
European Journal of Operational Research 168 (2006) 390–402

www.elsevier.com/locate/ejor
Discrete Optimization

Using tree search bounds to enhance a genetic
algorithm approach to two rectangle packing problems

Kathryn A. Dowsland a,b,*, Edward A. Herbert c,
Graham Kendall a, Edmund Burke a

a The School of Computer Science & IT, University of Nottingham, Wollaton Road, Nottingham, NG8 1BB, UK
b Gower Optimal Algorithms Ltd, 5 Whitestone Lane, Newton, Swansea SA3 4UH, UK

c European Business Management School, University of Wales, Swansea, UK

Received 3 December 2002; accepted 15 April 2004

Available online 25 June 2004
Abstract

A popular approach when using a genetic algorithm in the solution of constrained problems is to exploit problem

specific information by representing individuals as ordered lists. A construction heuristic is then often used as a decoder

to produce a solution from each ordering. In such a situation further information is often available in the form of

bounds on the partial solutions. This paper uses two two-dimensional packing problems to illustrate how this informa-

tion can be incorporated into the genetic operators to improve the overall performance of the search. Our objective is to

use the packing problems as a vehicle for investigating a series of modifications of the genetic algorithm approach based

on information from bounds on partial solutions.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Genetic Algorithms; Branch and Bound; Cutting; Packing
1. Introduction

The last decade has seen considerable interest in

the application of genetic algorithms (GAs) to
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserv
doi:10.1016/j.ejor.2004.04.030

* Corresponding author. Fax: +44 2077 486130.

E-mail addresses: kad@cs.nott.ac.uk (K.A. Dowsland),

gxk@cs.nott.ac.uk (G. Kendall), ekb@cs.nott.ac.uk (E. Burke).
many different classes of difficult optimisation

problems. For example, see Pardalos and Resende,

2002 and Glover and Kochenberger, 2003. The

field of cutting and packing is no exception. Such

problems tend to be highly constrained in that

pieces must be cut or packed within a confined

space without overlap. If a packing or cutting pat-

tern is defined by the positions of the pieces it con-
tains, then it is easy to see that any layout
ed.

mailto:&emailxl1;kad@cs.nott.ac.uk
mailto:gxk@cs.nott.ac.uk
mailto:ekb@cs.nott.ac.uk

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 391
produced by combining the features of two good

feasible layouts is likely to contain overlapping

pieces or large gaps. However, genetic algorithms

are based on the premise that good partial solu-

tions can be combined via the crossover operator
to produce child solutions that are likely to be of

high quality. Problems where this is not the case

are defined as being highly epistatic, and it is well

known that genetic algorithms struggle on epistat-

ic domains (Falkenauer, 1998, p. 34). Examples of

researchers recognising these problems are com-

mon in many domains. Erben (2000), uses a

grouping genetic algorithm (Falkenauer, 1998) to
solve a graph colouring problem and successfully

applied it to hard-to-colour graph examples as well

as real-world timetabling problems. Mori and

Tanaka (2002) also used a grouping genetic algo-

rithm in designing conference programs and

reports good results.

In an early paper Davis (1985) uses a rectangle

packing problem to illustrate the difficulty in using
a standard GA and suggests an alternative decod-

ing in order to overcome it. This takes the form of

an indirect representation, in which individuals are

represented as permutations of the pieces. A place-

ment heuristic is used to decode the representation

by packing the pieces in the order given by the per-

mutation and crossover involves copying one par-

ent up to the crossover point and then completing
the child by adding the missing values in the order

they appear in the second parent. Aickelin and

Dowsland (2004) used this approach for nurse

scheduling and Ozcan and Alkan (2002) applied

a similar method to university course timetabling.

This approach remains popular for cutting and

packing problems (Prosser (1988), Dighe and Jaki-

ela (1995), Liu and Teng (1999).
Although these implementations work reasona-

bly well, intuitively there are two drawbacks. First,

only that part of the string before the crossover

point is preserved in its entirety. Thus the informa-

tion inherited from the second parent is less than

that inherited from the first as, to maintain feasi-

bility, the second parents genes are not kept to-

gether as the genes already inherited from the
first parent must be deleted. Other crossover oper-

ators could be used (for example, partially

matched crossover (PMX) (Goldberg, 1989).
However, they too have problems. For example,

after applying the PMX operator the offsprings

could decode to solutions which differ widely from

their parents. In (Falkenauer, 1998, p. 90), an

example of a bin packing problem is given and
he states ‘‘In other words, the PMX transmits infor-

mation which more often than not acquires a differ-

ent meaning in the new chromosome’’. Second, even

when all the information is preserved (for example

crossing over ABCDEF and BACEFD at position

3) only the first part of the string will preserve its

meaning in terms of the physical arrangement of

the pieces. The positions of E, F and D will depend
on the layout of the pieces preceding them. Thus,

even if the information from both parents is pre-

served in the genotype only the first part of the

string will preserve its meaning in the phenotype.

The result of these two observations is likely to

be a large variation in the fitness values of the

schema left undisturbed by crossover, thus affect-

ing the efficiency of the GA. The motivation for
the work in this paper is to exploit additional

information inherent in the front section of the

strings, in an attempt to overcome the deficiencies

caused by lost information in the tails. This infor-

mation is derived from a more traditional ap-

proach to discrete optimisation problems, that of

tree search.

The application of tree search methods, often
based on branch and bound, to cutting and pack-

ing problems have been widely reported in the lit-

erature. In many cases moderately sized problems

have been solved efficiently by these means. Dows-

land (1987) suggested a branch and bound ap-

proach for the pallet loading problem, in which

the objective is to maximise the number of copies

of a small rectangle that can be fitted without over-
lap into a larger rectangle. Beasley (1985a) success-

fully solved the problem of maximising the value

of different sized pieces cut from a fixed area using

a mixture of geometric bounds and Lagrangian

relaxation, while Christofides and Whitlock

(1977) solved the constrained guillotine cutting

problem by branching on the cutting positions

and using the easier unconstrained problem to
generate bounds. In the field of irregular cutting,

the heuristic of Adomowicz and Albano (1976) is

based on the greedy selection of branches in the

392 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
search tree of feasible solutions. More recently

Fekete and Schepers (1997, 2004a,b) have pre-

sented a branch and bound approach that uses

graph theoretic results to make a significant reduc-

tion in the size of the search tree, which improves
on the above approaches in terms of the size of

problem that can be solved to optimality within

a reasonable time. Here we exploit the relationship

between the branches of search tree and the strings

in an indirect GA representation to incorporate

bound information into the GA. Two classes of

rectangle packing problems are used to provide

empirical evidence of the improvement in perform-
ance that can be obtained by using bound-based

information in this way.

It should be emphasized that our objective is

simply to use these packing problems as a vehicle

for investigating the effectiveness of incorporating

bound based information into the GA and not

necessarily to compete with the best two dimen-

sional packing algorithms currently available.
For this reason we only include references to the

literature on packing problems where they are di-

rectly relevant. A recent survey of approaches to

two-dimensional packing problems can be found

in Lodi et al. (2002). However we note that in spite

of the success of the exact approach of Fekete and

Schepes there is still considerable interest in heuris-

tic approaches to the problem, for example Lodi
et al. (1999), and Faroe et al. (2003).
2. The relationship between indirect GA

representations and tree searches

The relationship between the representation of

individuals in the GA and a tree search is derived
by mapping the string positions to the levels of the

tree, and the value of each position in the string to

the choice of branch at that level. Thus a binary

coding of n bits would be represented as a binary

tree of depth n and each individual would corre-

spond to a path from the top of the tree to a termi-

nal node (with a 0 representing the left-hand

branch and a 1 the right-hand branch at each
level). Similar mappings can be derived for permu-

tations and other types of strings. If it is possible

to calculate bounds at each node in the tree, then
we have additional information about the partial

solutions represented by positions 1 to k in each

of the individual strings. If the GA is based on

an indirect coding in which the individuals repre-

sent an ordering, and the decoder builds solu-
tions by acting on the entities involved in the

given order, then such an analogy is a particularly

intuitive one.

The idea of combining branch and bound with

a GA is not completely new. For example Cotta

et al. (1995) incorporate a tree search into their

crossover operator for the travelling salesman

problem in order to select the best way of combin-
ing material from both parents. Of more interest

from our point of view is the work of Nagar

et al. (1995) and Tamura et al. (1994). Nagar

et al. investigate the use of a mutation operator

to destroy partial solutions corresponding to paths

to bounded nodes in the search tree. They describe

a GA solution to a two-machine flowshop schedul-

ing problem in which individual solutions are rep-
resented as permutations of jobs and the objective

is to minimise a weighted sum of makespan and

average completion time. Prior to running the

GA they execute a branch and bound tree search

down to a predetermined depth, k (where k is cho-

sen according to the run-time available) and suita-

ble bounds are calculated and recorded at each

node. During the execution of the GA the partial
solutions up to position k are mapped onto the

correct node. If the lower bounds indicate that

no path below this node can lead to an optimal

solution the string is subjected to a mutation oper-

ator that has been specifically designed to change

the early part of the string in a favourable way.

The drawback of this approach is the pre-process-

ing time required to search the upper regions of the
tree. Tamura et al. (1994) take an alternative ap-

proach. They tackle a job-shop scheduling prob-

lem and start from an IP formulation. For each

variable they take the range of possible values

and partition this into a set of sub-ranges, which

are then indexed. The strings in the GA are then

defined so that each position represents a variable,

and its value corresponds to the index of one of the
subranges. The fitness of a string is calculated

using Lagrangian relaxation to obtain a bound

on the optimal solution subject to the constraints

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 393
that the values of the variables fall within the cor-

rect ranges. When the GA terminates, an exhaus-

tive search of the region identified as the most

promising is carried out to produce the final solu-

tion.
These two approaches differ in their conse-

quences if the bound information is misleading.

The latter requires that the bounds provide a good

measure of the quality of the final solution in order

to ensure that the right region is highlighted for

further investigation. The former approach is

more robust, in that, if the bounds are slack the

algorithm will simply revert to a conventional
GA. In this way the bound information is used

to boost the GA when such information is accu-

rate. Our approach is similar. However, although

for reasons discussed later we found it necessary

to use a modified mutation operator, our primary

focus is on the use of bound-based information to

modify the crossover operator. We also calculate

the bounds as required, thereby dispensing with
the need for pre-processing, and more importantly,

allowing the incorporation of bound information

anywhere on the string, rather than in the first k

positions.

In the following sections we will illustrate our

approach on two different packing problems and

show that it does improve the operation of a

standard GA. As with many other suggested
improvements to a standard GA our modification

results in further decisions for the algorithm de-

signer. We therefore start by describing the opera-

tor in detail and highlight some of the potential

problems and additional decisions arising from

its use.
3. The GA and bounded crossover operator

Our experiments are based on a generational (as

opposed to steady-state) GA in which a fixed pro-

portion of the population are reproduced directly

into the next generation, with the remaining indi-

viduals being produced by crossover. The crosso-

ver operator produces two children from two
parents using standard one-point crossover in the

case of binary strings, or an appropriate modifica-

tion for permutations or cases where the number
of occurrences of each value is constrained. Indi-

viduals for reproduction and crossover are chosen

according to fitness using roulette wheel selection.

As our objective is to measure the effect of the

bounded crossover operator we chose not to use
an elitist strategy. The parameters governing the

search (i.e. the population size, number of genera-

tions, crossover and mutation rates) differ accord-

ing to the different types of problem tackled.

The new, bound-based crossover is a simple

modification to one-point, or any other crossover

that preserves that portion of the parent before

the crossover point. We assume that the decoder
allows us to define partial solutions by decoding

from the start of the string to any point along

the string, and that we have a target solution value

with which to compare the bounds. This may be

the known optimal value, or may be based on

the best solution found so far. We then calculate

a bound point on each individual by working

down the string and, assuming a maximisation
problem, calculating the upper bound for the par-

tial layout defined by the string up to the current

position. If this is lower than the target then the

bound point is defined at the current position

and the process moves to the next individual.

Our modification is based on the following obser-

vation. If an individual has a bound at point b, and

contributes to the next generation by crossover
after point b, the child cannot represent an optimal

solution as it also is bounded at point b. It there-

fore makes sense to ensure that crossover takes

place at a point earlier than b. Our modified cross-

over operator achieves this by limiting the set of

potential crossover points to 1 to b�1. This raises
three issues that need to be resolved.

(1) We have already stated that the crossover
operator produces two children from two parents.

It is likely that the bound points on these two par-

ents will be different. Thus we need to decide which

will be used in order to generate the crossover

point. Selecting the later one could mean that

one child inherits the whole sequence up to and

including the bound point from one of the parents,

thus weakening the effect of the special operator.
Conversely selecting the earlier one will cut out

potentially good solutions obtainable only by

crossing over at a later point. A third option is

394 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
to generate different crossover points for each

child, based on the bound point of the parent con-

tributing to its front end. This has the potential

disadvantage that information between the crosso-

ver points in one of the parents will be lost. For
example if we have parent A=(a,a,a,a,a,a,a,. . .)
bounded at position 3 and B=(b,b,b,b,b,b,b,. . .)
bounded at position 6, if we generate the crossover

point between 1 and 5 children such as

(a,a,a,a,b,b,b. . .) may be generated. This child
would also be bounded at 3 and thus cannot be

optimal. Conversely if we only allow crossover

up to point 3, children such as (b,b,b,b,b,a,a,. . .),
which might be optimal, will not be generated. Fi-

nally if we generate two separate crossover points,

say at positions 2 and 5 the children will be

(a,a,b,b,b,b,b,. . .) and (b,b,b,b,b,a,a. . .). Thus the
material from parent A in positions 3–5 does not

contribute to either child. As none of these options

is without its disadvantages we consider all three

possibilities in our initial experiments.
(2) As the problems being considered are inher-

ently difficult and the initial population is pro-

duced entirely at random it is likely that, in early

generations, the bound points will fall early in

the strings. Because the effects of recombination

are limited to the portion of the string before the

bound point the tails of the strings will only be af-

fected by the conventional background mutation
operator. Nevertheless they will still be subjected

to fitness-based selection, and may therefore be

prone to premature convergence. It may, there-

fore, be necessary to employ additional mecha-

nisms to ensure sufficient diversity is maintained

beyond the bound point. Possible approaches

would be the use of additional mutation operators,

or a second crossover point.
(3) The final issue is related to 2 above. As the

main genetic operator is not operating on the

whole string, this raises the question as to whether

we should include the whole string in the fitness

measure, or simply measure fitness up to the

bound point. Material beyond the bound point is

inherited by one of the children. This suggests that

it should contribute to fitness. However, as
pointed out earlier, information beyond the cross-

over point is likely to be less meaningful as it cor-

responds to different arrangements of pieces
depending on the earlier part of the string. As we

are also suggesting that it may be necessary to sub-

ject the latter part of the string to a more aggres-

sive mutation the argument for not incorporating

information beyond the bound-point in the fitness
function is equally compelling. Both options are

therefore addressed in the experimentation.

In the following two sections we outline the

implementation of our basic GA and its

bounded modification to two different packing

problems and use empirical tests to judge the

influence of the modification and to select the

best approach to the problems outlined above.
The first problem is chosen as a pilot study for

its simplicity, while the second is chosen to test

the potential of the method on a more complex

problem.
4. Identical pieces

The problem selected for our initial investiga-

tions is the pallet loading problem of maximising

the number of copies of a small rectangle (the

box) that can be packed orthogonally without

overlap into a larger containing rectangle (the pal-

let). This problem was chosen because it is rela-

tively simple and has been well solved by other

methods. This not only has the advantage that
we can compare the solutions from a GA against

a known optimum, but that we can use this infor-

mation as the target value, thus enabling us to

measure the effect of the bounds more accurately.

The simplicity of this problem provided an initial

platform for testing our basic ideas. In addition,

because the problem can be regarded as a problem

of two box types––one for each orientation––with-
out any restriction on the numbers of each type,

we can use binary strings and one-point crossover

in our basic implementation. Finally good bounds

based on the amount of waste in partial packings

were readily available as a result of the work de-

scribed in Dowsland (1987). The objective of these

experiments was to determine whether or not the

bound-based crossover was worth pursuing and
allow us to identify, and hopefully correct, any

potential pitfalls before applying the procedure

to more complex problems.

Table 1

GA parameters for pallet loading experiments

Population size 20

No. generations 100 (max)

Crossover rate 60%

Mutation rate 0.05

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 395
In order to implement a standard GA and com-

pare its results with those of a bounded crossover

operator we need to make a number of decisions.

The basic parameters were decided as a result of
empirical tests and are given in Table 1. The repre-

sentation and decoder, the way in which we define/

calculate the bounds and the target value, the fit-

ness functions, crossover operators and mutation

operators used are dealt with in the following

subsections.

4.1. Representation and decoders

As the problem is concerned with identical boxes

that can be placed in one of two orientations solu-

tions are coded as binary strings. Because the num-

ber of boxes in an optimal layout is known the

string length can be set to equal this number. Da-

vis�s (1985) experiences with his indirect representa-
tion for different sized pieces indicated that solution
quality was sensitive to the decoder. We therefore

consider three different decoders in our experi-

ments. For the first two a 0 represents a box in

the horizontal orientation and a 1 a box in the ver-

tical orientation. The boxes are then taken in order

and placed on the pallet according to a placement

policy. The first decoder (BL) operates a bottom

left policy in which the height of the lowest feasible
position for the piece is determined and it is then

placed at the leftmost position at this height. The

second decoder (DROP) is based on three move-

ments. It starts by �dropping� a piece into the pallet
by allowing it to slide down against the right-hand

edge until it is blocked by another piece or by the

bottom edge of the pallet. It is then moved as far

as possible to the left, keeping its y-coordinate con-
stant. Finally, if it is not already resting on the piece

immediately below it is dropped as far as possible

keeping the x-coordinate constant. The final deco-

der (COORD) is based on the tree search of Dows-

land (1987). Here the feasible placement positions
are reduced to those that are an integral combina-

tion of piece lengths and widths from the nearest

pallet edges in a horizontal and vertical direction,

and are then ordered starting at the bottom left

and working along the pallet in rows. Horizontal
positions are ordered before vertical positions at

the same co-ordinates. These ordered positions

then define the branches of the tree, with the feasi-

ble branches from each node representing the posi-

tions that are still feasible. As the number of

remaining feasible positions depends on the partial

layout already in place, the number of branches will

differ at different nodes at the same level. However,
only branches representing positions that would

overlap with the current placement will be pre-

cluded at the next level. Therefore in practice only

the first few branches need to be considered. For

the purposes of this study we reduce this to the first

two branches. At the first few nodes these will cor-

respond to horizontal and vertical placements at

the same position, lying next to the previously
placed box. However, later in the tree two branches

may correspond to pieces of the same orientation in

different positions. Although this decoder will not

explore all the branches defined by the original tree

search, we were unable to find a counter-example

where all optimal solutions were eliminated by this

policy. Similar comments apply to the BL and

DROP decoders. Moreover we were able to show
that all the decoders can produce at least one

optimal solution on all the data sets used in our

tests.

4.2. Bounds and targets

All the decoders produce partial layouts with

the pieces filling up the pallet in rows from the
bottom left. Thus any gaps left �behind� the current
packing can be identified as waste. As the number

of boxes in an optimal solution (Nopt) is known,

the upper bound on the total wasted area in an

optimal solution is given by Pallet_Area� Nopt*

Box_Area. Dowsland defines a number of different

ways of defining bounds based on the waste. These

can be broadly partitioned into three classes:

1. Covered waste. Waste lying directly beneath the

bottom edge of a currently packed box.

396 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
2. Line waste. Unusable waste lying behind (i.e.

to the left of) a currently placed piece. This

typically takes the form of a gap narrower

than the width of a piece, but depending on

the decoder other broader definitions are possi-
ble.

3. Induced waste. Waste that has not yet a physical

space in the layout, but that must be generated

later. For example if the distance from the right-

most or topmost edge of the partial layout to

the edge of the pallet is not an exact combina-

tion of box dimensions.

These three definitions can be combined in such

a way as to avoid double counting. The total waste

can then be accumulated and recorded as the deco-

der adds each box to the partial layout. We know

the value of the optimal solution so this can be

used as the target. This means that the point at

which the accumulated waste exceeds that in an

optimal solution can be defined as the bound point
for the string.

4.3. Crossover

Standard one-point cross-over will produce fea-

sible strings that have the same physical meaning

before the crossover point in the children, for all

three decoders. This was therefore used as the
basis for the modified crossover. Three variants,

denoted EBP, LBP and OBP and defined as follows,

were used in the experiments. Let b1 be the posi-

tion of the bound point on the first parent and

b2 that on the second. EBP is based on the earlier

bound-point i.e. the crossover point is a random

point less than min (b1, b2). LBP is based on the

later bound point i.e. the crossover point is a ran-
dom point less than max (b1,b2). OBP (denoting

own bound point) uses two different crossover

points with the crossover point for the first child

being generated before b1 and that for the second

child before b2.

4.4. Fitness

The natural definition of fitness is the number

of boxes packed before the top of the pallet is

breached. In our experiments we denote this by
f1. The corresponding measure of fitness up to

the bound-point is therefore the number of boxes

packed up to that point i.e. the position of the

bound-point itself. This is denoted by f2. We

also define a combined fitness given by (f1+ f2)/2.
Finally, as we expect the difference between the fit-

test and least fit solutions to be small, thereby

resulting in relatively flat fitness functions, we also

ran an experiment using completely random selec-

tion. We denote the randomly selecting function

by f0. Of course, in this case, we are not generating

a measure of fitness but, rather, we are saying

that fitness dos not play a role in the selection
procedure.

4.5. Mutation

Our basic mutation operator was the standard

one of flipping each bit with a known probability.

However, as outlined in the previous section, we

were concerned that premature convergence in
the tails of the strings may require a more aggres-

sive mutation operator. Two forms of additional

mutation, denoted SPLIT1 and SPLIT2, were

tried. SPLIT1 simply applies a higher probability

of mutation after the bound-point. SPLIT2 is

based on the analogy with a tree search where,

when a node is fathomed, the search tries the next

option from the node at the previous level. This
behaviour is mimicked here by mutating the gene

at the bound-point with a given probability.

4.6. The experiments

Experiments were carried out on three different

data sets. The first, P1, is a small data set of 10

problems used in Herbert and Dowsland (1996).
The second, P2, is a set of 100 randomly generated

problems with the ratios Pallet_area:Box_area,

Pallet_length:Pallet_width, Box_length:box_width

lying in the ranges 20:1 to 30:1, 1:1 to 2:1 and

1:1 to 4:1 respectively. The third, P3, consists of

a further 100 problems with the box and pallet as-

pect ratios in the same range as P2 but with the

area ratio in the range 30:1 to 40:1.
In order to gain some initial feel for the per-

formance of the decoders and the way in which

the behaviour was effected by the bound-based

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 397
information, the GA with standard one-point

crossover and each of the three modified crosso-

vers, with each of the four fitness functions, and

each of the three decoders was run using 10 ran-

dom starts on all 10 problems in P1. The results
are summarised in Table 2.

The results give rise to the following observa-

tions. First the decoder is clearly a significant fac-

tor in the quality of the results, with the COORD

decoder outperforming the other two throughout.

Second, comparison of the results using f0 (ran-

dom selection) and f1 supports the view that f1
might not differentiate sufficiently between differ-
ent solutions. f2 is clearly more successful across

the range of other treatments, suggesting that f2
does exhibit more variety, and that the number

of pieces packed up to the bound-point is a good

proxy for fitness in this case. However, the most

important results from the point-of-view of this

study are that the OBP modified cross-over, espe-

cially when combined with a fitness function that
also takes account of the bound, results in consid-

erable improvements over the basic GA. A closer

examination of the data reveals considerable room

for improvement. In particular there is one prob-

lem in this data set on which every combination

of operators fails at least 90% of the time.

Although these results are encouraging, 10 prob-

lems are clearly not sufficient to draw any general
conclusions. The experiment was therefore re-

peated on set P2––this time allowing just 1 run

per problem. These results are given in Table 3.

They exhibit the same trends as highlighted on

P1 and an r-sample binomial test confirmed that

OBP does improve the performance of all three

decoders and that the difference is greater for the

COORD decoder.
Table 2

Number of optimal terminations (of 100) for each combination of de

Crossover COORD BL

f0 f1 f2 f3 f0 f1

OP 79 78 89 87 49 48

EBP 83 78 90 90 51 49

LBP 85 83 89 91 51 49

OBP 87 90 90 91 51 54
Having established that bound information in

the form of bounded crossover, and a bound-

based definition of fitness can improve the search,

we are now ready to address the potential problem

of premature convergence in the tails. Given the
quality of the results already obtained for the best

option, we used the more challenging data set P3

to test the different mutation operators. The results

of repeating the above experiment, but using only

the more successful COORD decoder, on P3 are

given in the first four columns of Table 4.

The algorithm was then run on this data set

with the COORD decoder and fitness function f2
using a variety of mutation rates. First combina-

tions of a base rate ranging from 0 to 0.04 in steps

of 0.01 with a SPLIT1 rate ranging from 0 to 1 in

steps of 0.1 were run for all four crossovers. The

results suggested that low rates of SPLIT were

preferable to higher rates, but that there was little

to be gained by this form of additional mutation.

Running the same set of experiments with SPLIT2
did, however, produce positive results, showing in-

creased performance with an increased probability

of a SPLIT2 mutation, right up to a probability of

1.0. The best results occurred where the back-

ground mutation rate was lowered to around

0.02. The result for SPLIT2 with probability 1.0

and background mutation at 0.02 is shown in the

final column of Table 4. All these results were con-
firmed at the 95% significance level using Tukey�s
test.

These experiments confirm that the use of

bound information to drive fitness crossover and

mutation can make a significant improvement to

an indirect decoder for the pallet loading problem.

It is possible that the above results could be im-

proved by tuning the other parameters, increasing
coder, crossover and fitness on problems P1

DROP

f2 f3 F0 f1 F2 f3

59 59 34 39 51 40

58 53 37 43 47 43

59 53 39 41 56 41

63 53 52 45 57 53

Table 3

Number of optimal terminations (of 100) for each combination of decoder, crossover and fitness on problems P2

Crossover COORD BL DROP

f0 f1 f2 f3 f0 f1 f2 f3 f0 f1 f2 f3

OP 61 67 88 75 50 51 73 57 38 38 63 47

EBP 58 62 87 69 48 53 70 56 38 40 61 50

LBP 58 69 83 76 54 49 77 64 38 42 71 53

OBP 74 74 90 84 58 63 78 67 47 50 69 61

Table 4

Number of optimal terminations (of 100) for the COORD decoder and each combination of crossover and fitness on problems P3

Crossover COORD

f0 f1 f2 f3 f2/s2

OP 50 60 62 59 74

EBP 50 55 61 56 78

LBP 54 59 71 59 79

OBP 63 61 77 70 90

398 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
the population size or including an elitist strategy

or rank based selection. However, as our objective

simply to test the potential of the approach, we

move on to the more challenging problem of pack-

ing different sized rectangles.
5. Non-identical pieces

Many different variants of the two dimensional

rectangle packing problem exist. Here we tackle

the following version:

Given a large containing rectangle and set of

different sized smaller rectangles, each with an

associated value, and a (small) fixed number of
rectangles of each size, maximise the value of the

smaller pieces packed within the larger rectangle

without overlap. Once again we will consider the

different decisions involved in designing and test-

ing a bounded crossover operator for these prob-

lems.

5.1. Representation and decoders

This is essentially the same problem as that

tackled by Davis (1985). In his case the values of

the pieces were considered equal to the area.
Following his suggestion the pieces could be in-

dexed and individuals represented as permutations

of the pieces. However, this representation is

wasteful where there may be several copies of each

piece. For this reason we represent individuals as

strings with length equal to the total number of

pieces, over an alphabet of size equal to the num-
ber of piece types, such that the number of occur-

rences of each value is equal to the number of

pieces of the type represented by that value. Our

decoders will be placement policies that will act

on the pieces in the order they appear in the string.

One of these decoders will be our bottom-left de-

coder. However, in the light of the success of the

COORD decoder in the previous section, we con-
sider a second option in which the feasible posi-

tions for each piece are defined as those made up

of an integral combination of the different piece

dimensions from the nearest edge. These are or-

dered in rows from the bottom-left corner and

a piece is placed in the first available feasible

position.

5.2. Bounds and targets

The calculation of waste area within the pack-

ing can be carried out with only minor modifica-

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 399
tion to the routines used for the pallet loading

problem. However, as we have chosen the more

general objective of maximising value rather than

the area of the pieces packed this cannot be used

directly to obtain a bound. For any partial layout
let the value of the pieces already packed be de-

noted by V, their area by A, and the waste bound

by W. An upper bound on all solutions including

this partial layout is given by the knapsack prob-

lem:

max V þ
X

i2R
vixi

s.t.
X

i

aixi 6 P � A� W ;

xi 6Ri;

ð1Þ

where vi and ai represent the value and area of

piece type i, Ri is the number of pieces of that type

remaining, P is the area of the containing rectangle

and xi is an integer variable representing the num-

ber of copies of a piece type i fitted into the knap-

sack. Although this is itself an NP-hard problem

the LP relaxation can be solved easily by inspec-

tion, by sorting the pieces into vi/ai order and allo-
cating each xi up to its upper bound until the

knapsack is filled (see Martello and Toth, 1990).

Beasley (1985a,b) suggests two relaxation

bounds based on an IP formulation of the prob-

lem. The first is the standard LP relaxation and

the second is obtained by relaxing the no-overlap

constraints in Lagrangian fashion, using a stand-

ard subgradient search to set the multipliers. Fi-
nally, as it is unlikely that all the pieces will fit a

bound point can be triggered when the next piece

will not fit into the containing rectangle. The LP

bound is at least as tight as the Lagrangian bound

(LR) so there is no merit in calculating both. Tests

using standard LP code suggested that the LP

bound would be too slow, as it is necessary to cal-

culate the bound at each position on the string for
every individual. The LR bound proved less com-

putationally intensive. However initial tests sug-

gested that it provided little improvement over

the waste/knapsack bound alone in terms of solu-

tion quality, but did incur a far greater cost in

terms of computation time. We therefore use the

waste/knapsack bound, or set the bound point at

the first non-fitting box if this occurs earlier.
In general, the optimal solution for these prob-

lems will not be known beforehand. We therefore

set the target value to be better than the best solu-

tion to date. In order to save computational effort

we also include a global upper bound on the solu-
tion to allow the search to terminate if a solution

of this value is reached. Here we use the tighter

of Beasley�s LR bound and the above knapsack
bound for the case where no pieces have been

packed (or the optimal solution for those problem

instances where this is known).
5.3. Crossover

Standard one-point crossover will not be feasi-

ble for this problem as the numbers of pieces of

each type will not be preserved in the children.
We therefore use a modification. First a standard

one-point crossover is carried out. That part of

the child before the crossover point is then pre-

served, while the second part is altered to correct

any over or under-represented pieces as follows.

Starting from the tail of the string any over repre-

sented pieces are removed. The remaining material

is then shifted forwards to fill any gaps. Finally,
again starting from the tails, under-represented

pieces are added in the order they appear in the

other parent. For example if we assume the two

parents below with a crossover point after the fifth

element

Parent 1 A B A C C D A D B B

Parent 2 B C D B A C B A D A

Stage 1 A B A C C C B A D A

Stage 2 A B A C C B A D

A B A C C B A D

Stage 3 A B A C C B A D B D

This crossover operator will be referred to as

One-point(m), and can now be modified by limit-
ing the range of the crossover point. In view of
the lack of success with LBP and EBP for the pallet

loading problem we do not include either in our

experiments here. Instead we select a hybrid of

LBP and OBP, denoted MOBP. This operator gener-

ates a crossover point as in LBP according to the

400 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
later bound-point of the two parents. If this falls

before the earlier bound-point of the two parents

it is used for both children. If not a second cross-

over point is generated before the earlier bound-

point and crossover proceeds as for OBP.

5.4. Mutation

As was the case with crossover, a new mutation

operator must be introduced in order to preserve

feasibility. In this case, the normal mutation oper-

ator swaps the values of a randomly selected pair

of genes. It is also necessary to consider the intro-
duction of additional mutation operators at or

after the bound point. In view of the fact that

the tail of the string is somewhat disrupted by

the crossover operator, and the lack of influence

of the SPLIT1 mutation for the pallet loading

problem no such equivalents are considered here.

Instead we introduce two new operators. The first,

SCRAMBLE, assumes that the tail of the string
has been so disrupted as to be unmeaningful and

simply randomises the order of all values after

the bound point. The second, FLIP, is designed

to emulate the SPLIT2 mutation for pallet load-

ing. It swaps the value at the bound point with

the value of a randomly selected later gene (ele-

ment of the chromosome).

5.5. The experiments

These variants were run on the 12 problems

examined by Beasley (1985a,b) and available at
Table 5

Percentage optimal terminations each combination of decoder, crosso

Crossover Mutation BL dec

f1

One-point(m) Normal 49.2

OBP Normal 52.5

MOBP Normal 55.8

One-point(m) Scramble 68.3

OBP Scramble 69.2

MOBP Scramble 69.2

One-point(m) Flip 65.0

OBP Flip 64.2

MOBP Flip 63.3
http://www.ms.ic.ac.uk/info.html, each problem

being run through 10 replications of the GA using

different random number streams and differ-

ent starting solutions. The results are shown in

Table 5.
Once again the results indicate that COORD is

superior to bottom left and that incorporating

bound information into the crossover and muta-

tion operators improves on the basic GA with

75% of runs solving optimally when the best com-

bination of bound based crossover, mutation and

fitness are employed. When applied in conjunction

with the COORD decoder there is little difference
between the two bound based mutations––

SCRAMBLE and FLIP––in improving on the per-

formance of the modified crossovers. Closer

inspection of the running of the algorithms re-

vealed that the knapsack/waste bounds rarely

came into play, and that the bound point was usu-

ally triggered by a piece failing to fit into the con-

taining rectangle. Under these circumstances the
remainder of the string has no influence on fitness

and it is therefore not surprising that both muta-

tions give similar results. The same observation ex-

plains why the there is little difference between the

two fitness functions. As no further boxes are

accommodated after the bound point f1 and f2
are frequently equal.

This may be a characteristic of the data that
would not be as apparent in different or larger

problems. Therefore further tests were carried

out using a randomly generated data set of 20

problems, each consisting of 50 boxes, of between
ver and fitness on Beasley�s 12 problems

oder COORD decoder

f2 f1 f2

49.2 55.0 55.0

52.5 55.0 59.2

55.9 65.0 60.1

66.6 69.2 70.0

70.0 70.0 73.3

75.8 74.2 70.0

56.7 69.2 71.7

63.3 72.3 70.0

57.5 70.8 75.0

http://www.ms.ic.ac.uk/info.html

K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402 401
8 and 12 box types, with up to 10 boxes of any

type. As it seems sensible to assume that the effi-

ciency of the bounded algorithm will depend on

the tightness of the bounds the problems were gen-

erated in 4 groups. In the first group the area of the
containing rectangle is 50% of the total piece area,

and in the second, third and fourth groups it is

70%, 85%, and 100% respectively. All combina-

tions were again run 10 times on each of the 20

problems. As the optimal solution to these prob-

lems is not known it is not possible to present

the results in terms of the number of optimal ter-

minations. Instead we carried out multi-factor
analysis of variance, followed by a Tukey test to

distinguish between those factors with more than

one degree of freedom.

The mean solution value for each of these

factors over full range of experiments is given in

Table 6. The results of the ANOVA test showed

that crossover, mutation and the fitness definition

were all significant at a 95% significance level. In
the case of the mutation operator the Tukey test

confirmed that the FLIP mutation is significantly

better than the SCRAMBLE mutation, which is it-

self significantly better than the normal back-

ground mutation alone. However, in the case of

the crossovers the differences are less clear-cut.

The Tukey test confirmed that the bound based

crossovers were better than standard one-point
crossover, but failed to find a significant difference

between the two. An examination of the perform-

ance of the different variants on the individual

problems highlighted differences between the four

groups. In the first three groups, we expect many

pieces to remain unfitted and the best recorded
Table 6

Mean solution quality for different options on randomly

generated data with 50 pieces per data set

Feature Option Mean

Fitness f1 4942.0

f2 4946.8

Mutation Normal 4907.2

SCRAMBLE 4957.3

FLIP 4968.8

Crossover 1-point 4930.1

OBP 4950.0

MOBP 4953.0
solution was found by a combination of a bound

based crossover and mutation operator in all but

one case where one-point crossover combined with

SCRAMBLE produced the best result. For the

fourth group, where almost all the pieces can be
fitted one-point crossover always found the best

solution. However, this performance was always

in conjunction with a bound-based mutation and

was frequently equalled by the other crossovers.

The later observation supports the conjecture that

where the bounds are slack the algorithm will tend

to revert to the standard GA, and the use of the

bound based operators will not be detrimental.
Solution times on a Pentium III/500 were also very

reasonable ranging from 15 to 39.2 seconds per

problem instance.
6. Conclusions

This paper has introduced a new way of utilis-
ing bound based information to improve the per-

formance of a genetic algorithm. Experiments

with two rectangle packing problems have shown

that such modifications can be successful when ap-

plied to the crossover operator alone, but that fur-

ther improvements can be obtained when

reinforcing the effect in the mutation operator

and fitness function. Although these experiments
were carried out with one-point crossover they

could be extended to other operators such as

two-point or PMX by ensuring that the first cross-

over point is generated before the bound point. In-

deed, this may be beneficial in avoiding premature

convergence after the bound point. As the objec-

tives of this research were to measure the effect

of such operators no attempts were made to im-
prove performance by adjusting the parameters,

or introducing features such as elitism that have

been shown to be successful for many GA imple-

mentations reported in the literature. It is likely

that such modifications would improve perform-

ance still further. The purpose of this paper was

not to study two rectangle packing problems

from the point of view of finding the best algo-
rithm for the job. Instead, the main goal of the pa-

per was to use these problems as a vehicle to study

genetic algorithm approaches and the effect that

402 K.A. Dowsland et al. / European Journal of Operational Research 168 (2006) 390–402
information from bounds on partial solutions

might have on those approaches. Although this

study has concentrated on two dimensional pack-

ing problems, effective bounds exist for many

other optimisation problems and it would be inter-
esting to see whether the ideas presented here can

improve the performance of indirect genetic algo-

rithms in a wide range of application areas.
References

Adomowicz, M., Albano, A., 1976. Nesting two-dimensional

shapes in rectangular modules. Computer Aided Design 8,

27–33.

Aickelin, U., Dowsland, K.A., 2004. An Indirect Genetic

Algorithm for a Nurse Scheduling Problem. Computers and

Operations Research 31, 761–778.

Beasley, J.E., 1985a. An exact two-dimensional non-guillotine

cutting tree search procedure. Operations Research 1, 49–

64.

Beasley, J.E., 1985b. Bounds for two-dimensional cutting.

Journal of The Operational Research Society 36, 49–64.

Christofides, N., Whitlock, C., 1977. An algorithm for two-

dimensional cutting problems. Operations Research 25, 30–

44.

Cotta, C., Aldana, J.F., Nebro, A.J., Troya, J.M., 1995.

Hybridising genetic algorithms with branch and bound

techniques for the resolution of the TSP. In: Poras, C.C.,

et al., (Eds.), Proceedings of the International Conference

on Artificial Neural Networks and Genetic Algorithms,

France, pp. 277–280.

Davis, L., 1985. Applying adaptive algorithms to epistatic

domains. In: Michandani, P.B., Francis, R., (Eds.), Pro-

ceedings of the Ninth International Joint Conference on

Artificial Intelligence, vol. 1, pp. 162–164.

Dighe, R., Jakiela, M.J., 1995. Solving pattern nesting problems

with genetic algorithms employing task decomposition and

contact detection. MIT Internal Report.

Dowsland, K.A., 1987. An exact algorithm for the pallet

loading problem. European Journal of Operational Re-

search 31, 78–84.

Erben, W., 2000. A grouping genetic algorithm for graph

colouring exam timetabling. Burke, E.K., Erben, W. (Eds.),

Selected Papers from the 3rd International Conference on

the Practice and Theory of Automated Timetabling

(PATAT 2000), LNCS 2079, Springer, Berlin, pp. 132–156.

Faroe, O., Pisinger, D., Zachariasen, M., 2003. Guided local

search for the three-dimensional bin packing problem.

INFORMS Journal on Computing 15, 267–283.

Falkenauer, E., 1998. Genetic Algorithms and Grouping

Problems. Wiley, New York.
Fekete, S.P., Schepes, J., 1997. A new exact algorithm for

general orthogonal d-dimensional knapsack problems. In:

Algorithms––ESA �97, vol. 1284, Lecture Notes in Compu-
ter Science, Springer-Verlag, Berlin, pp. 144–156.

Fekete, S.P., Schepers, J., 2004a. An exact algorithm for higher-

dimensional orthogonal packing. Technical report, Univ. of

Cologne, Center for Parallel Computing, (available at http://

www.math.tu-bs.de/~fekete/publications.html)––revised and

re-submitted to Operations Research.

Fekete, S.P., Schepers, J., 2004b. A combinatorial characteri-

zation of higher-dimensional orthogonal packing. Mathe-

matics of Operations Research 29, 353–368.

Glover, F., Kochenberger, G., 2003. Handbook of Meta-

heuristics. Kluwer, Dordrecht.

Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimi-

zation and Machine Learning. Addison-Wesley, Reading,

MA.

Herbert, E.A., Dowsland, K.A., 1996. A family of genetic

algorithms for the pallet loading problem. Annals of

Operations Research 63, 415–436.

Liu, D., Teng, H., 1999. An improved BL-algorithm for genetic

algorithm of the orthogonal packing of rectangles. Euro-

pean Journal of Operational Research 112, 413–420.

Lodi, A., Martello, S., Vigo, D., 1999. Heuristic and Metaheu-

ristic Approaches for a Class of Two-Dimensional Bin

Packing Problems. INFORMS Journal of Computing 11

(4), 345–357.

Lodi, A., Martello, S., Monaci, M., 2002. Two-Dimensional

Packing Problems: A survey. European Journal of Opera-

tional Research 141, 241–252.

Martello, S., Toth, P., 1990. Knapsack Problems. John Wiley,

Chichester.

Mori, Y., Tanaka, M., 2002. A hybrid genetic algorithm for

timetabling of conference programs. In: Proceedings of the

4th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2002), pp. 421–440, ISBN

90-806096-1-7.

Nagar, A., Heragu, S.S., Haddock, J., 1995. A meta-heuristic

algorithm for a bi-criteria scheduling problem. Annals of

Operations Research 63, 397–414.

Ozcan, E., Alkan, A., 2002. Timetabling using a steady state

genetic algorithm. In: Proceedings of the 4th International

Conference on the Practice and Theory of Automated

Timetabling (PATAT 2002), pp. 104–106, ISBN 90-806096-

1-7.

Pardalos, P., Resende, M., 2002. Handbook of Applied

Optimization. Oxford University Press.

Prosser, P., 1988. A hybrid genetic algorithm for pallet loading.

In: Proceedings of the Eight European Conference on

Artificial Intelligence. Pitman, London, pp. 159–164.

Tamura, H., Hirahara, A., Hatono, I., Umano, M., 1994. An

approximate solution method for combinatorial optimisa-

tion. Transactions of the Society of Instrument and Control

Engineers 130, 329–336.

http://www.math.tu-bs.de/~fekete/publications.html
http://www.math.tu-bs.de/~fekete/publications.html

	Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems
	Introduction
	The relationship between indirect GA�representations and tree searches
	The GA and bounded crossover operator
	Identical pieces
	Representation and decoders
	Bounds and targets
	Crossover
	Fitness
	Mutation
	The experiments

	Non-identical pieces
	Representation and decoders
	Bounds and targets
	Crossover
	Mutation
	The experiments

	Conclusions
	References

