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This paper is concerned with the development of a customized circle packing algorithm for a manufacturer of sprockets
for the motor cycle industry. Practical constraints mean that the problem differs somewhat from those tackled elsewhere
in the literature. In particular, the layouts need to conform to a given structure. This is achieved by using a local search
algorithm with an appropriate starting solution and a series of neighbourhoods designed to preserve the layout
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Introduction

The problem of cutting a set of pieces from one or more

rectangular stock-sheets arises in many manufacturing

industries and cutting and packing problems have been

widely researched for over 50 years (Kantorovitch, 1939;

Gilmore and Gomory, 1961; Dowsland and Dowsland,

1992; Sweeney and Paternoster, 1992; Lodi et al, 2002).

Although there have been many attempts to produce generic

algorithms for specific classes of piece types (eg circles,

rectangles, polygons, etc), the objectives and constraints

imposed by real-world problems vary so much that there are

many examples of customized solutions for a given problem.

The focus of this paper is a local search-based packing

algorithm designed specifically to meet the requirements of

a circle cutting operation arising in a Belgian company

involved in the manufacture of sprockets (toothed wheels

used in a chain drive) for the motorcycle industry.

Although circle packing has long been of interest to

mathematicians (Koebe, 1936), these types of problem have

received less attention than many other stock-cutting

problems such as rectangle packing (Beasley, 1985; Burke

et al, 2004; Dowsland et al, 2006) and irregular packing

(Dowsland et al, 1998; Bennell and Dowsland, 2001;

Dowsland et al, 2002; Burke et al, forthcoming). Much of

the literature on circle packing is of a theoretical nature

(Williams, 1979; Steinhaus, 1999; Collins and Stephenson,

2003; Stephenson, 2003; Stoyan and Yas’kov, 2004; Birgin

et al, 2005), while other publications are limited in scope—for

example, packing circles into larger circles (Kravitz, 1967;

Wells, 1991; Huang et al, 2001, 2003), packing circles into a

square (Graham and Lubachevsky, 1996; Nurmela and

Östergård, 1997; Boll et al, 2000), or dealing with three-

dimensional (sphere) problems (Conway and Sloane, 1992;

Chen et al, 2001).

Publications motivated by practical circle cutting or

packing problems are less common. Examples include:

collating cylindrical products into rectangular cases that

provide efficient palletisation (Dowsland, 1991), packing long

cylindrical items into shipping containers (George et al, 1995;

Correia et al, 2000; Huang et al, 2005), packing optical fibres

into tubes of minimum diameter (Wang et al, 2002), and

punching circular blanks from a silicon sheet in the manu-

facture of rotors and stators for electric motors (Cui, 2005).

In this paper, we tackle a real-world problem. Superficially

the problem is similar to many of those above in that it

involves packing circles of different diameters into one or

more containing rectangles of known dimensions. However,

none of the above approaches are directly applicable for two

reasons. Firstly, the number of circles to be cut is not fixed,

as additional circles can be produced for inventory.

Secondly, from a practical point-of-view it is desirable to

produce layouts that are similar to those currently produced

manually by experienced workers. This makes the problem

unique. We have therefore developed our own approach,

based on local search. It is widely accepted that utilizing

domain knowledge can often improve the success of a

search algorithm (see, for example, Wildemuth, 2004), and

this knowledge can often be exploited when making
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the problem-specific decisions concerning the definition of the

solution space, the evaluation function, the initial solution

and the neighbourhood structure (see for example Reeves,

1993; Glover and Laguna, 1997; Glover and Kochenberger,

2003). In this paper, we address all four decisions. In

particular, we show how the use of appropriate starting

solutions and neighbourhood moves allows us to produce

solutions with the required characteristics, and we examine

the potential benefits and drawbacks of relaxing some of the

constraints in the definition of the solution space. The result

is an algorithm that is able to produce high-density layouts

that meet all the practical requirements of the company.

In the next section, we define the problem together with

the operating environment in which the solution is to be

implemented. This is followed by a description of the

solution procedure and a discussion on balancing the

flexibility of the search with the need to home in on feasible

solutions. An empirical evaluation of different variants of

the algorithm based on experiments on nine problems

selected from the company’s archives is then presented and

the performance of the best variant is confirmed on a further

sample of 100 problems. The paper concludes with some

general comments and suggestions for further work.

Problem definition

The current situation

The company’s production process is shown in Figure 1. It

starts with aluminium sheets of dimensions 1600mm�
2840mm, in one of the four different gauges (thicknesses).

The first process cuts discs of given diameters. These discs

are then further processed so as to produce the full

range of sprockets by transferring the discs to a tooth

cutter, where they are effectively transformed into cogs. At

this stage, any surplus production can be held as inventory.

The remainder of the process is concerned with further

processing of the cogs. In this paper, we are concerned with

the first phase of the production process, that of disc cutting.

Each order is treated separately. The set of discs that must

be cut is determined by checking the inventory for any

unallocated cogwheels of the required dimensions, and then

setting up a disc-cutting plan in order to accommodate the

remaining items in the order. An order may consist of more

than one gauge and within each gauge there are typically

between 60 and 2000 discs that need to be cut. The number

of discs that can be cut from each sheet is typically between

60 and 100, depending on the diameters. Once a sheet has

been used it is discarded (ie there is no possibility of using

partially used sheets for future orders). However, the total

order book consists of a set of standard diameters and, in

order to improve sheet utilization, the company will cut extra

discs to be held in inventory and used to meet future orders.

Cutting is executed by a milling cutter of diameter 10mm.

In order to avoid the sheet splitting or breaking 3mm has to

be left between extruded circles. Around the border of the

sheet 5.5mm must also be left to allow for it to be secured

during the cutting process. The width of the cutter and the

gap between the circles can be accommodated by adding

23mm to every circle diameter. As this will also leave a gap

of 1.5mm along each edge of the sheet; the 5.5mm gap

around the border can be achieved by reducing the

dimensions of the sheet by 8mm. Although the set-up time

for the disc-cutting machine is independent of the diameters

cut, the tooth-cutting machine needs to be reset for each

different diameter. Therefore, any diameter Di for which

there are already sufficient cog-wheels in stock will be

supplied from stock. For all other diameters, the objective is

to define a set of cutting patterns for at least qi¼ bi�si circles

of diameter di, where di¼Diþ 23, bi is the number of circles

of diameter Di in the order and si is the number of cogwheels

of diameter Di in stock, in such a way as to minimize the

amount of waste material, while keeping the number of

cogwheels made for inventory to a reasonable amount.

The cutting patterns are currently produced manually by

experienced staff, who plan and draw the new patterns using

AutoCAD. For a typical order, about two-thirds of the
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Figure 1 The production process.

430 Journal of the Operational Research Society Vol. 58, No. 4



sheets re-use existing patterns, while the remaining third are

produced from scratch. Each new sheet takes around one

and a half man-hours to plan. Typically around 32–34% of

the material is waste, including the material wasted by the

milling-cutter, the gaps between the discs, and the waste

material necessary for fixing the sheet. This translates to

about 81–83% density for the circle packing problem using

the adjusted diameters and the reduced sheet dimensions.

Figure 2 shows a typical set of layout patterns for a small

order requiring five sheets.

Formalization of the problem

The objective of this study is not to produce a computerized

system to replace the manual operation but to provide an

automatic system that is able to support the current expertise.

For example, by relieving the pressure during busy times, or

covering periods when experienced staff are unavailable due

to holidays, illness, etc. In order to build an automatic

system, the objectives and constraints on the problem need

further formalization. In particular, two issues need to be

addressed. The first concerns the types of layout that are

required and the second concerns the balance between the

objectives of minimizing waste and keeping inventory down

to a ‘reasonable’ level.

Figure 2 is typical of the types of layouts currently in use.

The most obvious feature of these layouts is that they are

based on a hexagonal lattice made up of blocks of circles of

the same diameter, with some adjustments within rows or

around the edges. Although the operation of the cutting

equipment does not impose any restrictions on the structure

of the layout, it was deemed desirable to produce layouts

similar to those in Figure 2 for two reasons. Firstly, after

cutting, the pieces are sorted manually for loading onto the

tooth cutter. The advantage of layouts consisting of large

blocks of circles of equal diameter is self-evident. Secondly,

as the system was to be run in parallel with the manual

operation, with the layouts being archived for potential re-

use as a part of the cutting plan for future orders, there was a

general consensus that the layouts should be of a similar

type. It is also worth noting that such layouts are unlikely to

compromise the quality of the solutions in terms of sheet

utilization. This is because orders tend to consist of large

numbers of circles of a given diameter where the range of

diameters is usually small. In these circumstances, layouts

based on hexagonal patterns are also likely to yield dense

packings.

The balance between low inventory and waste minimiza-

tion also needs addressing. Intuitively inventory will be

minimized if the number of sheets used is the minimum

required to meet the order quantities. Conversely extra

sheets will allow more flexibility in the quantities of each

diameter to be cut and this may result in improved sheet

utilization. Furthermore, due to the set-up times on the

tooth-cutting machine, sufficient inventory to supply small

quantities of a particular diameter is viewed as a positive

advantage. The company stated that they were satisfied with

the levels of wastage and inventory produced by the current

system. However, no figures for the relationship between

inventory costs and material costs, or for the mean or

maximum amount of inventory that would be acceptable,

were available.

The current manual approach does not involve any formal

guidelines, but consultation with the layout designers

allowed us to estimate the amount of over-production they

would expect to produce in different circumstances. This

typically translates to between 5 and 30% of the total area

packed, with the higher figures corresponding to orders with

several small order quantities. However, for very small

orders (ie less than five sheets) the surplus can amount to

more than 50%. Typically, the manual approach starts with

the design of an initial cutting plan based on hexagonal

nestings. These are built up row-by-row, and all the circles of

a given diameter are allocated before the next diameter is

considered. Incomplete rows are filled with surplus circles of

that diameter. This procedure determines the number of

sheets that will be used, which in turn has a direct influence

on the surplus production.

Our approach is similar in that we determine an upper

bound, Q, on the minimum number of sheets required by

applying a fast packing heuristic based closely on the logic

used in the manual approach. Full details of this heuristic are

given in the next section. Our objective is then to find an

efficient packing of the Q sheets that includes a sufficient

number of circles of each diameter. Thus, the problem can

now be stated formally as follows.

Let Di, di, bi, si and qi be defined as in the previous section.

Given a set of n diameters di such that bi4si let Q be the

number of sheets required to pack at least qi circles of

diameter di using an appropriate packing heuristic. Then our

objective is to find a set of Q layouts of the required format
Figure 2 A typical layout produced by the current manual
solution approach.
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(one for each sheet) that maximizes

PQ
j¼1 uj

Q
such that

XQ

j¼1

aijXqi; for i ¼ 1; n

where aij is the number of copies of circle diameter di in

layout j and uj is the packing density of layout j. Note that

the set of diameters under consideration is restricted to those

for which qiX1 in order to avoid additional set-up times on

the tooth cutter.

The solution approach

Local search, or hill climbing, is a heuristic approach that

starts from an initial solution, s, and tries to improve it by

making a series of small changes or perturbations. When an

improvement is found the improved solution becomes the

incumbent solution and the process is repeated until a

solution with no improving perturbations is reached. The set

of solutions that can be obtained by applying an allowable

perturbation to a solution, s, is known as the neighbourhood

of s, and the replacement of s by one of its neighbours is

known as a neighbourhood move. The local search process

can be summarized as follows.

Local search for minimisation

Definitions:

S=space of feasible solutions

N(s)=the neighbourhood of s

f(s)=cost of solution s

Nþ (s)= {tAN(s): f(t) o f(s)}

Procedure:

{Select s0AS

Set sc¼ s0
While Nþ (s) a+

{Select s A Nþ (sc)

Set sc¼ s}

Endwhile

Stop (sc is the approximation to the optimal solution)}

Local search is often criticized for being unable to move

sufficiently far from the starting solution without the use of

uphill moves and/or additional diversification strategies such

as those inherent in simulated annealing (Reeves, 1993) or

tabu search (Glover and Laguna, 1997). However, in this

case, this limitation can be viewed as a positive advantage, in

that if we select an initial layout with the right characteristics

we can attempt to improve it with a series of small changes

that will not be disruptive enough to destroy its underlying

structure.

In order to implement the above local search algorithm

for a given problem, it is necessary to determine problem-

specific decisions for the solution space, S, the starting

solution s0, the neighbourhood structure, N, and the

evaluation function f. The way in which a suitable

neighbour, sANþ (sc) is selected must also be defined. This

section focuses on the problem-specific decisions. We start

by considering three variants of a construction heuristic for

the initial solution based on the current manual approach.

We then go on to develop a series of complex neighbour-

hood moves designed to allow sufficient flexibility to find

improved solutions while ensuring that the layouts produced

are similar to those in Figure 2. As the quantity of each circle

in the final solution is not known a priori these moves must

allow for these quantities to change. This leads us to

consider relaxing the definition of the solution space, S, to

include solutions that violate the lower-bound constraints on

the quantities of each diameter to be cut and to develop an

evaluation function, f, that penalizes these violations in such

a way as to guide the search to high-quality feasible

solutions.

The initial solution

The initial solution is based on the initial solution produced

by the manual approach and is used to determine the

number of sheets, Q. It is generated deterministically and is

composed of blocks of circles, each block consisting of

circles of a single diameter, nested in a hexagonal pattern.

Three variants of this approach are considered. The first two

differ in the way the changeover between blocks is handled.

The best of these two options is then subdivided according to

whether the circles types are ordered randomly, or by

diameter. In all cases the initial layout is constructed so as to

obey the lower-bound constraints by taking each piece type

in turn, and, starting from the bottom of the stock sheet,

filling rows in the required pattern until qi circles are packed.

If the last row is incomplete then it is completed with

additional circles of the same type. The process then

continues with the next type, starting a new sheet whenever

the current sheet cannot accommodate a row of the required

diameter. The requirement to nest circles of different sizes on

the same sheet needs special consideration as the hexagonal

lattice given by the centres of the circles will obviously

change with the circle diameter. There are two ways of

dealing with this, as shown in Figure 3. The first, which we

will denote NEST is to continue the nest as the diameters

change by maintaining the same x-coordinate for the centres,

as in Figure 3a. The second, which we will denote BLOCK,

is to start a new nest for each type by placing the bottom of

the first row of the new type along a line defined by the top

of the last row of the previous type, as in Figure 3b. Both

approaches have their disadvantages. In NEST, space will be

wasted as the horizontal distance between circles in each row

will be determined by the largest circle on the sheet. In

BLOCK, space will be wasted at the changeover between

types, which may result in fitting a smaller number of rows.
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Experiments on 100 randomly selected orders showed that

NEST required a total of 1044 sheets while BLOCK required

a total of 1074 sheets, with BLOCK requiring less sheets

than NEST for only two out of the 100 orders. For this

reason, and because NEST more closely matches the manual

approach, we chose NEST as the basis of our initial

construction. The simplest way of applying NEST is to sort

the circles into decreasing diameter order so that the largest

diameter on each sheet is packed first. This also has the

advantage that circles of similar diameter will appear on the

same sheet, thereby minimizing the size of the gaps between

the smaller circles. This is the strategy adopted for all the

experiments reported here. Experiments with different

permutations of the diameters were also carried out. The

results showed that these random permutations increased

computation times and failed to give any significant

improvement in solution quality. They were therefore

discarded in favour of the decreasing diameter option.

Layouts produced by the above procedure have two

obvious sources of wasted space. On the earlier sheets where

diameters are relatively large there is often space for a row of

smaller circles to be placed at the top of the sheet, while the

last sheet usually contains a significant area of waste above

the last row packed. The procedure was therefore modified

to reduce this waste. Firstly, when there is not sufficient

space to fit another row of the current circle type, i, instead

of moving immediately to a new sheet the remaining circle

types are scanned for the type k of largest diameter that

could form a final row. If such a k exists then a row of type k

is added and the packing then continues with type i on the

new sheet. Secondly, if there is space on the final sheet we

add circles for inventory as follows. The circle type that has

the smallest surplus packed to date is chosen, and an

additional row of this type is added. Owing to the ordering

of the circles this is likely to be larger than the circle in the

previous row. For this reason, and because our objective in

forming the initial layout is to form large hexagonal blocks

of circles, this row is not necessarily inserted into the last

sheet but is placed above the last row of circles of its own

type. All subsequently placed rows are then moved

accordingly, even where this involves moving to the next

sheet. In this case, the number per row is adjusted as

necessary. The process is repeated until there is no circle type

for which a row can be added without requiring a new stock

sheet. Empirical evidence, based on the experiments

described in the next section show that the density of an

initial layout produced in this way lies in the region of

77–79%.

As stated above the layout produced by this initialization

phase is used to determine Q, the number of sheets to be

used, which then remains fixed for the subsequent improve-

ment phase.

The improvement stage

An examination of the layouts in Figure 2 and other layouts

produced by the company, together with discussions with

the current layout designers, suggested that the perturba-

tions needed to improve the initial layouts to form patterns

that are consistent with current practice can broadly be

divided into two types: those altering or adding whole rows

and those adding or changing circles along the vertical edges

of the sheet. It is also apparent that very few simple moves,

that is, moves based on just one such perturbation, are likely

to lead to an improvement on their own. For example,

changing the size of a single row of circles will only lead to

an improvement in packing density if the new type is larger.

Nevertheless replacing a circle by a smaller type may be a

good move in the long run as it may allow space to add

additional circles. We therefore define a neighbourhood

move as a three-stage operation.

(1) A randomly chosen row operation aimed at changing one

or more rows in the layout.

(2) An add operation, which attempts to add one or more

new rows to the sheet(s) involved in the row operation.

(3) A completion operation that seeks further improvement

by exhaustively working through a list of moves that

allow some aspects of the hexagonal pattern to be

destroyed.

The cost of a move is given as the decrease in the average

density over all the sheets, once all three phases have been

completed. The details of the moves allowed in each phase

are detailed below.

Row operations

Five potentially useful row operations were identified.

These are

R1 Swap the last rows of two different sheets. This involves

taking the top rows of two different sheets and

swapping them. In order to preserve the ordering of

the diameters on the sheet, the swapped rows are

(a) (b)

Figure 3 Layout strategies for a change in diameter. (a) The
bottom of the lattice of small circles is nested into the top of the
lattice of larger circles and the x-coordinates of the original
hexagonal lattice are preserved. (b) The two lattices are
separated, enabling a tighter lattice for the smaller circles.
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slotted into the appropriate place in the layout rather

than being placed along the top. The exception to this

is where the diameter of the new row is larger than the

maximum diameter on the sheet. In this case, the new

row is placed along the top edge of the sheet,

effectively separating it from the nested pattern in

the rest of the sheet and thereby allowing the

hexagonal lattice in the rest of the sheet to be

preserved. If the resulting layout exceeds the bound-

aries of the sheet then the move is not executed.

Otherwise, the move will have created additional space

along the top of one of the sheets, which may be

sufficient for an extra row.

R2 Swap the last two rows of two different sheets. This

move is similar to the above except that the two top

rows are involved in the swap. This has the potential

of creating twice as much space as R1, but it does not

replace it as it is more likely to be infeasible.

R3 Replace one or two rows by a circle of different

diameter. This simply replaces the top one or two

adjacent rows by circles of a randomly selected

diameter. Once again the new rows are inserted in

the appropriate place to maintain the ordering of

diameters in the sheet. This move will make a

substantial change to the numbers of circles of each

type, but is effective in situations, where just one sheet

has a poor utilization, and the swap moves would

result in a worse utilization for the remaining sheets.

R4 Remove the row with the biggest circles. This move

stems from the observation that when there is a sheet

with just one row of large circles the packing density

tends to be poor, due to the gaps enforced in all other

rows by the hexagonal arrangement. If this row is

removed the remaining pieces can be moved closer

together, leaving space along the vertical edges that

could be utilized by pieces of the same or another type.

Note that this phase of the move includes redefining

the horizontal spacing of the lattice according to the

largest remaining diameter but does not include

adding extra circles to each row as this will be

attempted during the completion phase.

R5 Repeat the row with the biggest circles. This move is the

opposite of (R4) and is based on the observation that

all rows apart from those with the biggest circles have

wasted space between adjacent pieces. This move is

designed to extend that part of the stock sheet covered

by the densest packing. The new row is inserted on top

of the last row with the given diameter and the rest of

the layout is moved upwards. Any rows that exceed

the top of the sheet are removed.

Add operation

After each row operation, all modified sheets are subjected

to the add operation. This attempts to add a row. The circle

types are considered randomly without replacement, until a

diameter that will allow an extra row to be fitted is found or

the list is exhausted.

Sheet completion

Whether or not the add operation was successful, each of

the altered sheets is then considered for the completion

operation. This consists of a series of moves that are

considered in order, and accepted when an improvement

is made. All the moves in the list are attempted whether

or not an improvement has been found. The order in

which the moves are considered is important and the

list is ordered so that the moves that are likely to have the

greatest impact are considered first. The moves are described

below.

C1 Add a column of extra circles. Because the layouts are

built in a hexagonal pattern no attempt is made to

spread the layout across the width of the sheet. As the

layout is built from the bottom left this means that

there is often free space on the right of the sheet. This

move attempts to fill this space with a column of

circles.

C2 Add a column of extra circles after making additional

space. In some cases there is not sufficient space to

execute move C1. However, if the first column is

replaced by circles of a smaller diameter, then the

remaining circles can be shifted to the left, and

sufficient space for an extra column may result.

C3 Replace the last column by a column of larger circles.

If there is insufficient space for a new column the

packing density may be increased by removing the

last column and replacing it by a column of larger

circles.

C4 Stretch the pattern. In some cases it may be better to

utilize the full width of the sheet by stretching the

pattern so that the circles are nested at an angle greater

than 601. The effect of this will be to create extra

space at the top of the sheet, which may be sufficient

for an additional row. This move involves stripp-

ing the layout of all but those pieces that conform

to the hexagonal row layout, stretching that,

and then attempting to add an extra row, or rows of

circles.

C5 Filling the top right corner. Because the layout is built

from the bottom left there is often free space in the top

right corner. If there is sufficient space to fit an

extra circle then a circle is added. If not, an attempt is

made to increase the size of the circle closest to this

corner.

In all cases, the circles considered for each move are

selected randomly without replacement from those diameters

that satisfy the move definition.
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Maintaining feasibility

The above moves will change the number of circles of each

diameter in the packing. This is obviously necessary in order

to improve the packing density in a fixed set of sheets.

However, it is possible that any search based on the

unrestricted use of these moves will visit solutions that do

not obey the lower-bound constraints on the quantities that

need to be produced. In order to balance the conflicting

demands of maintaining feasibility while ensuring sufficient

flexibility to seek out good solutions a number of approaches

are possible. These include

(1) Restricting the definition of the search space, S, to the

set of feasible solutions by rejecting all infeasible moves.

(2) Restricting S the set of feasible solutions by repairing

infeasible solutions.

(3) Redefining S to include infeasible solutions but penaliz-

ing these in the evaluation function f(s).

Each of these has its own advantages and drawbacks.

Option 1 is straightforward to implement, but computa-

tional effort will be wasted when evaluating infeasible moves

and, more importantly, if the density of such moves is high it

may have an adverse effect on the flexibility of the search in

seeking out good-quality solutions. Option 2 can be effective

if a simple repair operator is available. In our case it is often

possible to repair infeasible layouts by replacing larger

circles in surplus with smaller ones for which there is a

deficit. If the smallest feasible circle is removed in each swap

then the repair will be achieved at minimal cost. However,

there are a number of potential problems. Firstly, not all

layouts will be repairable. Secondly, there will be a choice of

which circles to replace, with different choices at inter-

mediate points of the search resulting in different outcomes.

Thirdly, the repair will involve changing partial rows in the

hexagonal lattice, thus making the definition of neighbour-

hood moves in subsequent iterations more complex. Option

3 is widely used in a number of practical situations.

However, as illustrated by a number of studies (Wright,

1991; Abramson and Dang, 1993) it can be very difficult to

set the penalties for binding constraints. This is particularly

problematic when the search mechanism disallows uphill

moves. Too high a penalty will effectively exclude all

infeasible solutions from the solution space, while too low

a penalty will tend to cause the search to converge towards

infeasible solutions. In our case we can overcome this

problem using a penalty based on the repair operator.

Rather than physically replacing an infeasible layout with a

repaired one we calculate the cost of the repaired layout and

use that as the evaluation function. Where a layout cannot

be repaired (eg if the largest circle is in deficit) then a high

penalty is allocated.

In view of the above discussion three approaches to

maintaining feasibility were selected for further experiment-

ation and comparison. These are

� Allow infeasible solutions in the solution space and repair

the final solution only.

� Restrict the solution space to the set of feasible solutions

by disallowing infeasible moves.

� Relax the definition of S to allow infeasible solutions in

the search space but penalise them with a penalty based

on the cost of repair. The final solution is then repaired

physically.

Experiments with each of these options are reported in the

next section.

Experiments

A number of variants of a local search algorithm based on

the initialization approach and improvement strategies

outlined above were compared empirically. For this purpose,

nine data sets were chosen from the company’s archives.

These data sets were used to identify the best variant, which

was then subjected to further testing on 100 problem

instances. Of the initial nine problems, the smallest had a

requirement of 75 circles and the largest over 1500. The

number of sheets used to accommodate the orders varied

from 2 to 20. The objective of the first set of experiments was

to determine the usefulness of the different row operations

within a random descent framework (ie sampling from N

until a member of Nþ is identified). In these experiments,

the lower-bound constraints on the quantities were relaxed.

Each of the nine data sets was run using 10 random number

seeds, and continuing until 70 moves had passed without an

improvement. (Experiments with up to 100 moves without

improvement suggested that this was an appropriate

stopping point.) Six different combinations of row moves

were considered. These were

(1) R1 (swap top rows of two sheets),

(2) R2 (swap top two rows of two sheets),

(3) R1 and R2,

(4) R3 (change one or two rows on a single sheet),

(5) R1, R2 and R3,

(6) R1, R2, R3, R4 and R5 (ie all row operations).

In each case a move type is selected randomly, and within

each move all choices (ie sheets, diameters, etc) are again

selected randomly from those available. After a row move

has been performed the row addition and completion phases

are executed as outlined in the previous section. The first six

rows of Table 1 summarize the results. Although there are

some anomalies, the results suggest that supersets of row

moves tend to give better results than their subsets, and in

all cases variant 6 (ie using all row operations) performs

better than any of the other five combinations. This variant

was therefore used for all subsequent developments and

experiments.

Observation of the progress of the algorithm also showed

that the size of the improvement varied considerably from
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move to move, suggesting that spending time looking for

better neighbours, that is, a steeper descent strategy could be

beneficial. Given the size and complexity of the neighbour-

hoods a true steepest descent approach, in which all

neighbours are evaluated at each iteration, will be compu-

tationally expensive. Instead, we tried a form of probabilistic

steepest descent (PSD) in which at each iteration 10 elements

of N are considered. If the best belongs to Nþ , then it is

selected. Otherwise, a further 10 moves are sampled, with

this process continuing until a move is selected or N is

exhausted. The results are shown in row PSD, in the table.

While this does not always show an improvement the results

are better for six out of nine instances and equal on a further

one. What the table does not show is that in all cases except

for data set 1, PSD always found the best solution at least

once. Therefore, probabilistic steepest descent, based on 10

moves per iteration, and using all five row operations was

used exclusively for the remaining experiments.

The remaining experiments are concerned with meeting

the lower bounds on the number of circles of each diameter.

As expected using the unrestricted neighbourhood, without

any penalty or repair, frequently resulted in solutions that

violated the lower-bound constraints. The frequency of

feasible solutions was greater in the less-effective variants

using limited neighbourhoods, especially R1 and R2. Again,

this is as expected as these moves do not make such large

changes in the numbers of circles of each type. Where

solutions were infeasible, it was usually possible to repair

them using the repair operator outlined in the previous

section. The densities achieved after repairing the final

solution were typically 1.5–2% lower than those shown in

Table 1. As stated above two other approaches were tested.

Experiments with a restricted solution space resulted in a

drop in packing densities over those in Table 1 of around

3%, suggesting that the search does require the added

flexibility of visiting infeasible solutions. The results using

the repair-based penalty function proved to be the most

successful. All runs resulted in final solutions that could be

repaired, and packing densities dropped by only between 0.5

and 0.8% . These results are given in the final row (labelled

Penalty) of Table 1.

As illustrated by the final row of Table 1, local search

incorporating all five row operations using probabilistic

steepest descent based on sampling 10 neighbours per

iteration and penalising violations of the lower-bound

constraints using a penalty based on the repair cost, is able

to produce solutions with packing densities that are close to

that of a human expert.

The algorithm is coded in Visual Cþ þ and typical run

times on an Intel Pentium 4 2.2GHz processor vary between

2 and 30 s depending on the size of the problem, whereas

typical man-hours required to produce manual cutting plans

are around 10.5 h for a problem of 20 sheets (assuming

approximately seven of these would need to be produced

from scratch). The layouts produced by the local search also

conform to the required format. Figure 4 shows the initial

and final solutions for one of the runs on data set 6. The

density of the initial solution is 76.6% while the density of

the final solution shown is 81.7%. This solution violates the

lower-bound constraint for the third largest circle for which

there is a shortfall of five units. This can be repaired by

replacing five circles of the next diameter (which is in

surplus). The density of the repaired layout is 81.4%.

In order to confirm this performance a further 100

problem instances were solved using this variant of the

algorithm. The mean sheet utilization using the adjusted

dimensions was 81.76%, which translates to 67.14% when

the waste due to the thickness of the cutter, the space

between disks and the unuseable area around the border of

the sheet is taken into account. This falls within the range of

32–34% waste currently generated by the company. The

amount produced for inventory also falls within the guide-

lines with a total of 17% of production being surplus to that

ordered. For eight of the 100 orders, the surplus exceeded

30% but these were all orders requiring five or less sheets,

and the surplus is therefore in line with current performance.

Table 1 Mean packing density over 10 runs for different neighbourhoods and search strategies

Data set 1 2 3 4 5 6 7 8 9
Sheets 3 16 5 2 5 5 20 2 12

Solutions for search without lower-bound restrictions
R1 81.70 82.21 81.60 83.10 81.47 83.07 81.10 80.72 80.36
R2 81.70 82.15 81.84 82.90 81.41 83.06 81.04 80.72 80.27
R1&R2 81.70 82.28 81.89 83.10 81.45 83.09 81.04 80.72 80.31
R3 81.70 82.44 81.99 82.90 81.82 83.11 81.46 80.90 80.38
R1,R2&R3 81.70 82.40 82.22 83.10 81.72 83.09 81.38 80.84 80.38
All 81.74 82.77 82.42 83.10 81.97 83.22 81.52 81.88 80.71
PSD—All 81.70 82.64 82.55 83.10 82.12 83.29 81.67 82.32 80.90

Solutions obeying lower bound obtained using penalty approach
Penalty 81.29 82.23 82.05 82.51 81.70 82.86 81.09 81.86 80.41
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A closer examination of the remainder of the sample showed

that occasionally the surplus was significantly more than

that produced manually. Not surprisingly this situation

arose when relatively small numbers of demanded circles

were placed on the final sheet in the initialization process.

The manual workers would sometimes try and swap these

circles for surplus circles on the previous sheets, thus

reducing the number of sheets used by one. It would be

possible for us to address such a situation in a similar way

and to discard the last sheet, penalizing the shortfall in the

initial solution appropriately. However, given the average

performance of our heuristic the client deemed that this

would not be necessary and we have not implemented these

changes to date.

Conclusions and further developments

This paper has focussed on the design and testing of a circle

packing algorithm for a manufacturer of sprockets. Practical

considerations mean that the problem is somewhat different

to those previously tackled in the literature and necessitated

the development of a customized solution. Local search,

based on an initial solution of the required form and a series

of neighbourhood moves designed to perturb the layout

without destroying the underlying structure, proved to be an

effective way of meeting the requirement to produce layouts

that are similar in structure to those currently produced by a

manual solution method. An approach that allowed

solutions that violated the lower-bound constraints, but

penalized these with a penalty based on the repair costs, was

shown to perform better than limiting the search to those

solutions that obey all the constraints. The resulting layouts

closely match those produced by human experts in terms of

sheet utilization. Indeed the densities achieved suggest that

this could be a competitive approach for problems with

similar distributions of circle sizes even if there is no

constraint on the format of the layouts. (For example, the

density of layouts produced in (Huang et al, 2005), which

often involve much smaller circles than those dealt with here,

lie in the range of 80–85%.)

The solutions produced are certainly good enough to meet

our objectives (ie a back-up system to complement the

current manual approach). It was however noticeable that

the algorithm sometimes produced more circles for inventory

than the manual solutions, although the quantities involved

did not suggest that this would be a major problem. A

possible solution to this was suggested in the previous

section and a more general investigation into the relationship

between surplus production and material utilization could

make an interesting study for the future. Given the very low

computation times required by the algorithm (20–30 s as

opposed to 10.5 h for a manual solution), it may also be

possible to make further small improvements to the packing

densities by using the local search framework as the basis

for other neighbourhood-based search methods such as

simulated annealing, tabu search or GRASP, or to

incorporate further intelligence into the choices made at

each iteration rather than relying on entirely random choices

at each stage.
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