 0, otherwise accept Sc if x

<e-� /� where
�
=(� * t) and � =Q.

Note: x is a generated random number (value
between 0 to 100 for LMC or 0 to 1 for EMC
and EMCQ) .

5. Low Level Heuristic

The low level heuristics are implemented based on
the problem domain. A set of simple LLHs provides
more flexibility for the hyper-heuristic. A set of
complex LLH, such as steepest descent that finds
the best neighbour is computationally expensive and
indirectly influences the hyper-heuristic to behave
as a steepest descent method (for example). This
results in simple hyper-heuristics (such as AM) and
more complex hyper-heuristics (such as EMC and
EMCQ) producing similar results when using a
complex set of LLH. This is due to the fact that the
complex set of LLH is able to find good solutions

Table 2: A List Of Hyper-Heuristics With
Their Acceptance Criteria.

Hyper-heuristic

Set of low level heuristics

 …..

h1 h2 hn

Evaluation function

Figure 3: Hyper-heuristic Framework

Non-domain data flow

Noppakarn Srisukwattananun
- 136 -

without having to be guided by a hyper-heuristic. Of
course, it takes a lot longer to implement complex
LLH when the problem domain changes. Therefore,
if we are dealing with a set of complex LLHs, it may
be worth applying a simple hyper-heuristic such as
an AM hyper-heuristic. However, in this work we
prefer to use a set of simple LLHs with an
intelligent hyper-heuristic as this allows us to solve
a wider range of problems.
 Our LLH is a set of 2-opt operations. There are
many factors involved in determining the efficiency
of pick-place operations of multi head placement
machine such as the grouping of PCB points (also
referred to as placement points) to a sub tour,
nozzle assignment, pickup and placement
sequencing etc. As the robot arm is equipped with a
number of nozzles, the problem is to determine the
sets of PCB points that will be visited by the robot
arm (i.e. to place a component) in a same route (or a
sub tour). A sub tour consists of a set of pickup and
placement point that will be visited by robot arm in
a tour. For example if the robot arm is equipped
with 8 nozzles, we may have 8 pickup points and 8
placement points in a sub tour. As the sub tour of
the robot arm begins by picking up a number of
component (from the feeders) sequentially, then
travels in X-Y direction concurrently for placing
components onto the PCB, these incur a number of
scheduling problems. These are:

i. Assigning the pickup’s nozzle. The robot arm
has a number of nozzles. In this work we assume
all components are the same size (we ignore the
nozzle size selection). The issue is to determine
which nozzle should be used to pickup a
component such that we minimise the robot arm
traveling distance. We must ensure that the PCB
points will receive the correct component type.
Therefore, if nozzle A picks up component type
X and nozzle B picks up component type Y, the
nozzle A must place component X at a
placement point which is expecting a component
of type X in the sub tour (similarly with nozzle
B). However, if both nozzle A and B pick up a
component type X then the sub tour scheduling
is easier as either nozzle A or B can be used to
place X at a relevant point on the PCB. As the
nozzles are located at a fixed position at the end
of heads, the cost of picking up the next
component is dependent on the nozzle used, the
current location of the head and the current
nozzle used to pick up the current component.

ii. Sequencing the components pickups. The
problem is to determine the sequence of picking
up components in a sub tour to optimise the
pickups.

iii. Sequencing the placement operation. The
problem is to determine the sequence of placing
components in a sub tour to optimise the
placements.

iv. Assigning the placement’s nozzle. Again, the
issue is to optimise the placement and we must
ensure that the PCB points will receive the
correct component type.

v. Assigning PCB points to a sub tour.
vi. Sequencing the sub tours. The aim is to optimise

the sequence of sub tours in order to minimise
the CT.

The aim of optimising the pickups and the
placements is to minimise the CT. However, there is
a trade-off between optimising the pickups and
optimising the placements. Applying the hyper-
heuristic over of a set of LLH simplifies the
problem such that we do not have to compromise
between optimisation of picking and placing.
 On the contrary, in solving this problem, a
typical meta-heuristic approach has to intelligently
deal with the trade-off between optimising the
picking and placement. A meta-heuristic approach
is also forced with a decision as to which sequence
of factors need to be minimised and how far each
factor should be minimised.
 However, the problem can be simplified by
applying a hyper-heuristic over a set of LLHs. In
this work, we develop six simple LLHs:
H1: Swap the pickup sequence in a sub tour. Two

randomly selected points from a sub tour, say i th
and j th pickup sequence in kth sub tour are
swapped. The nozzle assignments remain the
same.

H2: Swap the placement sequence in a sub tour.
Two points are randomly selected from a sub
tour, say i th and j th placement sequence in kth sub
tour are swapped. The nozzle assignments
remain the same. The pickup sequence and the
placement sequence in a sub tour are
independent operations.

H3: Swap the pickup nozzles in a sub tour. The
nozzle’s used in the two points are randomly
selected from a sub tour, say i th and j th pickup
sequence in kth sub tour are swapped. If the
swapping operation involves two different
component types, then we modify the
appropriate placement nozzle in the sub tour
such that the PCB points will receive the correct
component type.

H4: Swap the placement nozzles in a sub tour. The
nozzle’s used for two points are randomly
selected from a sub tour, say i th and j th placement
sequence in kth sub tour are swapped. If the
swapping operation involves two different
component types, then we modify the
appropriate pickup nozzle in the sub tour such
that the component will be picked with the
correct nozzle.

H5: Swap the PCB points among the sub tours. Two
points are randomly selected from different sub
tours, say i th and j th placement sequence in kth
and l th sub tour, respectively, and are swapped.

Noppakarn Srisukwattananun
- 137 -

If the swapping operation involves two different
component types, then we modify the
appropriate pickup component in the
appropriate sub tour such that the pickup
components are valid in both sub tours.

H6: Swap the sub tour sequence order. Two sub
tours are randomly selected, say i th and j th and
are swapped.

6. Experiments And Results
An initial solution is generated using either a
randomised or an ordered constructive heuristic that
we proposed in [12]. As in [12], we assume that the
gap between the feeder carrier and the PCB is 10
unit length, the nozzle’s gap is equal to the size of
feeder slot (chosen as 4 unit length) and all
allocated components are the same size (that is we
ignore the nozzle size selection problem). We
assume that all components use the same nozzle
type and the speed of robot arm is constant for all
component types. We further assume that the
placement machine can only pickup one component
at a time but the number of components that can be
pickup in a sub tour is dependent on the number of
nozzles per head (in this test the number of nozzle,
G=8). In our formulation, we consider that the robot
makes a positive traveling distance when it moves
in increasing X or Y direction and a negative
traveling distance otherwise. Since we model the
same placement machine as in [12], we also apply
the same experimental parameters.
 To simulate the pick-place operation of the
placement machine, we set the speed of the robot
arm, V=10 unit distance/unit time, the pickup and
placement time, λ = θ = 0.5 unit time. For the
purpose of generating the random placement points,
we will set the length and the width of the PCB,
such that the random PCB points fall within the
limits. In the experiment we use two data sets (data
set N80K20_A and N240K40_F). Data set
N80K20_A has 80 PCB points (N) consisting of 20
component types (K) with board width, BW=200
and board length, BL=600. Data set N240K40_F
has N=240, K=40, BW=600 and BL=1800. These
data sets are randomly generated using our random
PCB generator software called PCBgen. PCBgen
allows the user to set the required N, K, BW and
BL. The data sets and PCBgen software are
available at http://www.cs.nott.ac.uk/~mxa/.
 We ran the experiments using an Intel®
Pentium®4 PC with a 1.5GHz processor and 256
MB RAM. In this work we set M=5 (for LMC),

� =1.0, β=0.01 and � =0.5 (for OICF and AMCF).
The parameter values are chosen based on the best
result obtained from our preliminary test on
parameter sensitivity. The parameter sensitivity’s
test shown that the LMC, OICF and AMCF

performance are very sensitive to their parameters
and the best value for the parameters is subject to
the problem size. Table 3 shows the experimental
results of the average of ten runs on data set
N80K20 and N240K40 with each run being given
one hour of computation time as a termination
criteria. However, any other termination criteria
also applicable. For example, if we apply these
methods for an adaptive scheduling that we
proposed in [12] we can continually search for an
improved schedule until there are no more PCB’s to
be assembled. The initial CT for data set
N80K20_A and N240K40_F is 1061.04 and
8385.98 unit time, respectively. The figures in
Table 3 show the average of the best obtained
solution’s qualities with the iteration number (when
the best solution is found) and the computation
time. The percentage of the CT’s improvement (

�
)

is computed as:
�

 = (Initial CT-best CT)*100/Initial CT

 The results in Table 3 show that the OI hyper-
heuristic, that only accepts an improved solution
(i.e. typical random descent method), rapidly
converges to a local optima. For example, in data
set N80K20_A, the OI hyper-heuristic gets trapped
in local optima in 2.58 minutes and cannot find a
better solution even after one hour. However, for
the larger size data set, N240K40_F, the OI hyper-
heuristic can still improve the solution (not yet in
local optima). In all tests, the OICF [7] hyper-
heuristic does not perform well, being even worse
than OI hyper-heuristic for data set N80K20_A.
This indicates that the historical performance and
the time taken by the LLH to produce a neighbour
solution are not applicable in this case study. This is
because the performance of the LLH is
unpredictable since it generates a random neighbour
every time it is called and historical performance
counts for nothing. In fact, the LMC, OI, EMC and
EMCQ hyper-heuristics that randomly call the LLH
are superior to OICF and AMCF, with the EMCQ
hyper-heuristics being superior to the other hyper-
heuristics (for data set N80K20_A). This indicates
that the formulation of an exponential acceptance
criteria is effective in searching for better solutions.
The exponential formulation produces a lower
probability of acceptance for higher search times
and worse evaluation, such that it is adequate to
guide the direction of the hyper-heuristic. Injecting
a counter of consecutive unimproved solutions into
the EMCQ formulation give a significant impact in
guiding the search direction and it also provides a
way to diversify the search when we trapped in
local optima.

Noppakarn Srisukwattananun
- 138 -

8

Data Set N80K20_A Data Set N240K40_F

I CT T
�

(%) I CT T
�

(%)

AM 717566.6 720.15 31.43 32.13 163458 7602.68 25.76 9.34

LMC 1239791.2 266.8 50.2 74.85 488035.7 2350.204 58.38 71.97

EMC 605639.6 281.84 26.96 73.44 360348.5 2350.62 55.84 71.97

EMCQ 1090483.9 248.8 45.8 76.55 388236 2370.3 59.22 71.73

OICF 243268.0 342.98 10.20 67.68 175331.3 2968.45 27.00 64.60

AMCF 290887.5 804.3 18.2 24.20 33307.6 8116.27 5.31 3.22

OI 1310363.2 288.98 54.39 72.76 378998 2771.10 57.72 66.96

Note: I =No of iteration; CT=Assembly cycle time(unit time);

�

=CT’s Improvement; T=computation time(minutes).

Table 3: An Average Result Of Ten Runs On Each Data Set (Test Duration: 1 Hour)

This work is actually a continuation of our previous
work in [12,13] where we employ a real-time or
adaptive schedule to continually search for an
improved solution while the placement machine is
picking up and placing components onto the PCB.
These approaches require a fast searching technique
that is capable of finding good quality solutions in
short timescales. Thus, we examine the performance
of the hyper-heuristics after five minutes to identify
a good hyper-heuristic technique that is able to

operate over a shorter timescale. These results are
shown in Table 4 which demonstrate that the LMC,
EMC and EMCQ hyper-heuristics also perform well
in short timescales. These results demonstrate that
the EMCQ is a good and fast hyper-heuristic
approach as well as operating well over longer time
periods (Table 3). Moreover the EMCQ is a
parameter free heuristic. The exact behavior of the
hyper-heuristics can be observed in Figure 5.

Data Set N80K20_A Data Set N240K40_F

I CT T
�

(%) I CT T
�

(%)
AM 70943.0 750.83 5.0 29.24 31625 8873.95 5 -5.82

LMC 123531.4 317.2 5.0 70.10 41556.5 3169.99 5 62.20

EMC 109080.1 332.54 5.0 68.66 32214.8 3291.70 5 60.75

EMCQ 97842.4 307.2 5.0 71.05 32381.1 3197.7 5 61.87

OICF 118716.6 347.67 5.0 67.23 32385.8 4279.74 5 48.97

AMCF 131991.2 862.5 9.6 18.71 3490.6 8269.00 5 1.39

OI 120173.8 322.63 5.0 69.59 32660 3346.14 5 60.10

Table 4: An Average Result Of Ten Runs On Each Data Set (Test Duration: 5 Minutes)

Noppakarn Srisukwattananun
- 139 -

Figure 5 show that the AMCF is the worst among
the other hyper-heuristics. This indicates that the
heuristic’s selection based on Choice Function
criteria does not perform well in this case study.
The OI and OICF hyper-heuristics get trapped in
local optima whilst the LMC, EMC and EMCQ
continually find improved solutions. As the
performance of the OI and OICF hyper-heuristics
are almost the same in this case study, we can
conclude that the heuristic’s selection in OICF is
arbitrary.

7. Conclusion
We have demonstrated the ability of hyper-
heuristics approaches in solving the component
placement sequencing problem of multi head SMD
placement machine. We examined seven hyper-
heuristic approaches, these being AM, OI, OICF,
AMCF, LMC, EMC and EMCQ. The OICF and
AMCF are the hyper-heuristics that choose the next
LLH to be applied based on previous performance,
whilst the other hyper-heuristics randomly select the
next LLH to be called. Since all the LLHs produce a
random neighbour solution each time they are
called, their performance is unpredictable. Thus,
hyper-heuristics based on previous LLH’s
performance (OICF and AMCF) are unable to
perform well. On the other hand, the other hyper-
heuristic demonstrated a good performance (except
AM hyper-heuristic), especially the LMC and
EMCQ hyper-heuristics. For example, for data set
N80K20_A, the EMCQ minimised the CT by
76.55% respectively (with respect to the initial
solution). Generally, the LMC and EMCQ shows

almost equal performance in this case study, but the
EMCQ has a better formulation which include the
intensification (time, t) and diversification (counter
for consecutive unimproved, Q) factors. Moreover,
the EMCQ is a parameter free heuristic whereas
LMC is sensitive to the parameter, M. Therefore,
the EMCQ is a good, fast, robust and parameter free
heuristic. In future, we plan to explore these hyper-
heuristics methods with steepest descent, random
descent and other intelligent low level heuristics.
We also believe that these methods may also work
in other problem domains which have similar
characteristics.

Acknowledgements
This work has been supported by the Public
Services Department of Malaysia (JPA) and the
National University of Malaysia (UKM).

References

[1] Bentzen, B. SMD placement. The SMT in
FOCUS, Nov. 28, 2000,
url:http://www.smtinfocus.com/PDF/SMD_pla
cement.pdf (Sept. 25, 2002)

[2] Kazaz, B. and Altınkemer, K., Optimization of
multi-feeder (depot) printed circuit board
manufacturing with error guarantees.
European Journal of Operational Research,
150(2), pp.370-394, 2003.

[3] Broad, K., Mason, A., Rönnqvist, M. and
Frater, M. Optimal robotic component
placement. J. Operational Research Society,
47, pp.1343—1354, 1996.

Figure 5. A comparison of hyper-heuristics behaviour

220

320

420

520

620

720

820

920

1020

1120

0 10 20 30 40 50 60

computation time (minutes)

C
T

 (
u

n
it

 t
im

e)

EMCQ

LMC

AM

OI

OICF

AMCF

EMC

Noppakarn Srisukwattananun
- 140 -

[4] Khoo, L.P. and Ng, T.K. A genetic algorithm-
based planning system for PCB component
placement. J. Production Economics, 54,
pp.321-332, 1998.

[5] Glover, F. and Laguna, M., Tabu search, ch. 3.
In: Reeves, C. R.(ed) Modern heuristic
techniques for combinatorial problems,
McGraw-Hill, pp.70-150, 1995.

[6] Cowling, P., Kendall, G. and Soubeiga, E.,
Hyperheuristics: A tool for rapid prototyping
in scheduling and optimisation. Proc. of 2nd
European Workshop on Evolutionary
Computation in Combinatorial Optimisation,
EvoCOP2002, Springer LNCS, pp.1-10, 2002.

[7] Cowling, P., Kendall, G. and Soubeiga, E., A
hyperheuristic approach to scheduling a sales
summit, In Burke, E. and Erben, W., editors,
Selected Papers Of The Third International
Conference On The Practice And Theory Of
Automated Timetabling, PATAT’2000,
Springer Lecture Notes in Computer Science,
pp.176-190, 2001.

[8] Burke E., Hart E., Kendall G., Newall J., Ross
P. and Schulenburg S. Hyper-Heuristics: An
emerging direction in modern search
technology, ch. 16. In: Glover, F. and
Kochenberger, G. (ed) Handbook of Meta-
Heuristics. Kluwer, pp.457-474, 2003.

[9] Cowling, P., Kendall, G. and Han, L., an
investigation of a hyperheuristic genetic
algorithm applied to a trainer scheduling
problem. Proc. of Congress on Evolutionary
Computation, CEC2002, Hawaii, May 12-17,
pp.1185-1190, 2002.

[10] Ross, P., Schulenburg, S., Marín-Blázquez,
J.G. and Hart, E., Hyper-heuristics: Learning
to combine simple heuristics in bin-packing
problem. Proc. of the Genetic and
Evolutionary Computation Conference,
GECCO 2002, Morgan Kauffmann, pp.942-
948, 2002.

[11] Schulenburg, S, Ross, P., Marín-Blázquez,
J.G. and Hart, E., A hyper-heuristic approach
to single and multiple step environments in
bin-packing problems. Proc. of the Fifth
International Workshop on Learning Classifier
Systems 2002, IWLCS-02.

[12] Ayob M. and Kendall G. An investigation of
an adaptive scheduling for multi headed
placement machines. Proc. of the 1st
Multidisciplinary International Conference on
Scheduling: Theory and Applications, MISTA
2003, Nottingham, UK, pp.363-380, 13-16
Aug 2003.

[13] Ayob, M. and Kendall, G., Real-time
scheduling for multi headed placement
machine. Proc. of the 5th IEEE International

Symposium on Assembly and Task Planning,
ISATP'03, Besançom, France, pp.128-133, 9-
11 July 2003.

[14] Ayob, M., Cowling, P. and Kendall, G.,
Optimisation for surface mount placement
machines, Proc. of the IEEE ICIT’02,
Bangkok, pp.498-503, 11-14 Dec. 2002.

[15] Reeves, C.R. and Beasley, J.E., Introduction,
ch. 1. In: Reeves, C. R.(ed) Modern heuristic
techniques for combinatorial problems,
McGraw-Hill, pp.1-19, 1995.

Noppakarn Srisukwattananun
- 141 -

	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX

	Search CD-ROM

	Zoom In
	Zoom Out
	Fit in Window
	Fit Width
	Print

