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Abstract: In this paper we introduce a Monte Carlo based hyper-heuristic. The 
Monte Carlo hyper-heuristic manages a set of low level heuristics (in this case just 
simple 2-opt swaps but they could be any other heuristics). Each of the low level 
heuristics is responsible for creating a unique neighbour that may be impossible to 
create by the other low level heuristics. On each iteration, the Monte Carlo hyper 
heuristic randomly calls a low level heuristic. The new solution returned by the low 
level heuristic will be accepted based on the Monte Carlo acceptance criteria. The 
Monte Carlo acceptance criteria always accept an improved solution. Worse 
solutions will be accepted with a certain probability, which decreases with worse 
solutions, in order to escape local minima. We develop three hyper-heuristics based 
on a Monte Carlo method, these being Linear Monte Carlo Exponential Monte Carlo 
and Exponential Monte Carlo with counter. We also investigate four other hyper-
heuristics to examine their performance and for comparative purposes. To 
demonstrate our approach we employ these hyper-heuristics to optimise component 
placement sequencing in order to improve the efficiency of the multi head placement 
machine. Experimental results show that the Exponential Monte Carlo hyper-
heuristic is superior to the other hyper-heuristics and is superior to a choice function 
hyper-heuristic reported in earlier work. 

Keywords: Intelligent Search, Heuristic, Printed Circuit Board Assembly, 
Optimisation. 

 

 

1. Introduction 
SMD (surface mount device) placement machines 
are used to assemble components onto a PCB 
(printed circuit board). Optimising the pickup and 
placement sequence is a significant factor in 
determining the efficiency of an SMD placement 
machine. In this work, we study a component 
placement sequencing problem of a multi head 
SMD placement machine. The machine has a fixed 
feeder carrier, a fixed PCB table and a positioning 
arm head that is equipped with a number of nozzles 
that is used to grasp the components. The feeder 
carrier consists of several feeder slots where the 
components are located. The PCB table holds the 
PCB in a locked position during a pick-place 
operation. The head and arm (or sometimes called 
robot arm) is movable in the X-Y direction 
simultaneously. The tour of the robot arm begins by 
picking up a number of components from the 
feeder. Then, it travels in the X and Y direction 
simultaneously and positions itself at the point 
where the component will be mounted. Then the 
robot arm moves down (Z-direction) and mounts the 
component on the board before returning to its 
original position and repeating these steps for the 
next locations on the board that have to be mounted 

on the same tour. After completing a tour, the robot 
arm returns to the feeder location to begin another 
tour. Figure 1 is an example of multi head 
placement machine. 

 

Figure 1: An Example Of Pick Place Multi Head 
Placement Machine (Taken From [1]) 

 Various methods have been applied to improve 
the efficiency of SMD placement machines such as 
[2,3,4], but none have used a hyper-heuristic 
approach. Hence, we are going to introduce a new 
hyper-heuristic approach based on a Monte Carlo 
method [5], to optimise the component placement 
sequencing in order to improve the efficiency of the 
multi head SMD placement machine.  
 The motivation for investigating the hyper-
heuristic approach instead of the other meta-
heuristics is that the hyper-heuristic framework 
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provides a way to combine many heuristics in 
solving a problem. This feature is useful for solving 
the component placement sequencing problem of a 
multi head SMD placement machine since this 
problem requires a number of heuristics. Most 
previous works on hyper-heuristics (such as 
[6,7,8,9,10,11]) focus on sequencing the calls of the 
low level heuristics (LLHs). They report successful 
results. However, in this work we investigate on 
improving the acceptance criteria. Of course, the 
sequence of LLH is important but in our problem 
domain we are dealing with the LLHs that randomly 
create the neighbour solutions. Since the 
neighbour’s solution is randomly generated by the 
LLHs, we cannot measure the performance of each 
LLH based on the historical performance as the 
quality of the obtained solution does not represent 
the efficiency of the LLH. This statement is 
supported by the experimental results from this 
work where the Choice-Function described in [7] 
does not perform well in all test problems.  
 There are many determining factors in 
minimising the assembly cycle time of multi head 
placement machine such as optimisation of the 
pickup sequence, the placement sequence, nozzle 
assignment, sub-tour grouping and sequencing the 
sub-tour. However, optimising one factor may 
increase the cost of another factor(s). The 
complexity of this problem causes a difficulty in 
devising a good strategy to minimise the assembly 
cycle time. The advantage of using the hyper-
heuristic, compared to the other meta-heuristics, is 
the ability to combine a number of heuristics. By 
applying a hyper-heuristic approach, we do not have 
to concern ourselves with the trade-off between the 
optimisation of the important factors as this will be 
catered for within the hyper-heuristic. 
 

2. The Scheduling Model 
The quality of a schedule can be evaluated by a 
placement time function, known as the assembly 
cycle time, for a pick and place multi head 
placement. We model a pick place multi head 
placement machine that has a single head equipped 
with G number of nozzles, fixed PCB table and 
fixed feeder carrier (same as in [12,13]). This 
placement machine was categorised in [14] as a 
multi head placement machine that has an arm and 
head which can move in the X-Y axis 
simultaneously but the feeder carrier and PCB table 
are fixed. The following notations are used to 
describe the scheduling model: 
 
CT : the assembly cycle time to assemble all 

components; 
N : the number of PCB points on the PCB; 
Q : the total number of available PCB points to be 

scheduled, where Q ≤ N. 
K : the number of component types (each feeder 

slot holds multiple copies of one component 
type); 

G : the number of nozzles per head; 
B : the total number of sub tours; 
M : the total number of feeder slots where K  ≤ M; 
c(j,h)x,y : the X,Y coordinate on the PCB which will 

have a component placed there in the  hth 
placement sequence of the j th sub tour;  

V : the robot speed (average); �
 : the time for picking up a component; �
 : the time for placing a component; 

r : the rth slot number where r �  { 0,1,2,…,(M-1)} ; 
i : the i th component type where i �  { 1,2,…,K} ; 
k : the kth pickup sequence in a sub tour where k �  

{ 1,2,…,G} ;    
h : the hth placement sequence in a sub tour where 

h �  { 1,2,…,G} ;    
j : the j th sub tour number where j �  { 1,2,…,B} ;    
I(j,k) : the time taken for the robot arm to travel from 

feeder carrier to PCB point and place a 
component in the kth placement sequence of the 
j th sub tour; 

P(j,k) : the time taken for the robot arm to travel from 
PCB point to feeder carrier and pick a 
component in the kth pickup sequence of the j th 
sub tour; �

i(j,k) : the nozzle used to pick i th component in the kth 
pickup sequence of the j th sub tour; �

i(j,h) : the nozzle used to place i thcomponent in the hth 
placement sequence of the j th sub tour; 

S(r) : the rth slot distance referring to the origin of 
feeder slot, s(0) where s(0)=0 and r� K; 

R(j,k) : the slot distance for the kth pickup sequence of 
the j th sub tour; 

d(j,h) : the max{ |d(j,h)x|, |d(j,h)y|}  where x and y is the 
X,Y robot traveling distance to place a 
component in the hth placement sequence of the 
j th sub tour, where the distance is measured as a 
Chebychev  distance (dictated by the maximum 
of X or Y traveling distance as the robot arm 
moves concurrently in X-Y axis); 

m(j,k) : the max{ |m(j,k)x|, |m(j,k)y|}  where x and y is the 
X,Y robot traveling distance to pick a 
component in the kth pickup sequence of the j th 
sub tour, where the distance is measured as a 
Chebychev  distance ; 

F : the gap between each two adjacent feeder slots; 
L : the gap between each two successive (adjacent) 

nozzles. 
 

 The objective function is to minimise the 
assembly cycle time, CT, by minimising the 
traveling distance of the robot to perform pick 
and place operation: 

Minimise                                                          (1) 

s.t. 
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Each feeder slot may hold 
one component type only. ;r,1irg
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Assuming no feeder duplication. ;i,1irg
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1 :  if component type i is assigned 
to feeder slot r, 

0 : otherwise 
gir= (4) 
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i(j,k) �  {0,1,2,..(G-1)};  � (j,k)≠ � (j,l) if k� l;  

 j=1,2,..,B;  k = 1,2,..,G; �
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 The assembly cycle time, CT is a function of 
robot traveling distance divided by the robot speed, 
plus a components’  pickups ( � ) and a 
placements’ ( � ) time. In our model, all elements are 
fixed (that are the PCB table, feeder carrier and 
nozzles) except the arm and head that moveable in 
X-Y axis concurrently. Since the robot (i.e. the arm 
and head of SMD placement machine) can move 

simultaneously in the X-Y axis, the robot traveling 
distance dictates by the maximum of X or Y 
traveling distance (i.e. a Chebychev distance). A 
complete tour of a robot consists of B sub tours and 
each sub tour has at most G pairs of pick and place 
points (equation 1). 

 

3. Monte Carlo Algorithm 
Let us define a solution space S, an objective 
function f and a neighbourhood structure n. A basic 
Monte Carlo (MC) method for minimisation 
problem can be expressed by the following 
algorithm [5]: 
 
Step 1: (Initialisation) 

(A) Choose a starting solution S0 �  S; 
(B) Record the best obtained solution, Sbest = S0 

and f(Sbest)= f(S0); 
Step 2: (Choice and termination) 

(A) Randomly choose Sc �  n(S0); 
(B) Compute �  = f(Sc) - f(S0); 
(C) If �  �  0 then accept Sc (and proceed to Step 3); 
(D) Else:  Accept Sc with a probability that 

decreases with increases in � . If Sc is rejected 
and stopping condition=false, then return to 
Step2(A); 

(E) Terminate by a stopping condition. 
Step 3: (Update) 
 Re-set S0 = Sc, and if f(Sc)<f(Sbest), perform 

Step1(B). Return to Step2 if stopping 
condition=false. 

 
Figure 2: A Basic Monte Carlo (MC) 
Algorithm[5] 

 
 In this work, we develop three types of 
acceptance probability (referring to Step2(D) Figure 
2): 
i. Linear Monte Carlo (LMC). The probability is 

computed by (M-	 ) where M is a constant valued 
between 0 and 100. Based on our preliminary 
test, the LMC works well with M=5 (for our test 
data, different values of M may be required for 
different problem instances). The test shows that 
the LMC is parameter sensitive. The LMC will 
perform almost similar to a steepest descent 
approach with a small value of M since the 
probability of accepting worse solution is too 
small. On contrary, larger M will more likely to 
accept worse solution and cannot converge. The 
new solution, Sc is accepted if a generated 
random number is less than (M-	 ).  

ii. Exponential Monte Carlo (EMC). The probability 
is computed by e-
  where 	 =f(Sc)-f(S0). The 
probability of accepting a worse solution 
decreases as the 	  increases. The new solution, Sc 
is accepted if a generated random number is less 
than e-
 . 

iii. Exponential Monte Carlo with counter (EMCQ). 
The probability is computed by e- � /�  where 
 = 	 * t 

Q/G  if Q  MOD  G=0; 

1 +  Q/G  if Q  MOD  G� 0; 
B = (12) 
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0 – [c(j-1,G)]     if  k=1, j>1; 

0                    otherwise 
m(j,k)y = (17) 

c(j,h)y                      if h=1;                                  

[c(j,h)y – c(j,h-1)y]      if h>1; 
d(j,h)y = (18) 
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=
1-M

0r
k)(j,

r
b*S(r)k)R(j, (20) 

(19) F*  r  S(r) =

1 : if there is a nozzle assigned to 
pick or place a component in the 
kth sequence of j th sub tour. 

0 : otherwise 

z(j,k) = 
(8) 

( ) ;Gkj,z  
G

1k

≤
�

=

(9) 

1:   if there is a component to be picked 
up from feeder slot r in the kth 
pickup sequence of the j th sub tour, 

0 :  otherwise 

br(j,k)= 
(10) 

;k,j,1
1M

0r
)k,j(rb ∀∀≤

� −

=
(11) 

Only one component 
can be picked up in 
each pickup sequence. 

(5) 

(6) 

(7) 

R(j,k) – � (j,k)*L            

[R(j,k)–� (j,k)*L]  – 
 [c(j-1,G)x- � (j-1,G)*L]             

[R(j,k)–R(j,k-1)] – 
[ (� (j,k)- � (j,k-1))*L]                 

m(j,k)x= 

(15) 
if j=k=1; 

 

if  k=1, j>1; 

 

if  k>1; 

[c(j,h)x–R(j,G)] – 
[( � (j,h)- � (j,G))*L]   

[c(j,h)x–c(j,h-1)x] – 
[( � (j,h)- � (j,h-1))*L]  

d(j,h)x = 

(16) 

if h=1;  

 

 

if h>1;                                                    
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and � =ρ(Q). t is a computation time (in our case 
we use minutes as a unit time). 
  and �  are defined 
such that we ensure that the probability of 
accepting a worse solution decreases as the time 
increases and 	  increases. The factor of time is 
included in this formulation as an intensification 
factor. At the beginning of the search, the 
moderately worse solution is more likely to be 
accepted but as the time increases the worse 
solution is unlikely to be accepted. However, the 
probability of accepting a worse solution 
increases as the counter of consecutive none 
improvement iterations, Q increases. This is a 
diversification factor. ρ(Q) is a function to 
intelligently control the Q. In this work we use 

� =v*Q where 0
�

v
�

1, in order to limit the 
acceptance probability. However, our preliminary 
experiment on parameter sensitivity of v shows 
that the EMCQ algorithm with v=1 performs the 
best. Therefore, we set � =Q. The new solution, Sc 
is accepted if a generated random number is less 
than e- � /� .  

 The formulation of the acceptance probability of 
EMC and EMCQ is quite similar to the acceptance 
criteria of a simulated annealing approach. The 
difference, for the EMC and EMCQ is that we do 
not have a cooling schedule. EMCQ will 
exponentially increase the acceptance probability as 
we have been unable to find a better solution for a 
long time (i.e. too long being trapped in local 
optima). However, the EMCQ will exponentially 
reduce the acceptance probability as the searching 
time increases (similar to a simulated annealing 
approach). As the EMC and EMCQ do not have 
parameters which have to be tuned (all the 
parameters are automatically controlled based on 
the solution quality (with exploring time and the 
duration of being trapped in local optima in the case 
of EMCQ)), these methods are simple and robust 
heuristic technique.    
 The EMC and EMCQ algorithm work as 
follows. First, an initial solution is chosen. Then, for 
each iteration, a neighbour of the current solution is 
generated. The ‘qualities’  of the two solutions are 
compared. A decision is made whether the new 
solution should be accepted.  An improved solution 
is always accepted. However, in order to escape 
from the local optima we accept a worse solution 
with a probability that depends on 	  (and the 
duration we have been trapped in the local optima 
in the case of EMCQ). A worse solution is more 
likely to be accepted if the 	  is small (and we cannot 
find a better solution for a long time for the case of 
EMCQ). The idea of EMCQ is to ensure that we 
only accept a moderately worse solution after most 
of the neighbours of the current solution have been 
explored and none of them is better than the old 

solution. Table 1. shows the difference among the 
three proposed approaches.  

Method Acceptance Probability 
LMC x<(M- � ) 
EMC e-�   
EMCQ e-� /�  where 

�
= � * t and � =Q 

 
 

4. Hyper-heuristic 
Many heuristics are problem-dependent [15]. 
However, there are some heuristics that are not 
problem-specific such as hyper-heuristic [6,7,8] 
approaches that aims to be a general-purpose 
heuristic that can handle a wide range of problems. 
Hyper-heuristics are (meta-)heuristics that can 
operate on (meta-)heuristics [8].  
 The motivation for investigating hyper-heuristic 
approaches is that the hyper-heuristic framework 
provides a way of combining many heuristics in 
solving a problem. The hyper-heuristic framework 
manages a set of low level heuristics which operates 
at a higher level of abstraction without having 
access to the problem domain-knowledge [8]. 
Generally, the low level heuristics (LLH) are a 
simple local search, k-opt operator or other 
heuristics that are problem-dependent. In this work 
we develop six 2-opt operators as LLHs. Each LLH 
is responsible for creating a unique neighbour that 
may be impossible to reach by other LLHs. In fact, 
each LLH plays a unique role in minimising the 
cycle time. For example, one aims to optimise the 
pickup sequence, whilst others aim to optimise the 
placement sequence, the pickup nozzle assignment, 
the sub-tour’s grouping etc. Whatever factor is 
being optimised the overall aim is to minimise CT. 
There is no good strategy for selecting which LLH 
to apply at a given time. However, continuously 
applying single LLH will quickly lead to a local 
optima. Previous work has attempted to combine 
simple heuristics (in a hyper-heuristic framework) 
using a Choice-Function [6] and Hyper-genetic 
algorithm (Hyper-GA) [9]. The Choice-Function 
hyper-heuristic [6] adaptively ranks the LLHs based 
upon the historical performance of individual LLHs 
in order to suggest the next LLH to apply. The 
Hyper-GA hyper-heuristic [9] evolves the sequence 
of calling the LLHs by representing a gene in a 
chromosome with a LLH. The chromosome is 
evaluated by the quality of the solution obtained 
when applying the LLHs in the sequence denoted by 
the chromosome. Other works in the hyper-heuristic 
area can be found in [10,11]. A general framework 
of hyper-heuristic is shown in Figure 3. 
 
 
 
 

Table 1: A Comparison Of Acceptance 
Probability For LMC, EMC And EMCQ. 
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 The communication between the hyper-heuristic 
and the LLHs uses a standard interface. Only non-
domain specific data such as the solution’s quality 
and the computation time is allowed to cross the 
barrier between the hyper-heuristic and the LLHs. 
The hyper-heuristic only knows that it has a certain 
number of heuristics on which to operate and 
whether the objective function is being minimised 
or maximised. The general structure of the hyper-
heuristic algorithm is shown in Figure 4.  
 
Step 1: (Initialisation) 

(A) Choose a starting solution S0 �  S; 
(B) Define H as a set of LLH; 
(C) Record the best obtained solution, Sbest = S0 

and F(Sbest)= F(S0); 
Step 2: (Choice and termination) 

(A) Choose an Hc �  H; 
(B) Apply Hc to produce Sc �  n(S0); 
(C) Compute �  = f(Sc) - f(S0); 
(D) If the acceptance criteria is true, then accept Sc 

(and proceed to Step 3); 
(E) If Sc is rejected and stopping condition=false, 

then return to Step2(A); 
(F) Terminate by a stopping condition. 

Step 3: (Update) 
 Re-set S0 = Sc, and if f(Sc)<f(Sbest), perform 

Step1(C). Return to Step2 if stopping 
condition=false. 

Figure 4: A General Structure Of A Hyper-
Heuristic Algorithm 

 
 In this work, we investigate seven hyper-
heuristic approaches with different acceptance 
criteria (see 2(D), Figure 4): 
1) AM (All Move): Randomly select LLH and 

accept any solution returned by the LLH. 
2) OI (Only Improving): Randomly select LLH 

and only accept an improved solution returned 
by the LLH. 

3) OICF (Only Improving Choice Function): 
Select LLH based on historical performance [7] 
and only accept an improved solution returned 
by the LLH. 
F(Nk)=max{ � * f1(Nk)+ β* f2(Nj,Nk)+ � * f3(Nk)} 
Where 

F(Nk) is a Choice Function of the kth LLH  
that has the largest F(Nk.). f1(Nk) is the 
cumulative performance rate of heuristic Nk, 
f2(Nj,Nk) is the cumulative performance rate 
of consecutive pairs of heuristics (heuristic 
Nj followed by Nk) and f3(Nk) is the CPU 
time which has elapsed since heuristic Nk 
was last called. Details of the algorithm can 
be found in [6,7] . If the time taken by each 
LLH to make a swap is too short 
(approximate to zero millisecond), then we 
set the duration as 1.  

4) AMCF (All Move Choice Function): Same as 
OICF but in this case we accept all solution 
returned by the LLH. 

5) LMC (Linear Monte Carlo): Randomly select 
LLH and accepts Sc returned by the LLH based 
on the accepting criteria in Table 2. 

6) EMC (Exponential Monte Carlo): Randomly select 
LLH and accepts Sc returned by the LLH based on 
the accepting criteria in Table 2. 

7) EMCQ (Exponential Monte Carlo with Counter): 
Randomly select LLH and accepts Sc returned by the 
LLH based on the accepting criteria in Table 2. 

 The LMC, EMC and EMCQ algorithms have 
been discussed in Section 3. Table 2 shows the 
difference among these hyper-heuristics.   

Hyper-
heuristic 

Accepting Criteria 

AM Accept all moves. 
OI Accept Sc if � � 0, otherwise reject Sc. 
OICF Accept Sc if � � 0, otherwise reject Sc. 
AMCF Accept all moves 
LMC Accept Sc if � � 0, otherwise accept Sc if 

x<(M- � ) where � =f(Sc) -f(S0).  
EMC Accept Sc if � � 0, otherwise accept Sc if x 

<e-�  where � =f(Sc) -f(S0). 
EMCQ Accept Sc if � � 0, otherwise accept Sc if x 

<e-� /�  where 
�
=(� * t) and � =Q. 

Note:  x is a generated random number (value 
between 0 to 100 for LMC or 0 to 1 for EMC 
and EMCQ) . 

 
 

           

5. Low Level Heuristic 

The low level heuristics are implemented based on 
the problem domain. A set of simple LLHs provides 
more flexibility for the hyper-heuristic. A set of 
complex LLH, such as steepest descent that finds 
the best neighbour is computationally expensive and 
indirectly influences the hyper-heuristic to behave 
as a steepest descent method (for example). This 
results in simple hyper-heuristics (such as AM) and 
more complex hyper-heuristics (such as EMC and 
EMCQ) producing similar results when using a 
complex set of LLH. This is due to the fact that the 
complex set of LLH is able to find good solutions 

Table 2: A List Of Hyper-Heuristics With 
Their Acceptance Criteria. 

Hyper-heuristic 

Set of low level heuristics 

                   ….. 

                   
h1 h2 hn 

Evaluation function 

Figure 3: Hyper-heuristic Framework 

Non-domain data flow 
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without having to be guided by a hyper-heuristic. Of 
course, it takes a lot longer to implement complex 
LLH when the problem domain changes. Therefore, 
if we are dealing with a set of complex LLHs, it may 
be worth applying a simple hyper-heuristic such as 
an AM hyper-heuristic. However, in this work we 
prefer to use a set of simple LLHs with an 
intelligent hyper-heuristic as this allows us to solve 
a wider range of problems.  
 Our LLH is a set of 2-opt operations. There are 
many factors involved in determining the efficiency 
of pick-place operations of multi head placement 
machine such as the grouping of PCB points (also 
referred to as placement points) to a sub tour, 
nozzle assignment, pickup and placement 
sequencing etc. As the robot arm is equipped with a 
number of nozzles, the problem is to determine the 
sets of PCB points that will be visited by the robot 
arm (i.e. to place a component) in a same route (or a 
sub tour). A sub tour consists of a set of pickup and 
placement point that will be visited by robot arm in 
a tour. For example if the robot arm is equipped 
with 8 nozzles, we may have 8 pickup points and 8 
placement points in a sub tour. As the sub tour of 
the robot arm begins by picking up a number of 
component (from the feeders) sequentially, then 
travels in X-Y direction concurrently for placing 
components onto the PCB, these incur a number of 
scheduling problems. These are: 

i. Assigning the pickup’s nozzle. The robot arm 
has a number of nozzles. In this work we assume 
all components are the same size (we ignore the 
nozzle size selection). The issue is to determine 
which nozzle should be used to pickup a 
component such that we minimise the robot arm 
traveling distance. We must ensure that the PCB 
points will receive the correct component type. 
Therefore, if nozzle A picks up component type 
X and nozzle B picks up component type Y, the 
nozzle A must place component X at a 
placement point which is expecting a component 
of type X in the sub tour (similarly with nozzle 
B). However, if both nozzle A and B pick up a 
component type X then the sub tour scheduling 
is easier as either nozzle A or B can be used to 
place X at a relevant point on the PCB. As the 
nozzles are located at a fixed position at the end 
of heads, the cost of picking up the next 
component is dependent on the nozzle used, the 
current location of the head and the current 
nozzle used to pick up the current component.       

ii. Sequencing the components pickups. The 
problem is to determine the sequence of picking 
up components in a sub tour to optimise the 
pickups. 

iii. Sequencing the placement operation. The 
problem is to determine the sequence of placing 
components in a sub tour to optimise the 
placements.  

iv. Assigning the placement’s nozzle. Again, the 
issue is to optimise the placement and we must 
ensure that the PCB points will receive the 
correct component type. 

v. Assigning PCB points to a sub tour. 
vi. Sequencing the sub tours. The aim is to optimise 

the sequence of sub tours in order to minimise 
the CT. 

The aim of optimising the pickups and the 
placements is to minimise the CT. However, there is 
a trade-off between optimising the pickups and 
optimising the placements. Applying the hyper-
heuristic over of a set of LLH simplifies the 
problem such that we do not have to compromise 
between optimisation of picking and placing.  
 On the contrary, in solving this problem, a 
typical meta-heuristic approach has to intelligently 
deal with the trade-off between optimising the 
picking and placement. A meta-heuristic approach 
is also forced with a decision as to which sequence 
of factors need to be minimised and how far each 
factor should be minimised.  
 However, the problem can be simplified by 
applying a hyper-heuristic over a set of LLHs. In 
this work, we develop six simple LLHs: 
H1: Swap the pickup sequence in a sub tour. Two 

randomly selected points from a sub tour, say i th 
and j th pickup sequence in kth sub tour are 
swapped. The nozzle assignments remain the 
same. 

H2: Swap the placement sequence in a sub tour. 
Two points are randomly selected from a sub 
tour, say i th and j th placement sequence in kth sub 
tour are swapped. The nozzle assignments 
remain the same. The pickup sequence and the 
placement sequence in a sub tour are 
independent operations.  

H3: Swap the pickup nozzles in a sub tour. The 
nozzle’s used in the two points are randomly 
selected from a sub tour, say i th and j th pickup 
sequence in kth sub tour are swapped. If the 
swapping operation involves two different 
component types, then we modify the 
appropriate placement nozzle in the sub tour 
such that the PCB points will receive the correct 
component type.  

H4: Swap the placement nozzles in a sub tour. The 
nozzle’s used for two points are randomly 
selected from a sub tour, say i th and j th placement 
sequence in kth sub tour are swapped. If the 
swapping operation involves two different 
component types, then we modify the 
appropriate pickup nozzle in the sub tour such 
that the component will be picked with the 
correct nozzle. 

H5: Swap the PCB points among the sub tours. Two 
points are randomly selected from different sub 
tours, say i th and j th placement sequence in kth 
and l th sub tour, respectively, and are swapped. 
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If the swapping operation involves two different 
component types, then we modify the 
appropriate pickup component in the 
appropriate sub tour such that the pickup 
components are valid in both sub tours. 

H6: Swap the sub tour sequence order. Two sub 
tours are randomly selected, say i th and j th and 
are swapped. 

 

6. Experiments And Results 
An initial solution is generated using either a 
randomised or an ordered constructive heuristic that 
we proposed in [12]. As in [12], we assume that the 
gap between the feeder carrier and the PCB is 10 
unit length, the nozzle’s gap is equal to the size of 
feeder slot (chosen as 4 unit length) and all 
allocated components are the same size (that is we 
ignore the nozzle size selection problem). We 
assume that all components use the same nozzle 
type and the speed of robot arm is constant for all 
component types. We further assume that the 
placement machine can only pickup one component 
at a time but the number of components that can be 
pickup in a sub tour is dependent on the number of 
nozzles per head (in this test the number of nozzle, 
G=8). In our formulation, we consider that the robot 
makes a positive traveling distance when it moves 
in increasing X or Y direction and a negative 
traveling distance otherwise. Since we model the 
same placement machine as in [12], we also apply 
the same experimental parameters.  
 To simulate the pick-place operation of the 
placement machine, we set the speed of the robot 
arm, V=10 unit distance/unit time, the pickup and 
placement time, λ = θ = 0.5 unit time. For the 
purpose of generating the random placement points, 
we will set the length and the width of the PCB, 
such that the random PCB points fall within the 
limits. In the experiment we use two data sets (data 
set N80K20_A and N240K40_F). Data set 
N80K20_A has 80 PCB points (N) consisting of 20 
component types (K) with board width, BW=200 
and board length, BL=600. Data set N240K40_F 
has N=240, K=40, BW=600 and BL=1800. These 
data sets are randomly generated using our random 
PCB generator software called PCBgen. PCBgen 
allows the user to set the required N, K, BW and 
BL. The data sets and PCBgen software are 
available at http://www.cs.nott.ac.uk/~mxa/.  
 We ran the experiments using an Intel® 
Pentium®4 PC with a 1.5GHz processor and 256 
MB RAM. In this work we set M=5 (for LMC), 

� =1.0, β=0.01 and � =0.5 (for OICF and AMCF). 
The parameter values are chosen based on the best 
result obtained from our preliminary test on 
parameter sensitivity. The parameter sensitivity’s 
test shown that the LMC, OICF and AMCF 

performance are very sensitive to their parameters 
and the best value for the parameters is subject to 
the problem size. Table 3 shows the experimental 
results of the average of ten runs on data set 
N80K20 and N240K40 with each run being given 
one hour of computation time as a termination 
criteria. However, any other termination criteria 
also applicable. For example, if we apply these 
methods for an adaptive scheduling that we 
proposed in [12] we can continually search for an 
improved schedule until there are no more PCB’s to 
be assembled. The initial CT for data set 
N80K20_A and N240K40_F is 1061.04 and 
8385.98 unit time, respectively. The figures in 
Table 3 show the average of the best obtained 
solution’s qualities with the iteration number (when 
the best solution is found) and the computation 
time. The percentage of the CT’s improvement (

�
) 

is computed as:  
�

 = (Initial CT-best CT)*100/Initial CT 

 The results in Table 3 show that the OI hyper-
heuristic, that only accepts an improved solution 
(i.e. typical random descent method), rapidly 
converges to a local optima. For example, in data 
set N80K20_A, the OI hyper-heuristic gets trapped 
in local optima in 2.58 minutes and cannot find a 
better solution even after one hour. However, for 
the larger size data set, N240K40_F, the OI hyper-
heuristic can still improve the solution (not yet in 
local optima). In all tests, the OICF [7] hyper-
heuristic does not perform well, being even worse 
than OI hyper-heuristic for data set N80K20_A. 
This indicates that the historical performance and 
the time taken by the LLH to produce a neighbour 
solution are not applicable in this case study. This is 
because the performance of the LLH is 
unpredictable since it generates a random neighbour 
every time it is called and historical performance 
counts for nothing. In fact, the LMC, OI, EMC and 
EMCQ hyper-heuristics that randomly call the LLH 
are superior to OICF and AMCF, with the EMCQ 
hyper-heuristics being superior to the other hyper-
heuristics (for data set N80K20_A). This indicates 
that the formulation of an exponential acceptance 
criteria is effective in searching for better solutions. 
The exponential formulation produces a lower 
probability of acceptance for higher search times 
and worse evaluation, such that it is adequate to 
guide the direction of the hyper-heuristic. Injecting 
a counter of consecutive unimproved solutions into 
the EMCQ formulation give a significant impact in 
guiding the search direction and it also provides a 
way to diversify the search when we trapped in 
local optima. 

 

Noppakarn Srisukwattananun
- 138 -



 

8 

Data Set N80K20_A Data Set N240K40_F  

I CT T 
�

(%) I CT T 
�

(%) 

AM 717566.6 720.15 31.43 32.13 163458 7602.68 25.76 9.34 

LMC 1239791.2 266.8 50.2 74.85 488035.7 2350.204 58.38 71.97 

EMC 605639.6 281.84 26.96 73.44 360348.5 2350.62 55.84 71.97 

EMCQ 1090483.9 248.8 45.8 76.55 388236 2370.3 59.22 71.73 

OICF 243268.0 342.98 10.20 67.68 175331.3 2968.45 27.00 64.60 

AMCF 290887.5 804.3 18.2 24.20 33307.6 8116.27 5.31 3.22 

OI 1310363.2 288.98 54.39 72.76 378998 2771.10 57.72 66.96 

 
Note: I =No of iteration; CT=Assembly cycle time(unit time); 

 
�

=CT’s Improvement; T=computation time(minutes). 

Table 3: An Average Result Of Ten Runs On Each Data Set (Test Duration: 1 Hour) 

  
This work is actually a continuation of our previous 
work in [12,13] where we employ a real-time or 
adaptive schedule to continually search for an 
improved solution while the placement machine is 
picking up and placing components onto the PCB. 
These approaches require a fast searching technique 
that is capable of finding good quality solutions in 
short timescales. Thus, we examine the performance 
of the hyper-heuristics after five minutes to identify 
a good hyper-heuristic technique that is able to 

operate over a shorter timescale. These results are 
shown in Table 4 which demonstrate that the LMC, 
EMC and EMCQ hyper-heuristics also perform well 
in short timescales. These results demonstrate that 
the EMCQ is a good and fast hyper-heuristic 
approach as well as operating well over longer time 
periods (Table 3). Moreover the EMCQ is a 
parameter free heuristic. The exact behavior of the 
hyper-heuristics can be observed in Figure 5. 

 
Data Set N80K20_A Data Set N240K40_F  

I CT T 
�

(%) I CT T 
�

(%) 
AM 70943.0 750.83 5.0 29.24 31625 8873.95 5 -5.82 

LMC 123531.4 317.2 5.0 70.10 41556.5 3169.99 5 62.20 

EMC 109080.1 332.54 5.0 68.66 32214.8 3291.70 5 60.75 

EMCQ 97842.4 307.2 5.0 71.05 32381.1 3197.7 5 61.87 

OICF 118716.6 347.67 5.0 67.23 32385.8 4279.74 5 48.97 

AMCF 131991.2 862.5 9.6 18.71 3490.6 8269.00 5 1.39 

OI 120173.8 322.63 5.0 69.59 32660 3346.14 5 60.10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: An Average Result Of Ten Runs On Each Data Set (Test Duration: 5 Minutes) 
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Figure 5 show that the AMCF is the worst among 
the other hyper-heuristics. This indicates that the 
heuristic’s selection based on Choice Function 
criteria does not perform well in this case study.  
The OI and OICF hyper-heuristics get trapped in 
local optima whilst the LMC, EMC and EMCQ 
continually find improved solutions. As the 
performance of the OI and OICF hyper-heuristics 
are almost the same in this case study, we can 
conclude that the heuristic’s selection in OICF is 
arbitrary. 

     

7. Conclusion 
We have demonstrated the ability of hyper-
heuristics approaches in solving the component 
placement sequencing problem of multi head SMD 
placement machine. We examined seven hyper-
heuristic approaches, these being AM, OI, OICF, 
AMCF, LMC, EMC and EMCQ. The OICF and 
AMCF are the hyper-heuristics that choose the next 
LLH to be applied based on previous performance, 
whilst the other hyper-heuristics randomly select the 
next LLH to be called. Since all the LLHs produce a 
random neighbour solution each time they are 
called, their performance is unpredictable. Thus, 
hyper-heuristics based on previous LLH’s 
performance (OICF and AMCF) are unable to 
perform well. On the other hand, the other hyper-
heuristic demonstrated a good performance (except 
AM hyper-heuristic), especially the LMC and 
EMCQ hyper-heuristics. For example, for data set 
N80K20_A, the EMCQ minimised the CT by 
76.55% respectively (with respect to the initial 
solution). Generally, the LMC and EMCQ shows 

almost equal performance in this case study, but the 
EMCQ has a better formulation which include the 
intensification (time, t) and diversification (counter 
for consecutive unimproved, Q) factors. Moreover, 
the EMCQ is a parameter free heuristic whereas 
LMC is sensitive to the parameter, M. Therefore, 
the EMCQ is a good, fast, robust and parameter free 
heuristic. In future, we plan to explore these hyper-
heuristics methods with steepest descent, random 
descent and other intelligent low level heuristics. 
We also believe that these methods may also work 
in other problem domains which have similar 
characteristics.  
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