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1 Introduction

Personnel scheduling involves scheduling people to timeslots and possibly locations. This problem
remains the subject of much research interest with a survey in every decade since the 1970’s [2, 8, 4].
Several models including Constraint Satisfaction Problem (CSP) [6], mathematical programming (linear
programming, 0-1 integer programming etc.) [3], and different solution methods (exact [3] or heuristic
based [1]) have been proposed to tackle this problem. Also several applications have been reported in
the literature including applications for hospital personnel [1], educational institution personnel [7] and
others.

However the heuristic methods developed for a particular personnel scheduling problem may not
perform well if applied to a different problem. Heuristic and metaheuristic approaches tend to be
knowledge rich, requiring substantial expertise in both the problem domain and appropriate heuristic
techniques [1]. It is in this context that we proposed a hyperheuristic approach [5] as a heuristic that
operates at a higher level of abstraction than current metaheuristic approaches. The hyperheuristic
has no problem-specific knowledge. It manages a set of simple, knowledge-poor, low-level heuristics.
At any given time the hyperheuristic must choose which low-level heuristic to call. The hyperheuristic
interacts with the low-level heuristics but is only allowed to communicate non problem-specific informa-
tion such as CPU time and the change in the evaluation function. Problem-specific domain knowledge
is prohibited from passing through the hyperheuristic/low-level heuristic interface. To allow the hyper-
heuristic to operate, a choice function is defined which adaptively ranks the low-level heuristics. The
choice function provides guidance to the hyperheuristic by indicating which low-level heuristic should
be applied next based upon the historical performance of the heuristics and the region of the search
space currently under exploration. In [5] a choice function was defined as a weighted sum of three
factors expressing the recent improvement (change in the evaluation function) produced by each of the
heuristics, the recent improvement produced by a consecutive pair of heuristics and the time since the
heuristic had been called. Although the hyperheuristic produced good results, these results depended
on the values of the parameters, and such values were empirically determined by simply choosing the
best settings after many trials. Empirically setting the parameters increases the domain-specific knowl-
edge of the hyperheuristic, which is not desirable. This paper is concerned with the development of a
mechanism for automatically setting the parameters as well as refining the choice function. To do so
we apply the hyperheuristic to a real-world personnel scheduling problem, that of scheduling a sales
summit.

The remainder of the paper is structured as follows. We first describe and formulate the sales
summit scheduling problem. This is followed by the description of our parameter-free hyperheuristic
approach in section 3. Section 4 is devoted to experimental results and section 5 concludes the paper.
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2 The Sales Summit Scheduling Problem

The sales summit scheduling problem is that of a commercial company that organises sales summits
which involve two groups of company representatives: suppliers, who want to sell products or services,
and delegates who are representatives of companies that are potentially interested in purchasing the
products and services. Suppliers pay a registration fee to have a stand at the sales summit and provide
a list of the delegates that they would like to meet. A meeting (between one delegate and one supplier)
is classified as Priority or Non-Priority depending on how strongly the supplier would like to meet
the delegate. Delegates pay no fee but instead cost money to the commercial company who pays for
their travelling and hotel expenses. Besides meetings, seminars are organised where delegates may meet
other delegates. Each delegate provides a list of the seminars that he/she would like to attend and (if
he/she is invited to the summit) is guaranteed attendance to all seminars. In this instance of the sales
summit scheduling problem there are 24 meeting timeslots available for both seminars and meetings,
where each seminar lasts three times as long as a supplier/delegate meeting. There are 43 suppliers,
99 potential delegates and 12 seminars. In the first place delegates are assigned to all seminars that
they have requested. Then the aim is to schedule meetings, that is, determine (supplier, delegate,
timeslot) triples under the constraints: (1) Each delegate must be scheduled for at most 12 meetings;
(2) Each delegate must be scheduled for at most one activity (meeting or seminar) within a given
timeslot; (3) Each supplier must be scheduled for at most one meeting within a given timeslot; (4)
Each supplier should ideally have at least 17 priority meetings; (5)Each supplier should ideally have
at least 20 (priority and non-priority) meetings. In practice these two latter constraints are relaxed
and the objective is to minimise the number of delegates who will actually attend the sales summit out
of the 99 possible delegate attendees and thus minimise cost as well as ensuring that suppliers have
sufficient delegate meetings (Priority and Non-Priority). We denote by S (respectively D,T) the set of
suppliers (respectively delegates, timeslots). Let Pij be 1 if (supplier i, delegate j) is a Priority meeting
and 0 otherwise (i ∈ S, j ∈ D). Our decision variables are denoted xijk (i ∈ S, j ∈ D, k ∈ T), where
xijk is 1 if supplier i is to meet delegate j in timeslot k, otherwise xijk is 0. The formulation is given
as follows:

minimise E(x) = B(x) + 0.05C(x) + 8H(x)

s.t. (1)
∑

i∈S

∑
k∈T xijk ≤ 12, (j ∈ D); (2)

∑
i∈S xijk ≤ 1, (j ∈ D, k ∈ T);

(3)
∑

j∈D xijk ≤ 1, (i ∈ S, k ∈ T); xijk ∈ {0, 1}, (i ∈ S, j ∈ D, k ∈ T).

B(x) =
∑

i∈S

[
max

(
0, 17− ∑

j∈D

∑
k∈T Pijxijk

)]2

, C(x) =
∑

i∈S

[
max

(
0, 20− ∑

j∈D

∑
k∈T xijk

)]2

and H(x) = d(x)− 72 with d(x) =
∑

j∈D min
[
1,

∑
i∈S

∑
k∈T xijk

]
.

Constraint (1) expresses the fact that no delegate must be scheduled for more than 12 meetings.
Constraint (2) expresses the fact that no delegate must be scheduled for more than one activity within
the same timeslot. Constraint (3) expresses the same idea for suppliers. Both B(x) and C(x) of
the objective function are the relaxation of the constraints on suppliers’ meeting-satisfaction. More
precisely B(x) represents the penalty associated with priority-dissatisfied suppliers (suppliers with less
than 17 priority meetings) where constraint (4) is not satisfied, C(x) represents the penalty associated
with dissatisfied suppliers (suppliers with less than 20 meetings in total) where constraints (5) is not
satisfied. d(x) is the number of delegates who attend the sales summit in the meeting schedule. H(x)
represents the penalty associated with the cost of each delegate. The different coefficients in E(x) show
the relative importance of each criterion. We penalise only the excess of delegates1 over 72, to avoid a

1In an ideal solution each supplier has the required 20 meetings and there are 43 × 20 = 860 meetings. Each delegate
can attend at most 12 supplier meetings, therefore at least

⌈
860
12

⌉
= 72 delegates are required.
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large constant term in H(x) dominating B(x) and C(x). To simplify the notation we shall assume x
and refer to the above quantities as E, B, C, d and H .

The company uses a greedy algorithm that yields a solution of evaluation 444.43 (B = 226, C =
48.65, d = 99, H = 216). We developed another greedy algorithm described in [5] which produces a
better solution of 225.55 (B = 52, C = 111, d = 93, H = 168). This latter solution is used as starting
solution in our hyperheuristic algorithm described in the following section.

3 A Parameter-Free Hyperheuristic Method

This work is motivated by the desire to provide a more effective hyperheuristic which does not re-
quire parameters to be predetermined. The choice function is a key element in the definition of our
hyperheuristic, allowing us to adaptively determine, at each point of the search, how good each low-
level-heuristic is likely to be. To define the choice function we regard E in a three-dimensional space
with three components B, C and H and E = B+0.05C+8H . Firstly the choice function is defined with
respect to each criterion l ∈ L where L = {B, C, H} is the set of criteria B, C and H . Secondly for each
criterion l the corresponding choice function fl is defined as the combination of three factors reflecting
the historical individual performance of each low-level heuristic in terms of change in E, the historical
joint performance of each pair of low-level heuristics in terms of change in E and the amount of time
elapsed since each low-level heuristic was last called. The first two factors are there for the purpose
of intensifying the search using a methodology akin to the exponential smoothing forecast. The third
factor constitutes an element of diversification by favouring those low-level heuristics which have not
been called for a long time. Thirdly each factor is weighted by a parameter which indicates the relative
importance of the factor within the choice function. The choice function is then a weighted sum of
three factors. The parameters values are changed throughout the search depending upon whether the
hyperheuristic decides that it is appropriate to intensify or diversify the search. This is done by a mech-
anism wich increases the value of the parameters of the intensification factors when a low-level heuristic
proposed by the choice function has produced a solution better than the current one. The reward is
proportional to the magnitude of improvement of the solution. Conversely there is a decrease of the
parameter value in the case of non-improvement. The penalty is also proportional to the magnitude of
worsening of the solution. The intensification factor for which the value of the corresponding parameter
is changed is the one that has the largest value among the three factors (the biggest contributor in
the choice function). The value of the parameter of the diversification factor is increased when there
has not been any improvement after a certain number of iterations corresponding to the number of
low-level heuristics. It is decreased to a value that is small enough to allow the selection of low-level
heuristics which are effectively improving on the solution.

Overall the search for a good solution can then be regarded (decomposed) as a search for a solution
that is good with respect to B, C and H . So when searching for a good solution regarding a criterion
l ∈ L, we shall use the corresponding choice function fl and the neighbourhood for which fl is maximum
will be applied.

4 Experiments

Our hyperheuristic was implemented in Microsoft Visual C++ and all experiments were run on a PC
Pentium II 225MHz with 128MB RAM running under Windows NT Version 4.0. In all experiments
the stopping condition was 30 minutes of CPU time. All experiment results are averaged over 10
runs. There are n = 10 neighbourhood functions.2 We used the following four simple hyperheuristic

2(1)Remove one delegate, (2)Remove and add one meeting to delegate, (3)Add one delegate, (4)Remove and add one
meeting to delegate Variant 2, (5)Add one meeting to dissatisfied supplier, (6)Add one meeting to priority-dissatisfied
supplier, (7)Cut meeting surplus of supplier, (8)Remove and add one meeting to supplier, (9)Remove and add one meeting
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algorithms: SimpleRandom chooses one neighbourhood at random and applies it once (single call).
RandomDescent chooses one neighbourhood at random and applies it until no further improvement is
possible (descent call). RandomPerm chooses a random sequence of the n neighbourhoods and applies
each neighbourhood once in the sequence order. It cycles round from the nth neighbourhood to the
first neighbourhood of the sequence. RandomPermDescent does the same as RandomPerm but each
neighbourhood is applied in a steepest descent fashion. Also for each algorithm we distinguished the
case where all moves (AM) are accepted and the case where only improving moves (OI) are accepted.
We have noticed that algorithms applying neighbourhoods in a descent fashion produce the best results.
This was the case of RandomPermDescent − AM which produce the best result of 60.42 as shown
in Table 1. Therefore, we decided to use a descent-type call in our new hyperheuristic in addition
to the single call. More precisely, neighbourhoods are applied in a single-call fashion in the case of
diversification and in a descent-call fashion otherwise. An early version of the hyperheuristic conducted
the search according to the following cycle: search for an improvement (a better solution) with respect to
H , search for an improvement with respect to B, search for an improvement with respect to C and return
to search for an improvement with respect to H and so forth. The hyperheuristic started by “warming
up” the choice function by initially running RandomDescent. Results obtained were disappointing with
the evaluation function value ranging between 62.15 and 89.5. Closer analysis of this hyperheuristic’s
search pattern revealed that the hyperheuristic had a (sometimes subtle) cycling behaviour, due to the
fact that minimising the number of delegates (H) tends to pull in the opposite direction to maximising
the quality of the meeting schedule (B, C). To overcome this problem in the final hyperheuristic, for
which we report results in Table 1, we decided to choose the search criterion based on a probability
distribution which assigns the probability with which a criterion is chosen depending on the relative
importance of that criterion in the evaluation function. Since the search criteria are chosen at random,
there is little chance of falling into cycles of conflicting neighbourhoods. Furthermore the search effort
is now distributed according to the relative importance of each criterion. Other issues were raised
during our experimental study. We distinguished between the absolute improvement and the relative
improvement. The absolute improvement is the difference in terms of E between the current solution and
the best solution encountered so far. The relative improvement is the difference in terms of E between
the current solution and the previous solution. An immediate consequence is that the hyperheuristic is
now capable of recognising a key feature of conflicting cycles as sequences of neighbourhood calls during
which the absolute improvement is non-positive. We also decided to skip the warm-up period which
precedes the hyperheuristic search. Hence the hyperheuristic gets extra time for its search and the
problem of determining the proportion of time to devote to the warm-up is eliminated. The resulting
hyperheuristic was implemented and results averaged over 10 runs in both AM and OI variants. The
results are presented in Table 1. The hyperheuristic in its AM variant, called Hyperheuristic−AM in
Table 1, performs significantly better than all the simple algorithms. Hyperheuristic − AM is better
than all the simple algorithms in terms of best solution found and worst solution found. We observed
that the choice function parameters were evolved to final values consistent with the region of the search
currently under exploration. Hyperheuristic − OI gave a worse result than Hyperheuristic − AM
because of its more restricted view on the solution space but gave the second best result overall.

5 Conclusion

We have discussed some of the issues involved in the development of a more effective and efficient
hyperheuristic approach. These issues are raised during the definition of the choice function which
plays a role of primary importance in the choice of which neighbourhood to apply next. Particularly
we have observed a considerable advantage in decomposing the choice function into the criteria of
the solution. There were problems of conflicting neighbourhoods when the search followed a criterion-
based cyclical pattern, which were eliminated by using randomisation. Another important issue was the
settings of the choice function parameters throughout the search. We have incorporated a mechanism
that allows a readjustment of each parameter depending on the context (diversification, intensification)

to priority-dissatisfied supplier, (10)Remove and add one meeting to priority-dissatisfied supplier Variant 2.
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Algorithms B C d H E m
Original Greedy Heuristic 226.00 48.65 99.00 27.00 444.43 823.00
Initial Greedy 52.00 111.00 93.00 21.00 225.55 811.00
SimpleRandom-AM 42.60 86.40 85.20 13.20 152.52 819.40
SimpleRandom-OI 30.00 80.40 76.40 4.40 69.22 816.60
RandomDescent-AM 31.40 85.20 75.80 3.80 66.06 814.60
RandomDescent-OI 29.20 67.20 76.60 4.60 69.36 820.20
RandomPerm-AM 12.40 18.20 96.00 24.00 205.31 848.60
RandomPerm-OI 29.00 72.40 75.80 3.80 63.02 815.20
RandomPermDescent-AM 31.00 92.40 75.10 3.10 60.42 811.40
RandomPermDescent-OI 28.20 80.60 76.20 4.20 66.23 817.00
Hyperheuristic-AM 34.90 127.00 72.80 0.80 47.65 804.40
Hyperheuristic-OI 25.60 88.00 75.40 3.40 57.20 813.20

Table 1: m is the number of meetings scheduled

and the resulting change on the evaluation function (improvement) incurred by the application of the
neighbourhood. The resulting hyperheuristic is not only autonomous with respect to all parameters
but also shows a definite superiority over simple application of multiple neighbourhood techniques in
terms of average result, best result and worst result. We intend to demonstrate the effectiveness of our
hyperheuristic for other personnel scheduling problems.
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