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Abstract. The rapid evolution of real-time multimedia applications re-
quires Quality of Service (QoS) based multicast routing in underlying
computer networks. The constrained Steiner Tree, as the underpinning
mathematical structure, is a well-known NP-complete problem. In this
paper we investigate a variant of variable neighborhood search, vari-
able descent search, for the delay-constrained least-cost multicast routing
problems. The neighborhood structures designed in the variable descent
search approaches are based on the idea of path replacement in trees.
They are simple, yet effective operators, enabling a flexible search over
the solution space of this complex problem with multiple constraints. A
large number of simulations demonstrate that our algorithm is highly ef-
ficient in solving the delay-constrained, least-cost multicast routing prob-
lem in terms of both the total tree cost and the execution time. To our
knowledge, this is the first study of variable neighborhood search on the
delay-constrained, least-cost multicast routing problem. It outperforms
other algorithms and heuristics over a range of problem instances.

1 Introduction

The general problem of multicast routing has received significant research at-
tention in the area of computer networks and algorithmic network theory [1-3].
It is defined as sending messages from a source to a set of destinations that be-
long to the same multicast group. Many real-time multimedia applications (e.g.
video conferencing, distance education) require the underlying network to satisfy
certain quality of service (QoS) multicast communication. These QoS require-
ments include the cost, delay, delay variation, lost and hop count, etc. The most
important QoS requirements for constructing multicast trees are the delay and
cost. The end-to-end delay is the total delay along the paths from the source to
each of the destinations. The cost of the multicast tree is the sum of costs on
the edges in the multicast tree.

To search for the minimum cost tree in the multicast routing problem is the
problem of finding a Steiner Tree [4], which is known to be NP-complete [5]. The
Delay-Constrained Least-Cost (DCLC) multicast routing problem is the problem



of finding a Delay-Constrained Steiner tree (DCST), which is also known to be
NP-complete [6]. An early survey on multicast communication problems and
related solutions was given in [7]. A recent overview on the multicast routing
and associated optimization algorithms has been presented in [8].

A number of algorithms that construct low-cost multicast trees have been
studied in the literature. Usually these algorithms can be classified as source-
based and destination-based multicast routing algorithms. The source-based al-
gorithms assume that each node has all the necessary information to construct
the multicast tree (e.g. KPP [9], CAO [10], CKMB [11], CDKS [12] and BSMA
[13]). The destination-based algorithms do not require that each node maintains
the status information of the entire network , and multiple nodes are participat-
ing in constructing the multicast tree (e.g. DKPP [14], DDMC [15], DSPH [16]
and QDMR [6]).

The Kompella-Pasquale-Polyzos (KPP) heuristic is the first heuristic for the
DCST problem. KPP extends the Kou-Markowsky-Berman (KMB) heuristic
[17], an unconstrained Steiner tree algorithm, to compute constrained paths as-
suming that the link delay and delay bound are integers. Both KMB and KPP
use Prim’s algorithm [18] to obtain a minimum spanning tree of a closure graph.
The Constrained Adaptive Ordering (CAO) heuristic incrementally adds new
tree branches by merging in delay-constrained low-cost unicast paths connecting
to new destination nodes. It uses a constrained breadth-first search, whose com-
putational time can be exponential in some cases. CKMB modifies KMB without
assuming integer delay values. The Constrained Dijkstra (CDKS) heuristic con-
structs delay-constrained shortest path tree and was suggested to be a suitable
algorithm for large networks by using Dijkstra’s heuristic [19]. A well known
deterministic multicast algorithm for the DCST problem is BSMA (Bounded
Shortest Multicast Algorithm) [13]. Tt iteratively refines the tree to lower costs
until the tree cost cannot be further reduced. BSMA was regarded as the best
algorithm in terms of its good performance on tree costs. Although developed in
mid 1990s, it is still being frequently compared with many multicast routing al-
gorithms in the current literature. However, it requires excessive execution time
for large networks as it uses the k Shortest Path algorithm [20] to find lower cost
paths.

The second group of algorithms considers distributed multicast routing prob-
lems. The idea of Destination-Driven MultiCasting (DDMC) comes from Prim’s
minimum spanning tree algorithm and Dijkstra’s shortest path algorithm, both
using a similar greedy strategy. The Distributed Shortest Path Heuristic (DSPH)
is a distributed algorithm of the delay-bounded multicast routing algorithm. It
sequentially generates routing trees by extending the routing tree to one desti-
nation after another. Although DSPH performs well on tree costs, its computa-
tional time is extremely high, especially for large networks. The QoS Dependent
Multicast Routing (QDMR) algorithm extends the DDMC algorithm by using
a weight function to dynamically adjust how far a node is from the delay bound
and adds the node with lowest weight to the current tree.



In recent years, metaheuristic algorithms such as simulated annealing [21, 22],
genetic algorithm [23-26], tabu search [27-32], GRASP [33] and path relinking
[34, 35] have been investigated for various multicast routing problems. Hamdan
et al. [23] address the delay and delay-variation constrained multicast routing
problem using genetic algorithms. In [24], a genetic local search is investigated
with a logarithmic simulated annealing in a pre-processing step. An analysis
of the landscape of multicast routing problems and the associated objective
function are given. Youssef et al. [27] present a tabu search algorithm to construct
the minimum cost delay bounded multicast tree. Their algorithm starts with
an initial feasible solution, and builds a sink tree for each destination using
Dijkstra’s shortest path algorithm. The algorithm refines the tree to a lower
cost and stops after a certain number of iterations. Wang et al. [28] propose
an efficient Delay-Constrained Low-Cost Multicast Routing algorithm based on
tabu search. The main disadvantage of the algorithms proposed in [27,28] is
that they randomly select the paths to be added or deleted, which may lead to a
disjointed multicast tree. Yang and Wen [29] apply tabu search to the problem
of pre-planning delay-constrained backup paths for multicast trees to minimize
the total cost of all the backup paths. In [33], a GRASP heuristic is developed
for the DCST problem. Based on a randomized feasible solution constructed
by Dijkstra’s shortest algorithm, a tabu search algorithm is applied to further
improve the solution quality. Ghaboosi et al. [30] propose a tabu search based
algorithm and a path relinking algorithm [34]. The tabu search algorithm creates
initial solutions based on Dijkstra’s algorithm, and iteratively refines the initial
solution by using a modified Prim’s algorithm to switch edges chosen from the
backup path set. Their path relinking algorithm first generates a reference set of
random solutions and then iteratively applies a path relinking method to improve
pairs of solutions (the initial solution and guiding solution). In each iteration, the
chosen solutions are converted to Priifer numbers. During each path relinking
phase, a repair procedure is used to repair any infeasible solution. If the relinking
process produces a better solution than the worst solution in the reference set, the
worst solution is replaced by the better one. After a given number of iterations,
the best solution in the reference set is output as the final solution. In [34], the
simulation results show that their path relinking algorithm is the best performing
with regards to the tree cost compared with other algorithms. However, their
path relinking algorithm is time consuming when the network size increases and
many infeasible need to be repaired. So their path relinking algorithm is suitable
for real-time small networks.

In this paper we investigate variable descent search (VDS), a variant of vari-
able neighborhood search (VNS), for DCLC multicast routing problems. Al-
though VNS algorithms have been applied to Steiner tree problems (e.g. VNS
as a post-optimization procedure to the prize collecting Steiner tree problem
[36], and the bounded diameter minimum spanning tree problem [37]), as far as
we are aware, no research has been carried out using VDS on DCST problems.
Experimental results show that our VDS algorithms obtained the best quality
solutions when compared against the algorithms discussed above.



The rest of the paper is organized as follows. In Section 2, we present the
network model and the problem formulation. Section 3 presents the proposed
VDS algorithms. We evaluate our algorithms by computer simulations on a range
of problem instances in Section 4. Finally, Section 5 concludes this paper and
presents possible directions for future work.

2 The Delay-Constrained Least-Cost Multicast Routing
Problem

We consider a computer network represented by a directed graph G = (V, E)
with |V| = n nodes and |E| = [ edges, where V is a set of nodes and E is a set of
edges, respectively. Each edge e = (i, j) € E is associated with two parameters,
namely the link cost C(e): E — RT and the link delay D(e): E — RT | where R
is the set of nonnegative real numbers. The link is bidirectional, i.e. the existence
of a link e = (i, j) from node i to node j implies the existence of another link e’
= (4, %) for any 4, j € V. Due to the asymmetric nature of computer networks, it
is possible that C(e) # C(e’) and D(e) # D(e’). The nodes in V include a source
node s, destination nodes which receive data stream from the source, denoted
by R C V —{s}, called multicast groups, and relay nodes which are intermediate
hops on the paths from the source to destinations.

We define a path from node u to node v as an ordering set of links, denoted
by P(u, v) = {(u, ), (4, j), - .., (k, v)}. A multicast tree T'(s, R) is a set of paths
rooted from the source s and spanning all members of R. We denote by Pr(r;)
C T the set of links in T' that constitute the path from s to r; € R. The total
delay from s to r;, denoted by Delay[r;], is simply the sum of the delay of all
links along Pr(r;), i.e.

Delaylr;] = Y D(e), ¥ri € R (1)
e€Pr(ry)

The delay of the tree, denoted by Delay[T], is the maximum delay among
all the paths from the source to each destination, i.e.

Delay|T) = max{Delay|r;] | Vr; € R} (2)

The total cost of the tree, denoted by Cost(T), is defined as the sum of the
costs of all links in the tree, i.e.

Cost(T) = Z C(e) (3)

ecT

Applications may assign different upper bounds §; for each destination r; €
R. In this paper, we assume that the upper bound for all destinations is the
same, and is denoted by A = §;, r; € R.

Given these definitions, we formally define the Delay-Constrained Steiner
Tree (DCST) problem as follows [6]:



The Delay-Constrained Steiner Tree (DCST) Problem: Given
a network G, a source node s, destination nodes set R, a link delay func-
tion D(+), a link cost function C(+), and a delay bound A, the objective
of the Delay-Constrained Steiner Tree (DCST) Problem is to construct
a multicast tree T'(s, R) such that the delay bound is satisfied, and the
tree cost Cost(T') is minimized. We can define the objective function as:

min{Cost(T) | Pr(r;) C T(s, R), Delay[r;] < A,Vr; € R} (4)

3 The Variable Descent Search Algorithms

Variable neighborhood search (VNS), jointly invented by Mladenovié and Hansen
[38] in 1996, is a metaheuristic for solving combinatorial and global optimiza-
tion problems. Unlike many standard metaheuristics where only a single neigh-
borhood is employed, VNS systematically changes the employment of different
neighborhoods within a local search. The idea is that a local optimum defined
by one neighborhood structure is not necessarily the local optimum of another
neighborhood structure, thus the search can systematically traverse different
search spaces which are defined by different neighborhood structures. This makes
the search much more flexible within the solution space of the problem, and po-
tentially leads to better solutions which are difficult to obtain by using single
neighborhood based local search algorithms [39, 40]. The basic principles of VNS
are easy to apply, parameters being kept to a minimum.

Let us denote by Nk, k = 1, ..., kmnas, a finite set of pre-designed neigh-
borhood structures, and by N (z) the set of solutions by employing the &k
neighborhood operator upon an incumbent solution . Our proposed algorithm
is based on the basic variable descent search (VDS), a variant of VNS algorithm
presented in Fig. 1.

— Initialisation: Define the set of neighborhood structures Ny, k =1, ..., kpmaz; Find
an initial solution x;
— Repeat
1. Set k=1;
2. Repeat the following steps until k = kmaq
(a) Local search: Find a local optimum z’ by applying a simple steepest descent
to z, #’ € Ni(x);
(b) Move or not: If 2’ is better than = then z « ', k = 1; otherwise, k = k+1;
— Until no improvement is obtained

Fig. 1. Pseudo-code of the basic Variable Descent Search [38§]



3.1 Initialisation

In our VNS Multicast Routing (VNSMR) algorithm, firstly we create an initial
solution Ty and then iteratively improve Ty by employing three neighborhoods,
defined in Section 3.2, until the tree cost cannot be reduced, while the delay con-
straint is satisfied. To investigate the effects of different initial solutions within
the VNS algorithm, we design two variants of the algorithm (namely VNSMRO
and VNSMRJ1) with the same neighborhood structures, but starting from differ-
ent initial solutions produced by using the following two heuristics:

— Initialisation by DKSLD (VNSMRO): Dijkstra’s shortest path algorithm is
used to construct the least delay multicast tree;

— Initialisation by DBDDSP (VNSMRI1): we extend the Destination-Driven
Shortest Path (DDSP) algorithm in [41], which is a destination-driven short-
est path multicast tree algorithm with no delay constraint. This modified
DBDDSP (Delay-Bounded DDSP) algorithm is used as the initialisation
method in VNSMRI1.

3.2 Neighborhood Structures within the VNS Algorithms

The neighborhood structures within our VNSMR algorithms are designed based
on an operation called path replacement, where a path in a tree T; is replaced
by another new path not in the tree 7;, resulting in a new tree T;41. In our
algorithm, the delay-bounded path replacement operation guarantees that the
tree T; 41 is always a delay-bounded and loop free tree. To present the candidate
paths chosen in the path replacement, we define superpath (based on [13], also
called key-path in the literature [42,43]) as the longest simple path in the tree
T;, in which all internal nodes, except the two end nodes of the path, are relay
nodes. Each relay node connects exactly two tree edges. The pseudo-code of
VNSMR is presented in Fig.2.
The three neighborhood structures are described as below:

1. Neighborl: the most expensive edges on each superpath in tree T; are the
candidates of the path replacement. At each step, one chosen edge is deleted,
which divides the tree T; into two subtrees T;' and T?. Then Dijkstra’s
shortest path algorithm is used to find a new delay-bounded shortest path
that connects the two subtrees and reduces the tree cost;

2. Neighbor2: this operator operates on all superpaths in the tree T; (either
connecting or not connecting to a destination node). At each step, one su-
perpath is replaced by a cheaper delay-bounded path using the same path
replacement strategy in Neighbori;

3. Neighbor3: all the superpaths connected to destination nodes in 7; are the
candidate paths to be replaced. At each step, a superpath is deleted, which
divides the tree T; into a subtree 7] and a destination node r;. Then the
same path replacement strategy is used to search for a new delay-bounded
shortest path from 7; which reconnects r; to T7.



— VNSMR(G = (V, E), S, R, A, kmaz, Nk, k=1, ..., kmaz)

— //S: the source node; R: the destination nodes set; A > 0: the delay bound; kmax
= 3: the number of neighborhoods structures; Nj: the set of neighborhoods by
employing neighbor k

e Create initial solution Tp; // by using DKSLD or DBDDSP, see Section 3.1
e if Ty = NULL then return FAILED; // a feasible tree does not exist
o else
* Tbest - T07 k= 17
* while k < kmaqe
- select the best neighbor T, T; € Ni(Tpest);
- f(((Cost(T;) < Cost(Tvest)) & (Delay(T;) < A)) || ((Cost(T3) =
Cost(Tyest)) & (Delay(T;) < Delay(Thest)))
- then Tyest = T k = 1;
- else k++;
* end of while loop
o return Tpest

Fig. 2. The Pseudo-code of the VNSMR Algorithm

3.3 An Illustrative Example

For the ease of understanding, we present an example network in Fig.3.(a), where
s = {0} (source node) R = {2, 3, 9} (destination nodes), A= 82 (delay bound)
and the values a/b on each link e = (4, j) represent the Cost/Delay. The resulting
tree by applying BSMA and the VNSMR algorithm are shown in Fig.3.(b) and
Fig.3.(d), respectively. The initial solution constructed by DBDDSP for VNSMR
is shown in Fig.3.(c).

In Fig.3.(c), path P(0, 3) = {(0, 7), (7, 3)} is a superpath where internal node
(7 here) is a relay node (see the definition in Section 3.2). By using our VNSMR,
P(0, 3) is replaced by path P(9, 3) = {(9, 1), (1, 3)} (using either Neighbor2
or Neighbor3d), which results into the tree in Fig.3.(d). The tree cost is reduced
from 336 in Fig.3.(c) to 281 Fig.3.(d), while the tree delay (Delay(Tvnsmr) =
66) still satisfies the delay constraint A = 82. Comparing the trees generated
by BSMA and VNSMR in Fig.3.(b) and Fig.3.(d), we can see that the tree
cost found by VNSMR (281) is lower than that of BSMA (285). This is due to
the flexibility of the VNSMR search which explores the search space defined by
different neighborhood structures.

3.4 Time Complexity of the VNSMR Algorithm

Proof of the probability of transition from a spanning tree s; to s; (see [11]):
According to Cayley’s theorem [44], for a n node network, there are n™—2
possible spanning trees. Thus, the number of Steiner trees is bounded by n" 2.
Let us consider a Markov chain of n”~2 states, where each state corresponds to
a spanning tree. We sort these states in a decreasing order with respect to the
cost of the Steiner tree. Replace each state in the sorted list with n copies of



C/D(1.9)=50/19, C/D(9,1) = 34/17 Cosr Tamgs) = 285, Delay Temge) =78

(a) An example network (b) Search result of BSMA

Cosri Tywanm) = 281, Delayi Tyusper) = 66

Cost(Ty) =330, Delay(Ty) =42
(c) Initial zolution of VNSMR (d) Search result of VNSMR

Fig. 3. An example network and solutions obtained from BSMA and VNSMR

itself results into a total number of n~! states. In the Markov chain, transition
edges from a state s; go only to a right state of s;. Assume that each possible
transition is equally likely event. Thus the probability of a transition from s; to
sj is:

(I<j<iPn=1) (5)

pij:m

We prove the time complexity of VNSMR based on the method used in [11].
Let m; be the number of transitions needed to go from state s; to si, the ex-
pected value E[m;] = log(i). Therefore, if the VNSMR algorithm starts from
the most expensive state, i.e. n® !, then the expected number of transitions is
O(log(n™~1)) = O(nlog(n)). Thus the expected maximum number of iterations of
the neighborhood structures in VNSMR is O(nlog(n)). The three neighborhoods
of VNSMR use the same path replacement strategy. A path-replacement opera-
tion is dominated by Dijkstra’s shortest path algorithm which takes O(llog(n)),
where [ = |E| is the total links in the network. In the worst case, each neighbor-
hood requires replacing at most O(l) superpaths. Thus the time complexity of
VNSMR is:

O(nlog(n)(3 * 1 x llog(n))) = O(I*nlog*(n)) (6)

4 Performance Evaluation

To evaluate the efficiency of our VNSMR algorithm, we use a multicast rout-
ing simulator (MRSIM) implemented in C++ based on Salama’s generator [1].



MRSIM generates random network topologies using a graph generation algo-
rithm described in [45]. The positions of the nodes are fixed in a rectangle of
size 4000 x 4000km?. The simulator defines the link delay function D(e) as the
propagation delay of the link (queuing and transmission delays are negligible)
and the link cost function C(e) as the current total bandwidth reserved on the
link in the network. Like many other network simulators, the Euclidean metric is
also used to determine the distance I(u, v) between pairs of nodes (u, v). Edges
connect nodes (u, v), with a probability

P(u,v) = Bexp(—Il(u,v)/al) «,B € (0,1] (7)

where parameters o and (3 can be set to obtain desired characteristics in the
graph. A large § gives nodes a high average degree, and a small « gives long
connections. L is the maximum distance between two nodes. In our simulations,
we set o = 0.25, 5 = 0.40, the average degree = 4 and the capacity of each link
= 155Mb/s (in this paper we set the capacity to a large enough value so that
such constraint is not considered in the problem). All simulations were run on a
Windows XP computer with Pentium VI 3.4GHZ, 1G RAM.

To encourage scientific comparisons, we have put problem details of all the in-
stances tested at http://www.cs.nott.ac.uk/~yxx/resource.html, with some ex-
ample solutions obtained by the proposed algorithms.

4.1 VNSMR with Different Initialisations

In the first set of experiments, we randomly generate 20 different network topolo-
gies for each size of 20, 50, 100, 200 and 300 nodes in the networks. For each
network topology, the source node and the destination nodes are randomly se-
lected. The delay bound in our experiments for each network topology is set to
be 2 times the tree delay of the DKSLD algorithm, i.e. A =2 X Delay(TpksLp)-
For each network topology, the simulation was run 50 times, where the average
tree costs and execution times were reported. We investigate the performance of
the VNSMR algorithm with two different initialization heuristics, e.g. VNSMRO
with DKSLD and VNSMR1 with DBDDSP (see Section 3.1 for more details).
Both variants employ the same neighborhood structures as defined in Section
3.2

Fig. 4 presents the tree cost and execution time of VNSMRO and VNSMR1
for problems of different network sizes with a group size (number of destina-
tions) of 10. The tree cost of the initial solutions obtained from DBDDSP and
DKSLD are also presented in Fig.4.(a), where we can see that both can be im-
proved by the VNSMR algorithm employing the three neighborhoods we have
defined. VNSMR1 (with initial solution from DBDDSP) performs better than
VNSMRO (with initial solution from DKSLD) in terms of both the tree cost and
the computational time.

Table 1 presents the tree costs of the two VNSMR algorithms with different
initial solutions for networks of 50 nodes with different group sizes. In the table,
the above observations still hold true. The initial solutions from DBDDSP for
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Fig. 4. Tree cost and execution time vs. network size with group size = 10 by VNSMR
with different initialisations

VNSMRI1 are better than that of DKSLD for VNSMRO0. Both VNSMR algo-
rithms can further reduce the tree cost, and VNSMR1 always performs better
than VNSMRO (best results in bold in Table 1). Fig.5. also shows that VNSMR1
requires less execution time than that of VNSMRO.

Table 1. Tree cost vs. group size for problems of network size = 50 by VNSMR with
different initialisations

Group size DKSLLD VNSMR0 DBDDSP VNSMR1
5 560.5 287.3 330.05 280.75
10 938.6 497.9 583.1 466.5

15 12427 682.95 809.1 652.95
25 1666.5  867.7 1077.75  840.25
35 1944.45 1072 1359.95 1055.75
45 2294.35 1235.65 1591.45 1214.75

The above experiments show that our VNSMR algorithms can always im-
prove the initial solutions when constructing the DCLC multicast trees. The
quality of initial solutions affects the performance of the VDS algorithm. It is
shown that better initial solutions from more intelligent heuristics lead to better
final results, and also reduce the execution time of the VDS algorithm.

4.2 Comparisons with Existing Algorithms

In the second set of experiments, we compare VNSMR1 with four other existing
multicast routing algorithms in terms of both the solution quality and the com-
putational time using the same simulation strategies as mentioned in Section 4.1.
The four algorithms include BSMA, CDKS, QDMR, which are DCLC multicast
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routing algorithms, and DKSLC which uses Dijkstra’s algorithm to construct the
least cost multicast trees without the delay constraint. These algorithms have
been reviewed in Section 1.

Fig.6. presents the tree cost and execution time of these four algorithms
and our VNSMRI1 algorithm. It can be clearly seen in Fig.6.(a) that VNSMRI1
outperforms the other four algorithms in terms of the tree cost. CDKS and
DKSLD have the worst and similar tree cost; BSMA is better than QDMR but
worse on the tree cost than VNSMR. In addition, Fig.6.(b) shows that VNSMR1
requires less execution time than BSMA. The other three algorithm CDKS,
QDMR and DKSLC require lower computational time. However, the solution
quality is of much lower quality than both BSMA and VNSMRI.

Fig.7 presents the results of our VNSMRI1 algorithm and other algorithms in
terms of the tree cost and execution time for problems of different network sizes,
where the group size is 10% of the overall network size. Again, it can be seen
in Fig.7.(a) that VNSMRI1 outperforms the other four algorithms when compar-
ing the solution quality. Fig. 7.(b) shows that VNSMRI requires less execution
time than BSMA. The time complexity of the VNSMRI1 is O(I?nlog?(n)), while
BSMA’s time complexity is O(kn3log(n)) (n: the number of nodes, I: the number
of edges, k: the k' shortest path between a source and a destination).

In [34], Ghaboosi and Haghighat develop a path relinking algorithm and show
that it outperforms a number of existing algorithms, including KPP, BSMA, GA-
based algorithms [25, 26], tabu search based algorithms [28,30-32] and another
path relinking algorithm [35]. In order to compare our VNSMRI1 algorithm with
these algorithms, we generate three random networks for each size of 10 to 100
nodes with group size = 30% of the network size. The average tree cost over all
problem instances are used to compare the algorithm’s performance. This is the
same design as the simulations in [34].
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Table 2 shows that the VNSMRI1 algorithm performs the best in terms of
the average tree cost. As only the average tree cost over all problem instances of
different sizes are reported in [34], we report the same in Table 2. The average
tree costs for each size of the problems are also presented in Table 2.

Table 2. Average tree costs from our VNSMRI1 and existing heuristics and algorithms
on random graphs of 10-100 nodes

Algorithms Average Tree Costs

KPP1 [9] 905.581
Heuristics KPP2 [9] 911.684

BSMA [13] 872.681
GA-based Wang et al. [25] 815.969
Algorithms Haghighat et al. [26] 808.406

Skorin-Kapov and Kos [31] 897.578
TS-based Youssef et al. [32] 854.839
Algorithms Wang et al. [28] 1214.75

Ghaboosi and Haghighat [30 739.095
Path relinking |Ghaboosi and Haghighat [34 691.434
VDS Algorithm|VNSMRI1 for problem of different sizes

10 20 30 40 50 60 70 80 90 100

95 282 415 518 727 812 805 922 1183 1041|680.067

Furthermore, Fig.8 also shows that VNSMRI1 can find better solutions in a
very short time (less then 5 seconds), which is much less than that of the path
relinking algorithm. This indicates that the path relinking algorithm in [34] is
less practical for solving real-time network routing problems of very large and
densely connected networks due to its high time complexity.

In summary, over a large number of simulations on instances of different
network sizes and different group sizes, we have demonstrated that our VNSMR1
(VNS algorithm with DBDDSP as the initialization method) outperforms other
existing heuristics and algorithms with regard to both the average tree cost and
computational time.

5 Conclusions

In this paper, we have investigated variable descent search (VDS) algorithms for
solving multicast network routing problems, where delay-constrained least-cost
multicast trees are constructed. The problem is a Delay-Constrained Steiner tree
problem and has been proved to be NP-complete. The main characteristic of our
VDS algorithm is that of using path replacement strategy in designing three
simple, yet effective, neighborhood structures. Each neighborhood is designed
to reduce the tree cost in different ways and at the same time satisfy the delay
constraint. This enables a much more flexible search within the VDS algorithms
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Fig. 8. Average execution time vs. network size of our VNSMR/1 and the Path Relinking
in [34]

when compared with a local search with single neighborhood structure. A large
number of simulations have been carried out to evaluate the proposed algorithm
in comparison with the existing algorithms in the literature. Experimental results
demonstrate that our VDS algorithms is the best performing algorithm when
compared against other heuristics and algorithms in terms of both the total tree
cost and the execution time.

Many promising directions of future work are possible. The proposed algo-
rithm is tested for the static case of multicast routing problems, where the nodes
in the multicast groups are known and do not change. In reality, network sce-
narios are mostly dynamic with some nodes leaving and joining the multicast
groups at various times. Additionally, real-time applications have other QoS re-
quirements such as the delay variation and the packet loss rate, etc. This leads
to the multi-objective optimization problem on constrained routing. The VDS
algorithm can be easily adapted for solving a variety of network routing problems
with different constraints.
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