

MIC2003: The Fifth Metaheuristics International Conference 03-1

An Investigation of Automated Planograms Using a Simulated

Annealing Based Hyper-heuristics

Ruibin Bai Graham Kendall

Automated Scheduling, optimisation and Planning (ASAP) Research Group

School of Computer Science & IT, University of Nottingham
Nottingham NG8 1BB, UK
{rzb,gxk}@cs.nott.ac.uk

1 Introduction
The retailing sector in the UK is an extremely competitive arena. We only need to consider
some high profile companies to show that this is the case. A particular example is provided by a
recent decline of Marks and Spencer, who were the leading high street retailer (in recent years
they are stating to show an improvement in their profitability). A further example is given by
C&A’s decision to close all of its high street outlets. Yet another example is the decline of J
Sainsbury from its position as the leading food retailer in the UK in the 1990’s (in 1996, Tesco
opened up a 2% lead over their rivals and continue to maintain an advantage). The recent
merger of Asda and Wal-Mart is expected to bring increased pressure on other retailers due to
the buying power of Wal-Mart. Finally, there is a battle over Safeways, which is currently up for
sale.

This level of competitiveness is unlikely to decline. On the contrary, the high street (or more
likely, out of town shopping centres) is likely to become even more competitive.

Several factors are used to influence consumers’ purchases, including product assortment
(which merchandise to sell), store layout and space planning, merchandise pricing, services
offered, advertising and other promotional programs [8]. Store layout and space planning
focuses on the improvement of the visual effect of the shopping environment and space
productivity. Planograms are used to show exactly where and how many facings of each item
should physically be placed onto the store shelves. Due to the limited shelf space, planograms
are one of the most important aspects that are used to improve financial performance [14].
However, generating planograms is a very challenging and time-consuming process because the
simplest form of planogram problem (ignoring all marketing and retailing variables) is already a
multi-knapsack problem, a well-known NP problem which is very difficult to solve. The
difficulty is further increased when we tackle other merchandise, such as fresh food, clothing
and frozen food, due to their special display requirements and not using standard shelf fitments.
Currently, producing planograms is largely a manual process (there is software assistance
available (e.g. Galaxxi) but it involves significant human interaction and does not provide any

Kyoto, Japan, August 25–28, 2003

03-2 MIC2003: The Fifth Metaheuristics International Conference

guidance or suggestions in deciding a good quality layout) and the shelf space allocation is
mainly based on the historical market shares. However, this approach may lose substantial sales
[1] as the display space may have different sales influence with respect to different items [5, 6].
Using the same display space, different items may obtain different sales and hence produce
different profits. Some models have been suggested to tackle this problem. Borin et al. [1] used
a simulated annealing algorithm to optimise their model in which the demand rate is formulated
as an exponential function of the space allocated to an item. Urban developed his model such
that the demand function could reflect the occurrence of out-of-stock and a genetic algorithm is
proposed to solve the problem [11]. However, a large number of parameters (especially

 cross elasticities for n items) in these two models make them difficult to be put into
an application because of the difficulty in obtaining a reliable estimation of their values due to
the complicated merchandise relationships. Yang [13] proposed a simpler model, however, the
linear objective function does not fit the real world retailing environment very well. All of the
three publications reported very good results from their algorithms. However, the performances
of these algorithms are largely dependent on the problems. For a different problem, or even a
different problem instance, the algorithms may not perform well as the algorithms require
substantial knowledge of the problem. In this context, a generalised approach (termed
hyper-heuristics) is proposed [3] which “broadly describes the process of using
(meta-)heuristics to choose (meta-)heuristics to solve the problem in hand”. In this approach,
there is a set of low-level heuristics that are simple and tailored for the problem to be solved.
Another heuristic, a high-level heuristic, operates over the low-level heuristics. From an initial
solution, the high-level heuristic leads the search to a good quality solution by making calls to
the low-level heuristics. The benefit of this approach is two-fold. Firstly, once the high-level
heuristic algorithm has been developed, a new problem can be solved by replacing the set of
low-level heuristics and the objective function, which is used to evaluate the quality of the
solutions. Secondly, the high-level heuristic can adapt itself in order to tune itself to the new
problem, or even a new problem instance. The hyper-heuristics successfully solved a sales
summit scheduling problem [4], in which a choice function (see section 3.3.2) is used to decide
which low-level heuristic to call. A nurse rostering problem and a university course timetabling
problem were also solved by a tabu search based hyper-heuristic, in which heuristics compete
against one another and a tabu list is maintained to prevent the selection of some heuristics at
certain times during the search [2]. Han et al. [7] solved a trainer scheduling problem, in which a
genetic algorithm is used to evolve a good sequence of low-level heuristics.

(1n n× −)

This research has two objectives: Firstly, we present a practical shelf space allocation model that
can fit real world problems. Secondly, a new kind of hyper-heuristic approach is proposed. In
this approach, simulated annealing is used to provide the suggestion of accepting low-level
heuristics instead of finding the solution itself. The results show that our simulated annealing
based hyper-heuristic is robust and gives the best solution among other hyper-heuristics, in most
cases.

2 Model formulation
The problem we are solving is the assignment of appropriate shelf space to every stock-keeping

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 03-3

unit in a given product category, without violating the given constraints, whilst maximising the
overall profit. Each stock-keeping unit is defined by a five-tuple (, ,il ip iβ , ,U) where
(respectively, ,

iL i il

ip iβ , ,U) is the length (respectively, profit, space elasticity, lower bounds,
upper bounds) of item i. The length of shelf j is denoted by

iL i

jT . We assume that: 1) Retailers
prevent out-of-stock occurrences. 2) The total profit of item i is proportional to its unit profit .
3) We ignore the physical constraints in the other two dimensions (height and depth).

ip

We employ Urban’s [11] demand function and disregard the cross elasticities not only because
they are quite small compared with space elasticities but also it is quite difficult to obtain a
reliable estimation of them. Based on the assumptions we discussed earlier, we have the
following space allocation model

Maximise (1)
1
(i

n
i i ii

P p βα
=

= ∑)x

n

subject to:

1
 1,...,n

i ij ji
l x T j m

=
≤ =∑ (2)

1
 1,..., ;m

i ij ij
L x U i

=
≤ ≤ =∑ (3)

 {1, 2, 3 ...} 1,..., 1,...,ijx i n j∈ = = m (4)
where m is the number of shelves and n is the number of items. ijx is the number of facings of
item i on shelf j and

1

m
i j ijx x

=
= ∑ is the total number of facings of item i. iα is a scale

parameter and iα >0. Constraint (2) ensures that the length of a shelf is greater than the total
length of the facings assigned to this shelf. Constraint (3) ensures that the lower and upper
bounds of the number of facings for each item are satisfied. Constraint (4) ensures that the
number of facings for each item is an integer. The objective is to maximise the overall profit
without violating the given constraints. The model is a non-linear, multi-constraints optimisation
problem. If we let 1iβ = , the model becomes a multi-knapsack problem.

3 Implementation
3.1 Hyper-heuristic
We employ a new type of hyper-heuristic, a simulated annealing based hyper-heuristic to solve
our problem. In this approach, simulated annealing is used to guide the acceptance of the
low-level heuristics (or neighbourhood functions) instead of finding a solution. From an initial
solution, simulated annealing leads the search in a promising direction by making calls to the
appropriate low-level heuristics. Twelve low-level heuristics are used. They are categorised into
four types: add product(s), delete product(s), swap and interchange (see section 3.2). Two other
types of hyper-heuristics are also applied to our problem and the results are compared.

3.2 Low-level heuristics
Before we describe the low-level heuristics which are used in the hyper-heuristics, we first
define three order lists.

• : item_contribution_list: item list ordered by 01P /i i ip lα⋅ decreasingly.
• : item_length_list: item list ordered by length increasingly; 02P il
• : shelf_freelength_list: shelf list sorted by the current free shelf space decreasingly. 0S

Kyoto, Japan, August 25–28, 2003

03-4 MIC2003: The Fifth Metaheuristics International Conference

We use twelve low-level heuristics in our hyper-heuristics.
• Add_random: add one facing of a random item to the first shelf of . 0S
• Add_exact: search and assign one facing of the biggest possible item to all shelves

(begin from the first shelf of) until all shelves cannot hold any more items. 0S
• Add_best_contribution: repeatedly select a shelf from (begin from the first shelf in

), repeatedly search and add as many as possible facings of items (begin from the first
item of) until the last shelf of .

0S

0S

01P 0S
• Add_best_improvement: select the first shelf of and allocate one facing space to the

item which gives the best improvement to the evaluation function.
0S

• Delete_random: delete one facing of a random item from a random shelf.
• Delete_least_contribution1: delete one facing of the item with the least contribution

value (the rightmost item in the list) from a random shelf. 01P
• Delete_least_contribution2: delete one facing of the item with the least contribution

value (the rightmost item in the list) from all shelves. 01P
• Delete_least_improvement: delete one facing of the item that causes least decrease in

the objective value from a random shelf.
• Swap_random: randomly delete one facing of an item from a random shelf; add as

many as possible facings of another randomly selected item.
• Swap_best: repeatedly select a shelf from , delete one facing of the item with the

lowest contribution value (the rightmost item in the list), add one facing of another
item with a higher/highest contribution value (the leftmost item in the list), until the
last shelf is swapped.

0S

01P

01P

• Interchange_improvement: randomly select two different items from two random
shelves and interchange one facing or multiple facings of two items. The basic idea
behind this heuristic is that the small free space can be transferred to the shelf with a
larger free space so that another facing could be added to that shelf later.

• Interchange_random: randomly select two different items from two random shelves,
exchange one facing of the two items.

3.3 Hyper-heuristic approaches
Three types of high-level heuristics are used to guide the selection of low-level heuristics.

3.3.1. Random heuristics
In this hyper-heuristic, a random low-level heuristic is repeatedly selected and applied to the
current solution until some stopping criteria are met. Two high-level heuristics, RHOI (Random
Heuristics Only Improving) and RHAM (Random Heuristics All Moves) are used during the
experiments. RHOI only accepts a move which can improve the current solution, while RHAM
accepts all moves.

3.3.2. A choice function based heuristics
The choice function based hyper-heuristic was proposed in [4]. In this heuristic, the selection of
the low-level heuristics is guided by a Choice Function, which is composed of three parts:
recent improvement of each low-level heuristic , recent improvement for consecutive pairs
of low-level heuristics , and the amount of time elapsed since the given heuristic has been

1()f

2()f

Kyoto, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 03-5

called . Hence it appears in the form of 3()f ()jCF h = 1 2 3() (,) ()j k j jf h f h h f hα β δ+ + whereα ,
β and δ are respective weighs of three terms. A more detailed description is given in [4].

/)tδ

1 β→ +

ft

/allowed averageK T T=

() /s ft t average allowed s fT T t t− ⋅ ⋅ ⋅

3.3.3. A simulated annealing based hyper-heuristics
Simulated annealing has been shown to be a powerful tool in solving a variety of combinatorial
optimisation problems[12]. Based on a neighbourhood structure and a cooling schedule, a move
is accepted if there is an improvement over the objective function (we are assuming we are
trying to maximise the objective function). If the move generates a decrease in the objective
function, it is accepted by the probability exp([10]. However, in this paper, a simulated
annealing heuristic is used to guide the selection and acceptance of the low-level heuristics
instead of controlling the moves between neighbourhoods. In this heuristic, we repeatedly apply
a random low-level heuristic and accept it based on the Metropolis’s probability (simulated
annealing would normally only have access to one heuristic function or neighbourhood (e.g.
2-opt in a travelling salesman problem), but we give it access to a set of heuristics). Lundy and
Mees’s cooling schedule [9] is employed in which the temperature is cooled according to

/()t t t and at each temperature only one iteration is performed. The starting
temperature (st) is set to such a value that approximately 75% “bad heuristics” (heuristics
which give a decrease in objective function) would be accepted. The stopping temperature ()
is 0.1. Suppose we allow seconds for the search and the average time spent for one
iteration is , we have the total number of the iterations

allowedT
avT erage . After the

mathematical derivation, we have

() / s f s ft t K t tβ = − ⋅ ⋅ = (5)

4 Results
All algorithms were coded in Microsoft Visual C++ version 6.0 and all experiments were run on
a PC Pentium IV 1800MHZ with 256MB RAM running Microsoft Windows 2000 professional
Version 5. The stopping condition for all algorithms is 650 seconds CPU time. All results are
averaged over 5 runs. The products and the shelf data were generated randomly by the same
methods as used in [13]. Seven different problem instances, with different degrees of difficulty,
were solved by our hyper-heuristic. The problems are also solved by a greedy heuristics (the
greedy heuristic repeatedly adds the item with the highest item_contribution value). The
difficulty degree of a problem is ranked by the ratio of the minimal space requirements to the
total shelf space. A ratio of 1.00 means the most difficult problem which usually cannot be
solved for the random data. The smaller the ratio is, the less difficult the problem (we don’t
consider very small value of ratio as it is not practical considering the scarce shelf space). All
hyper-heuristic algorithms start from the solution created by the greedy heuristic.

Table 1 shows that our hyper-heuristics give significant improvement over the greedy heuristic.
It also appears that our hyper-heuristic is suitable to solve easy problems because it gives more
improvement for these problems (that is, problems with smaller ratios) than the more difficult
ones. However, when the ratio goes below 0.5, the improvement reduces as well. This is
probably because that, in this case, available space is so abundant that the number of the facings

Kyoto, Japan, August 25–28, 2003

03-6 MIC2003: The Fifth Metaheuristics International Conference

of most items has reached the upper bound. Therefore, the low-heuristics are constrained and
cannot work efficiently. From the table 1, we also can see that the simulated annealing
hyper-heuristic outperforms other hyper-heuristics approaches in most cases. It is only slightly
beaten by the choice function based hyper-heuristics in one case (ratio = 0.95).

ratio (m, n) 0.95 (12, 54) 0.85 (11, 48) 0.8 (13, 48) 0.7 (15, 48) 0.6 (16, 48) 0.5 (17, 48) 0.4 (22, 48)

-- OV Imp% OV Imp% OV Imp% OV Imp% OV Imp% OV Imp% OV Imp%

Greedy heuristics 410.81 -- 388.24 -- 419.06 -- 390.47 -- 416.75 -- 449.55 -- 507.96 --

Choice Function

Hyper-heuristics
418.82 1.95 396.50 2.13 432.24 3.15 403.87 3.58 430.63 3.33 467.02 3.89 521.90 2.74

Simulated Annealing

Hyper-heuristics
418.80 1.94 397.94 2.50 433.35 3.41 405.25 3.79 431.39 3.51 467.68 4.03 522.57 2.88

RHOI 418.40 1.85 396.44 2.11 396.44 2.62 401.67 2.87 425.86 2.19 458.88 2.07 521.25 2.62

RHAM 418.54 1.88 397.06 2.27 432.49 3.21 404.51 3.60 430.50 3.30 467.01 3.88 521.34 2.63

T

5 C
In this
planog
extens
provid
packin
adapts
hyper-
the fo
results

One of
our sc
proble
genera

Refe
 1 B

C
1

 2 B

Kyoto
able 1 Algorithm performance vs different degrees of problem difficulties

 m: the number of shelves, n: the number of items, ratio=Minimal space/Total available space
 OV: Objective Value, Imp% = ((OV - OVgreedy) / OVgreedy)*100%

onclusion
 paper, we use a more practical shelf space allocation model to generate automatic
rams. Several hyper-heuristic approaches are applied to solve this problem. As an
ion of the multi-knapsack problem [13], the planogram problem is difficult to solve. We
e a set of simple low-level heuristics which have been shown to be very successful in bin
g and knapsack problem. The hyper-heuristic operates on the low-level heuristics and
 its choice decision to the current search space. The experimental results show that the
heuristics used in this paper produced much better results than a greedy heuristic and in
ur hyper-heuristics, our simulated annealing based hyper-heuristic produced the best
 in most cases.

 the problems with simulated annealing is defining a suitable cooling schedule. Although
hedule appears to be effective, we plan to investigate tuning the cooling schedule to the
m in hand. We will also investigate on different problems in an attempt to demonstrate the
lisation of this approach.

rences
orin, N., Farris, P. W. and Freeland, J. R., A Model for Determining Retail Product
ategory Assortment and Shelf Space Allocation. Decision Sciences, 25(3): 359-384,
994.

urke, E., A Tabu-Search Hyperheuristic for Timetabling and Rostering. To Be Appeared

, Japan, August 25–28, 2003

MIC2003: The Fifth Metaheuristics International Conference 03-7

Kyoto, Japan, August 25–28, 2003

in Journal of Heuristics, 2003.

 3 Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P. and Schulenburg, S.,
Hyper-Heuristics: An Emerging Direction in Modern Search Technology. Handbook of
Meta-Heuristics (Glover F., Kochenberger, G., ed).Kluwer, 457-474, 2003.

 4 Cowling, P., Kendall, G. and Soubeiga, E., A Parameter-free Hyperheuristic for
Scheduling a Sales Summit. Proceedings of the 4th Metaheuristic International
Conference[MIC 2001], 127-131, 2001.

 5 Curhan, R., The Relationship Between Space and Unit Sales in Supermarkets. Journal of
Marketing Research, 9: 406-412, 1972.

 6 Desmet, P. and Renaudin, V., Estimation of Product Category Sales Responsiveness to
Allocated Shelf Space. International Journal of Research in Marketing, 15: 443-457, 1998.

 7 Han, L., Kendall, G. and Cowling, P., An Adaptive Length Chromosome Hyperheuristic
Genetic Algorithm for a Trainer Scheduling Problem. 4th Asia-Pacific Conference on
Simulated Evolution and Learning [SEAL'02], 267-271, 2002.

 8 Levy, M. and Weitz, B., Retailing Management. Homewood, IL., ISBN 0-256-05989-6,
689-692, 1992.

 9 Lundy, M. and Mees, A., Convergence of An Annealing Algorithm. Math.Prog., 34:
111-124, 1986.

 10 Reeves, Colin R., Simulated Annealing, Modern Heuristic Techniques For Combinatorial
Problems. McGraw-Hill, 1995.

 11 Urban, T., An Inventory-Theoretic Approach to Product Assortment and Shelf-Space
Allocation. Journal of Retailing, 74(1): 15-35, 1998.

 12 Vakharia, A. J. and Chang, Y.-L., A Simulated Annealing Approach to Scheduling a
Manufacturing Cell. NRL, 37: 559-577, 1990.

 13 Yang, M.-H., An Efficient Algorithm to Allocate Shelf Space. European Journal of
Operational Research, 131: 107-118, 2001.

 14 Yang, M.-H. and Chen, W.-C., A Study on shelf Space Allocation and Management.
International Journal of Production Economics, 60(61): 309-317, 1999.

	1 Introduction
	2 Model formulation
	3 Implementation
	3.1 Hyper-heuristic
	3.2 Low-level heuristics
	3.3 Hyper-heuristic approaches
	Random heuristics
	A choice function based heuristics
	A simulated annealing based hyper-heuristics

	4 Results
	5 Conclusion

