
Real-time Scheduling for Multi Headed Placement Machine

Masri Ayob And Graham Kendall

Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
University of Nottingham, School of Computer Science and IT

Nottingham NG8 1BB, UK
E-mail: mxa|gxk@cs.nott.ac.uk

Abstract

This paper proposes a methodology for real-time
scheduling to sequence the pickup and placement of
component on multi headed placement machines in
printed circuit board (PCB) assembly. The latest
technology of surface mount device (SMD) placement
machines have a smart feeder carrier that automatically
identifies the exact location of each component type on
the feeder slot, detects component’s missing from the
component feeders (and continues working with other
component types) and allows a component to be reloaded
during a pick and place operation without stopping the
operation. Assuming that the components on the feeder
carrier may be misplaced or some of the required
components are missing, we generate an initial schedule
using a greedy constructive heuristic by only considering
the available placement points. The initial solution can
immediately be used to assemble components for the first
PCB. While the placement machine is assembling
components, we employ the CPU free time (whilst the
robot arm is moving) to improve the initial schedule by
using a randomised hill climbing search technique. Thus,
the subsequent PCB’s will use the improved schedule.
Our experimental result on two data sets show that we
gain 58.79% and 76.69% (respectively) improvement on
assembly cycle time over the initial schedule.

1 Introduction

The placement rate of an SMD (surface mount device)
placement machine can be optimised by considering
significant factors such as the placement head travel, the
placement sequence and the position of components in the
feeder bank. A lot of work has been done on improving
the efficiency of SMD placement machines such as
[1,2,3,4]. However, most previous work involves an
offline scheduler that is ineffective if there is a change in
the resources such as a component being missing from the
feeder carrier. Hence, in this work, we propose a real-time
scheduling approach that can continuously generate a new
schedule and can improve upon the current schedule using
spare CPU time during pick and place operations. That is,
we use CPU time not required by the robot arm as it is in
the process of carrying out an operation (such as moving,
placing or picking up component).

2 SMD Placement Machine

The SMD placement machine is used to assemble
components onto a PCB (printed circuit board). SMD
placement machines are categorised into five categories,
based on their specification and operational methods.
These are dual delivery, multi-station, turret style, multi-
head and a sequential SMD placement machine [5]. In
general, each SMD placement machine has a feeder
carrier (sometimes called a feeder magazine), a PCB table
(or worktable), head(s), nozzle(s) (or gripper(s)) and a
tool magazine. The PCB table, the feeder carrier and the
head(s) can either be moveable or fixed. A typical feeder
carrier consists of either several tape reels or vibratory ski
slope feeders, or both [1]. The feeder reels, that is tapes
holding electronic components; or vibratory ski slope
feeders are positioned in the feeder slots according to the
arrangement given by the feeder setup [5]. Usually, larger
components are supplied by tray feeders [6]. Some
machines allow a tray to be placed into the machine
feeding area whilst others have an automatic tray-
handling unit. Normally, the components are transported
from the feeders to the placement position on the PCB
using vacuum nozzle(s) that are placed at the end of the
head(s) [6]. The PCB table is required to support the PCB,
in a locked position and locating the required placement
point for the placement operation. Some machines may
have more than one PCB table. The PCB table(s) can be a
stationary, use a conveyor system, or use an X-Y motion
table [5]. Figure 1 is an example of multi head placement
machine.

Figure 1 An example of pick place multi head
placement machine (taken from [6]).

3 Real-time Scheduling

A good off-line scheduling algorithm can produce a
very good solution. However, they are ineffective if there
is a change in the resources after the schedule is
generated. For example, if the component feeders are
misplaced by the machine’s operator or if some
components are missing from the feeder carrier, then the
solution given by an off-line scheduling is not feasible.
Hence, the placement machine will be idle, waiting for a
new schedule. The duration of the idle state will be
dependent on the time taken by the off-line scheduler. In
this work, we propose a real time scheduling approach
that incorporates an interrupt feature.

Since some of the latest technology in placement
machines such as MY15 and MY19 [7] have a smart
feeder carrier that can automatically detect the exact
location of each component type on the feeder slot and the
availability of components on the feeder slots, we propose
using this feature to enhance the scheduling technique.
The information about the missing and reloaded
component types will be managed by two interrupt
service routines (ISR). There are two interrupt events in
this problem, the missing component’s interrupt and the
reloaded component’s interrupt. Generally, the interrupts
can be triggered by a sensor using a positive and a
negative edge triggering signals. When the sensor detects
a missing component type it sends an interrupt signal to
the central processing unit (CPU) of the placement
machine to call the missing component’s ISR (named as
ISR1). Similarly, when the sensor detects a newly
reloaded component, it will send an interrupt signal to the
CPU of the placement machine to execute the reloaded
component’s ISR (named as ISR2). ISR1 only needs to
store the name of the missing component type in a
missing component file such that the scheduler program
can use this file to identify the missing component type.
Similarly, ISR2 will store the name of a new reloaded
component type into the component’s reloaded file. The
ISR2 will also remove the name of component type that
has just been reloaded from the missing component file.
The scheduler will automatically remove the contents of
the component’s reloaded file after these component types
have been inserted into the schedule.

Generally, a surface mount placement machine is a
microprocessor based electronic device. The
microprocessor, or CPU, is the machine’s controller. In a
placement machine, the CPU will control the movement
of the robot arm to pick and place components and carry
out calculations such as component recognition,
alignment etc. To perform the pick and place operations,
the current schedule will be transferred to the robot arm to
control its movement. While the robot arm is moving to
pickup a component (or perhaps some components), the
CPU is in an idle state. After picking up the
component(s), the robot arm will interrupt the CPU to
acknowledge job completion. Then the CPU will send
other control signal to the robot arm. When the robot arm
is moving to place a component (for example), the CPU
may do work for component recognition and alignment

then may be in an idle state again. Generally we can say
that the CPU is always in an idle state while the robot arm
is moving or picking and placing components. Since the
robot arm is normally an interrupt driven I/O device, we
can make use of the CPU free time to carry out other
tasks. When the robot arm completes its current task, it
will send an interrupt request to the CPU. In responding
to this interrupt request, the CPU will suspend the current
running task (the task we will run during CPU free time).
The appropriate interrupt service routine (ISR) will be
called to service the request (which may include sending
other appropriate control data). When the ISR completes
the task, the CPU will automatically continue the
suspended task. Information about interrupts and how
they work can be found in many operating system’s
textbooks such as [8,9].

In this work we introduce a real-time scheduler that
utilises the CPU free time. We assume the components
are randomly assigned to the feeder slots (or the operator
may have misplaced the components). We generate a
greedy constructive heuristic for a pick and place on multi
headed placement machine that randomly assigns
components to feeder slots, a placement point to a sub
tour, a nozzle for pickup and placement, a pickup
sequence, a placement sequence and sub tour sequences.
The initial schedule (generated by the greedy constructive
heuristic) can immediately be used to perform the pick
and place operations. In our proposed framework, we will
start the pick and place operation immediately, once the
initial schedule is ready. The first PCB will be processed
using the initial schedule. While the robot arm is moving,
picking and placing components, we will employ the CPU
spare time to improve our initial schedule. We apply a
local search, using a randomised hill climbing method,
that only accepts an improved solution. There are so many
factors involved in determining the quality of the solution
such as the grouping of placement points to a sub tour,
nozzle assignment, pickup and placement sequencing etc.
Usually, optimising one factor will increase the cost of
another factor(s). For example, if we optimise the
grouping of the placement point to a sub tour, we may
have to pay a cost in pickup time. In our approach, we
apply swaps between placement/pickup points in a sub
tour or among the sub tours. The details of the swapping
method is discussed in section 5. While the CPU is
running the optimisation software (our local search) to
find a better schedule, the robot arm may interrupt the
CPU whenever it needs attention. Therefore, our
optimisation software actually runs without incurring any
cost to the assembly cycle time of the PCB currently
being processed. Thus, without paying any cost, we can
improve the initial solution. By using this concept, the
pickup and placement schedule is always updated and we
may obtain a near optimal solution if the placement
machine produces a large number of PCBs. Moreover, if
the component feeder runs out of components, a new
schedule can be generated easily without stopping the
production. The latest technology placement machine also
allows components to be reloaded during production [7].

After components been reloaded, a new schedule must be
generated and again our approach can solve this problem.

4 The Scheduling Model

In order to evaluate the quality of a schedule, it is
necessary to measure the resulting machine placement
time. In this work, a placement time function that is an
objective function for a pick place multi headed
placement machine is developed to evaluate the proposed
approach. We model a pick place multi headed placement
machine that has a single head equipped with G number
of nozzles, fixed PCB table and fixed feeder carrier (refer
Figure 1). This type of placement machine was
categorised in [5] as a multi-head placement machine that
has the arm and head which can moves in X-Y axis
simultaneously but the feeder carrier and PCB table are
fixed. Hence, our objective function only needs to
consider minimising the total assembly cycle time by
minimising the traveling distance of the robot to perform
pick and place operation. The following notations are
used to describe the scheduling model:

CT : the cycle time to assemble all components;
N : the number of placement points on the PCB;
Q : the total number of available placement points

to be scheduled, where Q ≤ N.
K : the number of component types (each feeder

slot holds multiple copies of one component
type);

G : the number of nozzles per head;
T : the total number of sub tours;
M : the total number of feeder slots where K ≤ M;

c(j,k)x,y : the X,Y coordinate on the PCB which will have
a component placed there in the kth placement
sequence of the jth sub tour;

Vr : the robot speed (average);
Tp : the time for picking up a component;
Ti : the time for placing a component;

I(j,k) : the time taken for the robot arm to travel and
place a component in the kth placement
sequence of the jth sub tour;

P(j,k) : the time taken for the robot arm to travel and
pick a component in the kth pickup sequence of
the jth sub tour;

hp(j,k) : the nozzle used to pick a component in the kth
pickup sequence of the jth sub tour;

hb(j,k) : the nozzle used to place a component in the kth
placement sequence of the jth sub tour;

s(i) : the i th slot distance referring to the origin of
feeder slot, s(0) where s(0)=0 and i<K;

r(j,k) : the slot distance for the kth pickup sequence of
the jth sub tour;

d(j,k) : The max{ |d(j,k)x|, |d(j,k)y|} where x and y is the
X,Y robot traveling distance to place a
component in the kth placement sequence of the
jth sub tour, where the distance is measured as a
chebychev distance ;

m(j,k) : The max{ |m(j,k)x|, |m(j,k)y|} where x and y is
the X,Y robot traveling distance to pick a
component in the kth pickup sequence of the jth
sub tour, where the distance is measured as a

chebychev distance ;
F : the gap between each feeder slot;
L : the gap between each nozzle.

 The objective function is to minimise the assembly
cycle time, CT:

where:

);,(*)
),(

(),(kjzT
V

kjm
kjP p

r

+=

);,(*)
),(

(),(kjzT
V

kjd
kjI i

r

+=

� −
=

1

0

),(
G

k

kjz <G ;

m(j,k)=max{ |m(j,k)x|, |m(j,k)y|} ;

d(j,k)=max{ |d(j,k)x|, |d(j,k)y|} ;

ig
K

j
ij ∀≤

� −
=

,1
1

0

[]� −
=

=
1

0

**)(
K

j
ijgFjis

[]� −
=

=
1

0

),(*)(),(
K

i
i kjbiskjr ; kjkjb

K

i
i ∀∀≤

� −
=

,,1),(
1

0

hp(j,k) = { 0,1,2,…(G-1)} ;

s.t.

 hp(j,k) ≠ hp(j,m) and

 j={ 0,1,2,…,(T-1)} , k = { 0,1,2,…(G-1)} ;

hb(j,k) = { 0,1,2,…(G-1)} ;

s.t.

hb(j,k) ≠ hb(j,m) and

j={ 0,1,2,…,(T-1)} , k = { 0,1,2,…(G-1)} ;

1 : if there is a nozzle assigned to pick or place a
component in the kth sequence of j th sub tour.

0 : otherwise
z(j,k) =

1 : if component type i is assigned to feeder slot j,

0 : otherwise

gij =

Q/G if Q%G=0;

1 + Q/G if Q%G≠0;

T =

1 : if component type i involve in the kth pickup
sequence of the j th sub tour,

0 : otherwise
bi(j,k) =

��� �
= = =

��
	
��

+=
T

j

G

k

G

k

kjIkjPCT
1 1 1

),(),(min

assuming that components are
assigned to feeder slots
adjacent to each other.

As the robot arm moves
concurrently in X-Y axis, we
use a chebychev distance.

(1)

5 Implementation

Initially, the algorithm will read all the PCB data and
identify the PCB points that have to be scheduled at the
moment (there could be PCB points that cannot be
scheduled at the moment because of components being
missing from the feeder carrier; these will be marked and
inserted into a later schedule, whenever their components
are reloaded onto the feeder carrier).

Our random constructive heuristic begins by randomly
assigning each PCB point to a sub tour. The size of a sub
tour depends on the number of available nozzles per head
and the number of available placement points. Each sub
tour consists of a set of pickup points and a set of
placement points. The nozzles are indexed from 0 (at
most left side) to G-1 (at the most right side). For each
sub tour, the pickup and placement nozzles are randomly
allocated. However, we must ensure that each placement
point is assigned the correct component type. The pickups
and placements sequence in each sub tour are also
generated randomly and are independent of each other. A
sub tour begins by picking up a set of components in a
random sequence, then placing these components onto the
PCB, also in a random placement sequence (but the
correct PCB point will receive a component of the correct
type). Finally, the constructive heuristic randomly
sequences the sub tours to complete the overall pickup
and placement schedule to generate an initial solution.

To improve the initial solution, we apply a local search
with a randomised hill climbing method. In the local
search we only accept improved solutions. We propose
six swapping methods, which are:
1) Swap the pickup sequence in a sub tour. For each sub

tour we perform a G number of swaps in the
component pickup sequence. In a sub tour, each i th
component pickup sequence will be swapped with a
randomly selected jth component pickup sequence.

2) Swap the placement sequence in a sub tour. For each
sub tour we perform a G number of swaps in the
component placement sequence. In a sub tour, each i th

component placement sequence will be swapped with
a randomly selected jth component placement
sequence.

3) Swap the pickup nozzles in a sub tour. For each sub
tour we perform a G number of nozzle swaps of
pickup operations. In a sub tour, the nozzle’s used in
the i th component pickup sequence will be swapped
with a randomly selected nozzle’s used in the jth
component pickup sequence. If the swapping
operations involve two different component types,
then we modify the appropriate placement nozzle in
the sub tour such that the PCB points will received the
correct component type.

4) Swap the placement nozzles in a sub tour. For each
sub tour we perform a G number of nozzle swaps in
placement operations. In a sub tour, the nozzle’s used
in the i th component placement sequence will be
swapped with a randomly selected nozzle’s used in the
jth component placement sequence. If the swapping
operations involve two different component types,
then we modify the appropriate pickup nozzle in the
sub tour such that the component will be picked with
the right nozzle.

5) Swap the PCB placement points among sub tours. In
this swapping method, we perform a Q number of
swapping operations where Q is a total number of
available placement points. Each placement point in a
sub tour will be swapped with other placement points
in other sub tour (chosen at random). If the swapping
operations involve two different component types,
then we modify the appropriate pickup component in
the appropriate sub tour such that the pickup
components are valid in both sub tours.

6) Swap the sub tours sequence order. We perform an S
number of swapping operations where S is a total
number of complete sub tours.
Since there is no clue or good strategy on selecting the

best swapping method at any point, we use a random
selection approach that is, the next local search swap is
chosen by generating a random number between 1 and 6.
A random number, generated between 1 and 6. This
process continues until completing the number of
iterations which is set at 100 for our experiments. In our
formulation, we consider the robot makes a positive
traveling distance when it moves in increasing X or Y
coordinate and a negative traveling distance otherwise.

6 Testing and Results

In our experiments we assume that the feeder carrier
and PCB table are positioned close to each other in order
to minimise the robot arm travel distance [3]. We also
assume that the gap between the feeder carrier and the
PCB board is 10 unit length, the nozzle’s gap is equal to
the size of feeder slot (chosen as 4 unit length) and all
components are the same size (we ignore the nozzle size
selection). In the experiment we modeled the multi
headed placement machine as a head equipped with 4
nozzles. Since we modeled the placement machine that

r(j,k) – hp(j,k)*L if j=k=0;

[r(j,k) – hp(j,k)*L] –
[c(j-1,G-1)x-hb(j-1,G-1)*L] if k=0, j>0;

[r(j,k) –r(j,k-1)] –
[(hp(j,k)- hp(j,k-1))*L] if k>0;

m(j,k)x =

0 – [c(j-1,G-1)y] if k=0, j>0;

0 otherwise
 m(j,k)y
=

[c(j,k)x–r(j,G-1)]–[(hb(j,k)-hp(j,G-1))*L] if k=0;

[c(j,k)x–c(j,k-1)x]–[(hb(j,k)-hb(j,k-1))*L] if k>0;
d(j,k)x =

c(j,k)y if k=0;

[c(j,k)y – c(j,k-1)y]if k>0;
d(j,k)y =

has fixed PCB table and fixed feeder carrier, we only
apply five of the seven factors (Table 1) of the parameters
used in [3]. The other two factors are feeder carrier speed
and PCB table speed are not required since we model the
fixed feeder carrier’s and fixed PCB table’s SMD
placement machine.

Factors Levels (low/high)
Number of assembly points (N) 20/100
Number of component types (K) 8/20

Length of PCB (BL) 100 (unit distance)

Width of PCB (BW) 50 (unit distance)

Speed of robot (Vr) 10 (unit distance/unit time)

Table 1: Experimental parameters

The pick up, Tp and placement time, Ti are both set as
0.5 unit time. For the purpose of generating the random
placement points, we set the length and the width of the
PCB as 100 and 50 unit length, respectively, such that the
random placement points fall within these limits. The
placement points are generated randomly. Since we use a
constructive heuristic that randomly groups the PCB

points into sub groups (each sub group will be assigned to
a sub tour), randomly assigns component feeders to slots,
randomly sequences the component pickup and
placement, randomly assigns nozzles for pickup and
placement and randomly sequence the sub tours, we can
use the same data set for different runs (every run will
generate different initial solutions). Hence, two data sets
that are randomly created are adequate to demonstrate
our approach. Data set 1 has 20 assembly points
consisting of 8 component types whilst data set 2 has 100
assembly points consisting of 20 component types. We
chose these two data sets in order to show that our method
can work with a larger problem size as well as a smaller
problem. To simulate the assembly cycle time, we set the
speed of the robot arm, Vr as 10 unit distance/unit time (as
shown in Table 1). We assume that all components use
the same nozzle type and the speed of robot arm is
constant for all component types. We ran the experiment
using an AMD Athlon XP1700+ PC with 1.47GHz speed
and 240 MB RAM. The computational results are shown
in Table 2 and Table 3 and are obtained from 10 runs for
each data set.

Constructive Heuristic Improvement Heuristic Test

CT (unit time) P(seconds) CT (unit time) P(seconds)
Improvement

(%)
1 52.89 0.078 31.89 8.844 65.85
2 54.23 0.062 28.20 10.093 92.30
3 55.61 0.063 35.16 9.281 58.16
4 48.06 0.063 28.56 12.047 68.28
5 49.11 0.078 38.54 9.031 27.43
6 46.79 0.078 31.10 12.312 50.45
7 44.48 0.078 29.23 11.015 52.17
8 52.65 0.063 32.98 7.953 59.64
9 54.78 0.062 34.48 10.454 58.87
10 49.21 0.078 31.81 11.203 54.70

Average 50.78 0.070 32.20 10.220 58.79

Note: CT = Assembly cycle time (unit time)
P = Computation time (seconds)

Table 2: An experimental result of ten runs on data set 1 (N=20, K=8)

Constructive Heuristic Improvement Heuristic Test

CT (unit time) P(seconds) CT (unit time) P(seconds)

Improvement (%)

1 419.15 0.250 212.29 75.187 97.44
2 387.52 0.234 209.15 80.266 85.28
3 391.46 0.234 222.40 76.797 76.02
4 413.59 0.219 236.86 79.109 74.61
5 397.95 0.219 217.60 76.312 82.88
6 394.26 0.235 221.05 87.422 78.36
7 426.06 0.250 246.10 71.375 73.12
8 363.50 0.235 218.86 59.359 66.09
9 367.85 0.250 236.54 70.297 55.51
10 379.00 0.234 213.63 80.907 77.41

Average 394.03 0.236 223.45 75.703 76.67

Note: CT = Assembly cycle time (unit time)
P = Computation time (seconds)

Table 3: An experimental result of ten runs on data set 2 (N=100, K=20)

The results in Table 2 and Table 3 show that our greedy
constructive heuristic can generate an initial solution in a
short time of about 0.070 seconds for data set 1 and 0.236
seconds for data set 2. For data set 1, the initial solutions
have improved about 58.79% after 10.22 seconds
(average result) whilst a more complex data set gained
76.67% after 75.703 seconds (average result). The results
show that a good initial solution does not guarantee a
good final solution and a bad initial solution does not
mean that we cannot obtain a good solution. For example,
in data set 1, test 2 started with a CT=54.23 unit time as
an initial solution and finished with a CT=28.20 unit time
as a final solution whilst test 5 started with CT=49.11 unit
time but finished with CT=38.54 unit time. In data set 2,
test 1 started with a CT=419.15 unit time as an initial
solution and finished with a CT=212.29 unit time as a
final solution whilst test 9 started with CT=367.15 unit
time but finished with CT=236.54 unit time. Generally,
we can see that a quality of a final solution is not
dependent on the quality of an initial solution.

7 Conclusions

As the CPU of the SMD placement machine is always
in the idle state while the robot arm is moving, picking
and placing components and the robot arm is normally an
interrupt driven I/O device, we can make use of the CPU
free time to improve the initial schedule. Hence, in this
work we introduce a real-time scheduling approach that
employs the CPU free time to improve the initial
schedule. We use a greedy constructive heuristic to
generate an initial solution then apply a randomised hill
climbing method to improve the initial schedule. Results
shows that the CT improved by 58.79% (data set 1) and
76.67% (data set 2) over the initial schedule. Results also
indicate that generally the quality of the final schedule is
not dependent on the initial schedule.

References

[1] J. Ahmadi, S. Grotzinger and D. Johnson,

“Component allocation and partitioning for a dual
delivery placement machine” , Operations Research,
vol. 36, pp. 176-191, 1988.

[2] K. P. Ellis, J. E. Kobza, and F. J. Vittes,
“Development of placement time estimator function
for a turret style surface mount placement machine” ,
Robotic and Computer Integrated Manufacturing,
vol. 18, pp. 241-254, 2002.

[3] Y. -C. Su, C. Wang, P. J. Egbelu and D. J. Cannon,
“A dynamic point specification approach to
sequencing robot moves for PCB assembly” , Int. J.
Computer integrated Manufacturing, vol. 8, no. 6,
pp. 448-456, 1995.

[4] S. Deo, R. Javadpour and G. M. Knapp, “Multiple
setup PCB assembly planning using genetic

algorithms” , Computers & Industrial Engineering,
vol. 42, pp. 1-16, 2002.

[5] M. Ayob, P. Cowling and G. Kendall, “Optimisation
for surface mount placement machines” , Proc. of the
IEEE ICIT’02, Bangkok, 11-14 Dec. 2002, pp. 498-
503.

[6] B. Bentzen, “SMD placement” , the SMT in FOCUS,
Nov. 28, 2000, url:
http://www.smtinfocus.com/PDF/SMD_placement.p
df (Sept. 25, 2002).

[7] MYDATA automation worldwide brochure, 2002.
[8] A. Tanenbaum, Modern operating systems.

Prentice-Hall, New Jersey, USA, 1992.
[9] A. Silberschatz, P. Galvin and G. Gagne, Applied

operating system concepts. John Wiley & Sons,
USA, 2000.

