
Real-time Scheduling for Multi Headed Placement Machine 

 
Masri Ayob And Graham Kendall 

Automated Scheduling, Optimisation and Planning (ASAP) Research Group, 
University of Nottingham, School of Computer Science and IT 

Nottingham NG8 1BB, UK 
E-mail: mxa|gxk@cs.nott.ac.uk 

 

Abstract 

This paper proposes a methodology for real-time 
scheduling to sequence the pickup and placement of 
component on multi headed placement machines in 
printed circuit board (PCB) assembly. The latest 
technology of surface mount device (SMD) placement 
machines have a smart feeder carrier that automatically 
identifies the exact location of each component type on 
the feeder slot, detects component’s missing from the 
component feeders (and continues working with other 
component types) and allows a component to be reloaded 
during a pick and place operation without stopping the 
operation. Assuming that the components on the feeder 
carrier may be misplaced or some of the required 
components are missing, we generate an initial schedule 
using a greedy constructive heuristic by only considering 
the available placement points. The initial solution can 
immediately be used to assemble components for the first 
PCB. While the placement machine is assembling 
components, we employ the CPU free time (whilst the 
robot arm is moving) to improve the initial schedule by 
using a randomised hill climbing search technique. Thus, 
the subsequent PCB’s will use the improved schedule. 
Our experimental result on two data sets show that we 
gain 58.79% and 76.69% (respectively) improvement on 
assembly cycle time over the initial schedule. 

1 Introduction  

The placement rate of an SMD (surface mount device) 
placement machine can be optimised by considering 
significant factors such as the placement head travel, the 
placement sequence and the position of components in the 
feeder bank. A lot of work has been done on improving 
the efficiency of SMD placement machines such as 
[1,2,3,4]. However, most previous work involves an 
offline scheduler that is ineffective if there is a change in 
the resources such as a component being missing from the 
feeder carrier. Hence, in this work, we propose a real-time 
scheduling approach that can continuously generate a new 
schedule and can improve upon the current schedule using 
spare CPU time during pick and place operations. That is, 
we use CPU time not required by the robot arm as it is in 
the process of carrying out an operation (such as moving, 
placing or picking up component). 

2 SMD Placement Machine 

The SMD placement machine is used to assemble 
components onto a PCB (printed circuit board). SMD 
placement machines are categorised into five categories, 
based on their specification and operational methods. 
These are dual delivery, multi-station, turret style, multi-
head and a sequential SMD placement machine [5]. In 
general, each SMD placement machine has a feeder 
carrier (sometimes called a feeder magazine), a PCB table 
(or worktable), head(s), nozzle(s) (or gripper(s)) and a 
tool magazine. The PCB table, the feeder carrier and the 
head(s) can either be moveable or fixed. A typical feeder 
carrier consists of either several tape reels or vibratory ski 
slope feeders, or both [1]. The feeder reels, that is tapes 
holding electronic components; or vibratory ski slope 
feeders are positioned in the feeder slots according to the 
arrangement given by the feeder setup [5]. Usually, larger 
components are supplied by tray feeders [6]. Some 
machines allow a tray to be placed into the machine 
feeding area whilst others have an automatic tray-
handling unit. Normally, the components are transported 
from the feeders to the placement position on the PCB 
using vacuum nozzle(s) that are placed at the end of the 
head(s) [6]. The PCB table is required to support the PCB, 
in a locked position and locating the required placement 
point for the placement operation. Some machines may 
have more than one PCB table. The PCB table(s) can be a 
stationary, use a conveyor system, or use an X-Y motion 
table [5]. Figure 1 is an example of multi head placement 
machine. 

 

 
 
 
 
 
 
 

Figure 1 An example of pick place multi head 
placement machine (taken from [6]). 



3 Real-time Scheduling 

A good off-line scheduling algorithm can produce a 
very good solution. However, they are ineffective if there 
is a change in the resources after the schedule is 
generated. For example, if the component feeders are 
misplaced by the machine’s operator or if some 
components are missing from the feeder carrier, then the 
solution given by an off-line scheduling is not feasible. 
Hence, the placement machine will be idle, waiting for a 
new schedule. The duration of the idle state will be 
dependent on the time taken by the off-line scheduler. In 
this work, we propose a real time scheduling  approach 
that incorporates an interrupt feature.   

Since some of the latest technology in placement 
machines such as MY15 and MY19 [7] have a smart 
feeder carrier that can automatically detect the exact 
location of each component type on the feeder slot and the 
availability of components on the feeder slots, we propose 
using this feature to enhance the scheduling technique.  
The information about the missing and reloaded 
component types will be managed by two interrupt 
service routines (ISR). There are two interrupt events in 
this problem, the missing component’s interrupt and the 
reloaded component’s interrupt. Generally, the interrupts 
can be triggered by a sensor using a positive and a 
negative edge triggering signals. When the sensor detects 
a missing component type it  sends an interrupt signal to 
the central processing unit (CPU) of the placement 
machine to call the missing component’s ISR (named as 
ISR1). Similarly, when the sensor detects a newly 
reloaded component, it will send an interrupt signal to the 
CPU of the placement machine to execute the reloaded 
component’s ISR (named as ISR2). ISR1 only needs to 
store the name of the missing component type in a 
missing component file such that the scheduler program 
can use this file to identify the missing component type. 
Similarly, ISR2 will store the name of a new reloaded 
component type into the component’s reloaded file. The 
ISR2 will also remove the name of component type that 
has just been reloaded from the missing component file. 
The scheduler will automatically remove the contents of 
the component’s reloaded file after these component types 
have been inserted into the schedule. 

Generally, a surface mount placement machine is a 
microprocessor based electronic device. The 
microprocessor, or CPU, is the machine’s controller. In a 
placement machine, the CPU will control the movement 
of the robot arm to pick and place components and carry 
out calculations such as component recognition, 
alignment etc. To perform the pick and place operations, 
the current schedule will be transferred to the robot arm to 
control its movement. While the robot arm is moving to 
pickup a component (or perhaps some components), the 
CPU is in an idle state. After picking up the 
component(s), the robot arm will interrupt the CPU to 
acknowledge job completion. Then the CPU will send 
other control signal to the robot arm. When the robot arm 
is moving to place a component (for example), the CPU 
may do work for component recognition and alignment 

then may be in an idle state again. Generally we can say 
that the CPU is always in an idle state while the robot arm 
is moving or picking and placing components. Since the 
robot arm is normally an interrupt driven I/O device, we 
can make use of the CPU free time to carry out other 
tasks.  When the robot arm completes its current task, it 
will send an interrupt request to the CPU. In responding 
to this interrupt request, the CPU will suspend the current 
running task (the task we will run during CPU free time). 
The appropriate interrupt service routine (ISR) will be 
called to service the request (which may include sending 
other appropriate control data). When the ISR completes 
the task, the CPU will automatically continue the 
suspended task. Information about interrupts and how 
they work can be found in many operating system’s 
textbooks such as [8,9]. 

In this work we introduce a real-time scheduler that 
utilises the CPU free time. We assume the components 
are randomly assigned to the feeder slots (or the operator 
may have misplaced the components). We generate a 
greedy constructive heuristic for a pick and place on multi 
headed placement machine that randomly assigns 
components to feeder slots, a placement point to a sub 
tour, a nozzle for pickup and placement, a pickup 
sequence, a placement sequence and sub tour sequences. 
The initial schedule (generated by the greedy constructive 
heuristic) can immediately be used to perform the pick 
and place operations. In our proposed framework, we will 
start the pick and place operation immediately, once the 
initial schedule is ready. The first PCB will be processed 
using the initial schedule. While the robot arm is moving, 
picking and placing components, we will employ the CPU 
spare time to improve our initial schedule. We apply a 
local search, using a randomised hill climbing method, 
that only accepts an improved solution. There are so many 
factors involved in determining the quality of the solution 
such as the grouping of placement points to a sub tour, 
nozzle assignment, pickup and placement sequencing etc. 
Usually, optimising one factor will increase the cost of 
another factor(s). For example, if we optimise the 
grouping of the placement point to a sub tour, we may 
have to pay a cost in pickup time. In our approach, we 
apply swaps between placement/pickup points in a sub 
tour or among the sub tours. The details of the swapping 
method is discussed in section 5. While the CPU is 
running the optimisation software (our local search) to 
find a better schedule, the robot arm may interrupt the 
CPU whenever it needs attention. Therefore, our 
optimisation software actually runs without incurring any 
cost to the assembly cycle time of the PCB currently 
being processed.  Thus, without paying any cost, we can 
improve the initial solution. By using this concept, the 
pickup and placement schedule is always updated and we 
may obtain a near optimal solution if the placement 
machine produces a large number of PCBs. Moreover, if 
the component feeder runs out of components, a new 
schedule can be generated easily without stopping the 
production. The latest technology placement machine also 
allows components to be reloaded during production [7]. 



After components been reloaded, a new schedule must be 
generated and again our approach can solve this problem. 

4 The Scheduling Model 

In order to evaluate the quality of a schedule, it is 
necessary to measure the resulting machine placement 
time. In this work, a placement time function that is an 
objective function for a pick place multi headed 
placement machine is developed to evaluate the proposed 
approach.  We model a pick place multi headed placement 
machine that has a single head equipped with G number 
of nozzles, fixed PCB table and fixed feeder carrier (refer 
Figure 1). This type of placement machine was 
categorised in [5] as a multi-head placement machine that 
has the arm and head which can moves in X-Y axis 
simultaneously but the feeder carrier and PCB table are 
fixed. Hence, our objective function only needs to 
consider minimising the total assembly cycle time by 
minimising the traveling distance of the robot to perform 
pick and place operation. The following notations are 
used to describe the scheduling model: 
 

CT : the cycle time to assemble all components; 
N : the number of placement points on the PCB; 
Q : the total number of available placement points 

to be scheduled, where Q ≤ N. 
K : the number of component types (each feeder 

slot holds multiple copies of one component 
type); 

G : the number of nozzles per head; 
T : the total number of sub tours; 
M : the total number of feeder slots where K  ≤ M; 

c(j,k)x,y : the X,Y coordinate on the PCB which will have 
a component placed there in the  kth placement 
sequence of the jth sub tour;  

Vr : the robot speed (average); 
Tp : the time for picking up a component; 
Ti : the time for placing a component; 

I(j,k) : the time taken for the robot arm to travel and 
place a component in the kth placement 
sequence of the jth sub tour; 

P(j,k) : the time taken for the robot arm to travel and 
pick a component in the kth pickup sequence of 
the jth sub tour; 

hp(j,k) : the nozzle used to pick a component in the kth 
pickup sequence of the jth sub tour; 

hb(j,k) : the nozzle used to place a component in the kth 
placement sequence of the jth sub tour; 

s(i) : the i th slot distance referring to the origin of 
feeder slot, s(0) where s(0)=0 and i<K; 

r(j,k) : the slot distance for the kth pickup sequence of 
the jth sub tour; 

d(j,k) : The max{ |d(j,k)x|, |d(j,k)y|}  where x and y is the 
X,Y robot traveling distance to place a 
component in the kth placement sequence of the 
jth sub tour, where the distance is measured as a 
chebychev  distance ; 

m(j,k) : The max{ |m(j,k)x|, |m(j,k)y|}  where x and y is 
the X,Y robot traveling distance to pick a 
component in the kth pickup sequence of the jth 
sub tour, where the distance is measured as a 

chebychev  distance ; 
F : the gap between each feeder slot; 
L : the gap between each nozzle. 

 

 The objective function is to minimise the assembly 
cycle time, CT: 
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hp(j,k) = { 0,1,2,…(G-1)}  ;   

s.t.   

 hp(j,k) ≠ hp(j,m) and  

 j={ 0,1,2,…,(T-1)} , k = { 0,1,2,…(G-1)} ; 

hb(j,k) = { 0,1,2,…(G-1)}  ;  

s.t.   

hb(j,k) ≠ hb(j,m) and 

j={ 0,1,2,…,(T-1)} , k = { 0,1,2,…(G-1)} ; 

 

1 : if there is a nozzle assigned to pick or place a 
component in the kth sequence of j th sub tour. 

0 : otherwise 
z(j,k) = 

1 : if component type i is assigned to feeder slot j, 
 
0 : otherwise 

gij = 

Q/G if Q%G=0; 
 
1 +  Q/G if Q%G≠0; 

T = 

1 : if component type i involve in the kth pickup 
sequence of the j th sub tour, 

0 : otherwise 
bi(j,k) = 
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assuming that components are 
assigned to feeder slots 
adjacent to each other. 

As the robot arm moves 
concurrently in X-Y axis, we 
use a chebychev distance. 

(1)



 

 

 

 

 
 
 

 

 

 

 

 

    

5 Implementation 

Initially, the algorithm will read all the PCB data and 
identify the PCB points that have to be scheduled at the 
moment (there could be PCB points that cannot be 
scheduled at the moment because of components being 
missing from the feeder carrier; these will be marked and 
inserted into a later schedule, whenever their components 
are reloaded onto the feeder carrier).   

Our random constructive heuristic begins by randomly 
assigning each PCB point to a sub tour. The size of a sub 
tour depends on the number of available nozzles per head 
and the number of available placement points. Each sub 
tour consists of a set of pickup points and a set of 
placement points. The nozzles are indexed from 0 (at 
most left side) to G-1 (at the most right side). For each 
sub tour, the pickup and placement nozzles are randomly 
allocated. However, we must ensure that each placement 
point is assigned the correct component type. The pickups 
and placements sequence in each sub tour are also 
generated randomly and are independent of each other. A 
sub tour begins by picking up a set of components in a 
random sequence, then placing these components onto the 
PCB, also in a random placement sequence (but the 
correct PCB point will receive a component of the correct 
type). Finally, the constructive heuristic randomly 
sequences the sub tours to complete the overall pickup 
and placement schedule to generate an initial solution. 

To improve the initial solution, we apply a local search 
with a randomised hill climbing method. In the local 
search we only accept improved solutions. We propose 
six swapping methods, which are: 
1) Swap the pickup sequence in a sub tour. For each sub 

tour we perform a G number of swaps in the 
component pickup sequence. In a sub tour, each i th 
component pickup sequence will be swapped with a 
randomly selected jth component pickup sequence.  

2) Swap the placement sequence in a sub tour. For each 
sub tour we perform a G number of swaps in the 
component placement sequence. In a sub tour, each i th 

component placement sequence will be swapped with 
a randomly selected jth component placement 
sequence. 

3) Swap the pickup nozzles in a sub tour. For each sub 
tour we perform a G number of nozzle swaps of 
pickup operations. In a sub tour, the nozzle’s used in 
the i th component pickup sequence will be swapped 
with a randomly selected nozzle’s used in the jth 
component pickup sequence. If the swapping 
operations involve two different component types, 
then we modify the appropriate placement nozzle in 
the sub tour such that the PCB points will received the 
correct component type. 

4) Swap the placement nozzles in a sub tour. For each 
sub tour we perform a G number of nozzle swaps in 
placement operations. In a sub tour, the nozzle’s used 
in the i th component placement sequence will be 
swapped with a randomly selected nozzle’s used in the 
jth component placement sequence. If the swapping 
operations involve two different component types, 
then we modify the appropriate pickup nozzle in the 
sub tour such that the component will be picked with 
the right nozzle. 

5)   Swap the PCB placement points among sub tours. In 
this swapping method, we perform a Q number of 
swapping operations where Q is a total number of 
available placement points. Each placement point in a 
sub tour will be swapped with other placement points 
in other sub tour (chosen at random). If the swapping 
operations involve two different component types, 
then we modify the appropriate pickup component in 
the appropriate sub tour such that the pickup 
components are valid in both sub tours.  

6) Swap the sub tours sequence order. We perform an S 
number of swapping operations where S is a total 
number of complete sub tours. 
Since there is no clue or good strategy on selecting the 

best swapping method at any point, we use a random 
selection approach that is, the next local search swap is 
chosen by generating a random number between 1 and 6. 
A random number, generated between 1 and 6. This 
process continues until completing the number of 
iterations which is set at 100 for our experiments. In our 
formulation, we consider the robot makes a positive 
traveling distance when it moves in increasing X or Y 
coordinate and a negative traveling distance otherwise.  

6 Testing and Results 

In our experiments we assume that the feeder carrier 
and PCB table are positioned close to each other in order 
to minimise the robot arm travel distance [3]. We also 
assume that the gap between the feeder carrier and the 
PCB board is 10 unit length, the nozzle’s gap is equal to 
the size of feeder slot (chosen as 4 unit length) and all 
components are the same size (we ignore the nozzle size 
selection). In the experiment we modeled the multi 
headed placement machine as a head equipped with 4 
nozzles. Since we modeled the placement machine that 

r(j,k) – hp(j,k)*L                       if j=k=0; 

[r(j,k) – hp(j,k)*L] – 
[c(j-1,G-1)x-hb(j-1,G-1)*L]  if  k=0, j>0; 

[r(j,k) –r(j,k-1)] – 
[(hp(j,k)- hp(j,k-1))*L]            if  k>0; 

m(j,k)x = 

0 –  [c(j-1,G-1)y]    if  k=0, j>0; 

0  otherwise 
  m(j,k)y 
= 

[c(j,k)x–r(j,G-1)]–[(hb(j,k)-hp(j,G-1))*L] if k=0;                                                     

[c(j,k)x–c(j,k-1)x]–[(hb(j,k)-hb(j,k-1))*L] if k>0; 
d(j,k)x =

c(j,k)y if k=0;                                                     

[c(j,k)y – c(j,k-1)y]if k>0; 
d(j,k)y = 



has fixed PCB table and fixed feeder carrier, we only 
apply five of the seven factors (Table 1) of the parameters 
used in [3]. The other two factors are feeder carrier speed 
and PCB table speed are not required since we model the 
fixed feeder carrier’s and fixed PCB table’s SMD 
placement machine. 

 
 

Factors Levels (low/high) 
Number of assembly points (N) 20/100 
Number of component types (K) 8/20 

Length of PCB (BL) 100 (unit distance) 

Width of PCB (BW) 50 (unit distance) 

Speed of robot  (Vr) 10 (unit distance/unit time) 

Table 1: Experimental parameters 

The pick up, Tp and placement time, Ti are both set as 
0.5 unit time. For the purpose of generating the random 
placement points, we set the length and the width of the 
PCB as 100 and 50 unit length, respectively, such that the 
random placement points fall within these limits. The 
placement points are generated randomly. Since we use a 
constructive heuristic that randomly groups the PCB 

points into sub groups (each sub group will be assigned to 
a sub tour), randomly assigns component feeders to slots, 
randomly sequences the component pickup and 
placement, randomly assigns nozzles for pickup and 
placement and randomly sequence the sub tours, we can 
use the same data set for different runs (every run will 
generate different initial solutions). Hence, two data sets 
that are  randomly created are adequate to demonstrate 
our approach. Data set 1 has 20 assembly points 
consisting of 8 component types whilst data set 2 has 100 
assembly points consisting of 20 component types. We 
chose these two data sets in order to show that our method 
can work with a larger problem size as well as a smaller 
problem. To simulate the assembly cycle time, we set the 
speed of the robot arm, Vr as 10 unit distance/unit time (as 
shown in Table 1). We assume that all components use 
the same nozzle type and the speed of robot arm is 
constant for all component types. We ran the experiment 
using an AMD Athlon XP1700+ PC with 1.47GHz speed 
and 240 MB RAM. The computational results are shown 
in Table 2 and Table 3 and are obtained from 10 runs for 
each data set. 
 

 
Constructive Heuristic Improvement Heuristic Test 

CT (unit time) P(seconds) CT (unit time) P(seconds) 
Improvement 

(%) 
1 52.89 0.078 31.89 8.844 65.85 
2 54.23 0.062 28.20 10.093 92.30 
3 55.61 0.063 35.16 9.281 58.16 
4 48.06 0.063 28.56 12.047 68.28 
5 49.11 0.078 38.54 9.031 27.43 
6 46.79 0.078 31.10 12.312 50.45 
7 44.48 0.078 29.23 11.015 52.17 
8 52.65 0.063 32.98 7.953 59.64 
9 54.78 0.062 34.48 10.454 58.87 
10 49.21 0.078 31.81 11.203 54.70 

Average 50.78 0.070 32.20 10.220 58.79 

Note:  CT = Assembly cycle time (unit time) 
P = Computation time (seconds) 

Table 2: An experimental result of ten runs on data set 1 (N=20, K=8) 

 
Constructive Heuristic Improvement Heuristic  Test 

CT (unit time) P(seconds) CT (unit time) P(seconds) 

Improvement (%) 

1 419.15 0.250 212.29 75.187 97.44 
2 387.52 0.234 209.15 80.266 85.28 
3 391.46 0.234 222.40 76.797 76.02 
4 413.59 0.219 236.86 79.109 74.61 
5 397.95 0.219 217.60 76.312 82.88 
6 394.26 0.235 221.05 87.422 78.36 
7 426.06 0.250 246.10 71.375 73.12 
8 363.50 0.235 218.86 59.359 66.09 
9 367.85 0.250 236.54 70.297 55.51 
10 379.00 0.234 213.63 80.907 77.41 

Average 394.03 0.236 223.45 75.703 76.67 
 

Note:  CT = Assembly cycle time (unit time) 
P = Computation time (seconds) 

Table 3: An experimental result of ten runs on data set 2 (N=100, K=20) 



The results in Table 2 and Table 3 show that our greedy 
constructive heuristic can generate an initial solution in a 
short time of about 0.070 seconds for data set 1 and 0.236 
seconds for data set 2. For data set 1, the initial solutions 
have improved about 58.79% after 10.22 seconds 
(average result) whilst a more complex data set gained 
76.67% after 75.703 seconds (average result). The results 
show that a good initial solution does not guarantee a 
good final solution and a bad initial solution does not 
mean that we cannot obtain a good solution. For example, 
in data set 1, test 2 started with a CT=54.23 unit time as 
an initial solution and finished with a CT=28.20 unit time 
as a final solution whilst test 5 started with CT=49.11 unit 
time but finished with CT=38.54 unit time. In data set 2, 
test 1 started with a CT=419.15 unit time as an initial 
solution and finished with a CT=212.29 unit time as a 
final solution whilst test 9 started with CT=367.15 unit 
time but finished with CT=236.54 unit time. Generally, 
we can see that a quality of a final solution is not 
dependent on the quality of an initial solution.  

7 Conclusions  

As the CPU of the SMD placement machine is always 
in the idle state while the robot arm is moving, picking 
and placing components and the robot arm is normally an 
interrupt driven I/O device, we can make use of the CPU 
free time to improve the initial schedule.  Hence, in this 
work we introduce a real-time scheduling approach that 
employs the CPU free time to improve the initial 
schedule. We use a greedy constructive heuristic to 
generate an initial solution then apply a randomised hill 
climbing method to improve the initial schedule. Results 
shows that the CT improved by 58.79% (data set 1) and 
76.67% (data set 2) over the initial schedule. Results also 
indicate that generally the quality of the final schedule is 
not dependent on the initial schedule. 
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