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Abstract: This paper formulates the shelf space allocation problem as a non-linear 
function of the product net profit and store-inventory. We show that this model 
is an extension of multi-knapsack problem, which is itself an NP-hard 
problem. A two-stage relaxation is carried to get an upper bound of the model. 
A simulated annealing based hyper-heuristic algorithm is proposed to solve 
several problem instances with different problem sizes and space ratios. The 
results show that the simulated annealing hyper-heuristic significantly 
outperforms two conventional simulated annealing algorithms and other 
hyper-heuristics for all problem instances. The experimental results show that 
our approach is a robust and efficient approach for the shelf space allocation 
problem. 
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1. INTRODUCTION 

The retailing sector in the UK is an extremely competitive arena. We 
only need to consider some high profile companies to show that this is the 
case. A particular example is provided by the recent decline of Marks and 
Spencer, who were the leading high street retailer (and in recent years they 
are starting to show an improvement in their profitability). A further 
example is given by C&A’s decision to close all of its high street outlets. Yet 
another example is the decline of J Sainsburys from its position as the 
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leading food retailer in the UK in the 1990’s (in 1996, Tesco opened up a 
2% lead over their rivals and continue to maintain an advantage). Asda, after 
merging with Wal-Mart, increased its market share dramatically and 
overtook Sainsbury’s as the second biggest supermarket in the UK. In July 
2003, Asda had gained 17% of market share, while Sainsbury’s had slipped 
from 17.1% to 16.2%. Tesco retains the top spot with 27% of the overall 
market share. Finally, there was a battle over Safeways, which was recently 
up for sale. 

This level of competitiveness is unlikely to decline. On the contrary, the 
high street (or more likely, out of town shopping centres) is likely to become 
even more competitive. 

Figure #-1. An example of a simple planogram 
 

Several factors are used to influence consumers’ purchases, including 
product assortment (which merchandise to sell), store layout and space 
planning, merchandise pricing, services offered, advertising and other 
promotional programs [21]. Store layout and space planning focuses on the 
improvement of the visual effect of the shopping environment and space 
productivity. Planograms (see figure #-1 for an example) are used to show 
exactly where and how many facings of each item should physically be 
placed onto the store shelves. Due to the limited shelf space, planograms are 
one of the most important aspects that are used to improve financial 
performance [31]. Electronic planograms can be also used for inventory 
control and vendor relation improvement [21]. However, generating 
planograms is a challenging and time-consuming process because the 
simplest form of planogram problem (ignoring all marketing and retailing 
variables) is already a multi-knapsack problem, a well-known NP-hard 
problem which is very difficult to solve. The difficulty is further increased 
when we consider other merchandise, such as fresh food, clothing and frozen 
food. This is due to their special display requirements and the fact that they 
do not use standard shelf fitments. Currently, producing planograms is 
largely a manual process (there is software assistance available (e.g. 
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Galaxxi) but it involves significant human interaction and does not provide 
any guidance or suggestions in deciding a good quality layout) and the shelf 
space allocation is mainly based on historical market share. However, this 
approach may lose substantial sales [2] as the display space may have 
different sales influence with respect to different items [11, 12, 14, 20]. 
Using the same display space, different items may obtain different sales and 
hence affect the profits of the organisation. 

A recent publication [31] conducted a survey of the area. This work 
demonstrated the lack of academic work that has been conducted in this 
domain. Only twelve references were cited. Five of these date back to the 
1970’s, four were drawn from the 1980’s and only three were from the 
1990’s. It seems timely that this area should receive research attention, given 
the recent advances in AI search techniques.  

At present, commercial systems use simple heuristic rules to allow 
retailers to plan their shelf space allocation [32]. Some research [2, 26] has 
proposed models which integrate product assortment, inventory control 
management and shelf space allocation. However, these models are too 
complicated to put into practice. Yang [30] used a model based on a 
knapsack problem and presented a heuristic to solve some numerical 
instances of shelf space allocation problems. However, the linear objective 
function assumption does not fit well with the real world retailing 
environment. 

Planograms are a subset of the wider domain of space planning which 
includes more well known research areas such as bin packing and knapsack 
problems [31]. Some of techniques that have already been successfully 
applied to problems within this wider domain may also be promising to shelf 
space allocation problems. 

2. RELATED WORK 

2.1 Experiments and studies 

Due to the scarcity of space within stores, some researchers have 
concentrated on studying the relationship between the space allocated to an 
item and the sales of that item. Most have reached a common conclusion that 
a weak link exists between them and the significance depended on the type 
of items [11, 12, 14, 16, 20]. Earlier, in 1969, Kotzan and Evanson [20] 
began to investigate the relationship between the shelf space allocated to an 
item and the sales of that item and found that a significant relationship 
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existed within the three tested drug stores. Cox’s research [11] found that 
this relationship was very weak and depended on the category of products. 
However, his experimental results may be affected by limited experiment 
brand samples (only two brands are measured for each of the two 
categories). Curhan [12] defined the space elasticity as “the ratio of relative 
change in unit sales to relative change in shelf space” and argued that there 
existed a small, positive space elasticity for each item but the value 
depended on the products, stores and in-store layout [13].  Drèze et al. [16] 
carried out a series of  experiments to evaluate the effectiveness of shelf 
space management and cross-category merchandise reorganisation. The shelf 
space manipulation included changing product facings, deletion of slow 
moving items, changes of shelf height, etc. Cross-category merchandise 
reorganisation included manipulation to enhance the complementary 
shopping within merchandise assortment and easier shopping. The results 
showed that, compared with the number of facings assigned to a brand, 
location had a larger impact as long as a minimum inventory (to avoid out-
of-stocks) was guaranteed. On the contrary, recent research [14] showed that 
direct space elasticities were significantly non-zero and varied considerably 
through different categories. Costume jewellery, fruit and vegetables, 
underwear, shoes were among the highest space elasticities while textile, 
kitchen and do-it-yourself products had low values.  

If the products are always available and the consumers would never 
switch to another brand, the change of space allocated to an item has no 
effect on its sales [2]. However, in fact, nearly half of the consumers would 
switch to other stores or change their previous choice to an alternative brand 
if their first choice is out-of-stock [28]. On the other hand, the purchase of 
some merchandise could increase the possibility of buying other 
merchandise with the complementary functions (for example, a customer 
who bought a toothbrush may also buy toothpaste). Cross elasticities were 
introduced to evaluate the interdependence between two different items in 
Corstjens and Doyle’s model [7]. Borin et al. [2] and Urban [26] also used 
cross elasticities in their models but with different definitions. In Borin et 
al.’s model, the cross elasticities were in the range [–1, 0]. Urban extended 
the range of cross elasticities to [-1, 1]. It was positive if two items were 
complementary and negative if they could be substituted for each other. 
Although cross elasticities are helpful in revealing the relationships between 
different items, it is quite difficult to obtain a reliable estimation of so many 
values ( n n×  for n items) due to the complicated merchandise relationships. 
Therefore, recent researchers disregarded it in their models [14, 27]. 

Display location is another factor that has been studied. Campo et al. [5] 
investigated the impact of location factors on the attractiveness of product 
categories and stated that the sales of the whole store were dependent on the 
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intrinsic attractiveness based on category, store and trading area 
characteristics as well as cross elasticities between the categories. However, 
the model did not consider the difference in visibility or prominence between 
various locations in the store. 

2.2 Shelf space allocation models and searching methods 

Several space allocation models have been proposed by market 
researchers. Most formulated the demand rate of an item as a function of the 
space allocated to the item, of which a classic model appears as a polynomial 
form proposed by Baker and Urban [1]: 

( )        0,   0 1D x xβα α β= > < <                                     (1) 

where ( )D x  is the demand rate of the product, x is the number of facings or 
the displayed inventory. α  is a scale parameter and β  is the space elasticity 
of the product. The advantageous characteristics of this model included the 
diminishing returns (the increase in the demand rate decreased as the space 
allocated to this shelf increased), inventory-level elasticity (the shape 
parameter represents the sensitivity of the demand rate to the changes of the 
shelf space), intrinsic linearity (the model can be easily transformed to a 
linear function by a logarithmic transformation and parameters can then be 
estimated by a simple linear regression) and its richness. Corstjens and 
Doyle [7] formulated their model as a multiplicative form and incorporated 
both the space elasticities and cross elasticities. The inventory and handling 
cost effects were also considered. The model allowed different product profit 
margins corresponding to different locations and hence captured the location 
impact on the sales. However, due to the characteristic of the polynomial 
function, this model tends to scatter the facings of each item into different 
locations in order to obtain a larger objective function value. Based on this 
model, some non-space factors were also taken into account by Zufryden’s 
model [32], such as price, advertisement, promotion, store characteristics, 
etc. A dynamic programming approached was proposed to solve this model. 
However, this approach ignored the integer nature of the number of facings 
of the items and hence only produced suboptimal solutions.  

Some integrated models were also proposed based on the correlation of 
retailing decision process [2, 26]. Borin et al. [2] developed a different 
model which tried to maximise the category return on inventory. This model 
was supposed to help the retailer to decide which products to stock (products 
assortment) and how much space should be allocated to them. The demand 
function was formulated into three components: unmodified demand, 
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modified demand and acquired demand. Unmodified demand represented the 
customers’ direct preference of an item and was calculated according to its 
market share. Modified demand took account of the interdependence and 
substitution of different merchandise. Acquired demand represented the 
indirect demand captured from those products which were excluded from the 
assortment. A heuristic procedure, based on simulated annealing, was 
employed to optimise the model. The neighbourhood was defined by 
exchanging one facing of two random items. The result showed that 
simulated annealing was more efficient and flexible compared with the shelf 
allocation rule based on the share of sales (a common space allocation rule). 
The above-mentioned models used the number of facings to foresee the 
demand quantity of that item. However, the effect of part-stocked items 
(some facings are missing) was not explicitly reflected. Urban [26] replaced 
the  number of facings with average inventory in his model which integrated 
existing inventory-control model, product assortment model and shelf-space 
allocation model. A greedy heuristic and a genetic algorithm (GA) were 
proposed to solve the problem. A GA chromosome represented a given 
product assortment vector (i.e. “0”: excluded, “1”: included). The violations 
of some constraints were allowed in the initial solutions and then repaired by 
scaling down the number of facings of each item and their order quantities. 
However, the GA operations (crossover and mutation) were applied to only 
produce a good product assortment based on the given objective function. 
No procedure was carried out to evolve a good space allocation decision. 
The drawback mainly results from the fact that the model includes many 
parameters and is difficult to be optimised by current AI search techniques. 
In fact, Yang [30] argued that: “for commercial models, a very important 
criterion for selecting a space allocation method is the simplicity and ease of 
operation of the method”. He proposed a simpler linear model based on 
Zufryden’s work [32], by assuming that total net profit was linear with the 
number of facings of an item. However, this is unrealistic for the real world 
retail environment. A greedy algorithm, in conjunction with three simple 
heuristics, was proposed to optimise the model. However, only several 
numerical examples were used to justify the algorithm and they are far from 
the real world shelf space allocation problems which are usually much larger 
and more complicated. In addition, the three heuristics rejected all “bad 
moves” (a decrease in the objective value for a maximisation problem). The 
algorithm, in fact, worked in a random greedy fashion and was easily 
trapped in local optima.  
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2.3 Hyper-heuristics 

Meta-heuristics has been intensively investigated and applied to a wide 
variety of applications in the last twenty years, including scheduling, 
production planning, resource assignment, supply chain management, 
decision support systems and bio-informatics [18, 24]. Most of these 
applications require a thorough study of the problem and a fixed problem 
definition. Many of the publications also reported that these algorithms 
perform very well in solving their specific problems. However, once the 
problem changes (even slightly), the performance of the already developed 
meta-heuristic may decrease dramatically for the new problem. Significant 
parameter tuning may need to be carried out for the purpose of adapting the 
algorithms to the new problem or the new problem instance. It should also 
be recognised that real-world problems are subject to changes due to them 
reflecting changes in the business requirements either by management 
decisions or other factors, such as trading conditions, research and 
development, employing new technology etc.   

The “No Free Lunch Theorem” [29] showed that there is no one 
algorithm that could beat all other algorithms in all classes of problems. If an 
algorithm outperforms other algorithms on a specific class of problems, there 
must exist another class of problems on which this algorithm is worse than 
the others. Hence, a good way to raise the generality of meta-heuristics is to 
apply different (meta-)heuristics at different times of the search. In this 
context, a generalised approach (termed hyper-heuristics) is proposed [3] 
which “broadly describes the process of using (meta-)heuristics to choose 
(meta-)heuristics to solve the problem in hand”. This approach differs from 
the more usual meta-heuristic approach, which operates over the solution 
space directly. A hyper-heuristic approach operates over the solution space 
indirectly by searching the heuristic space. In this approach, there is a set of 
“low-level heuristics” that are designed for the problem to be solved. 
Another heuristic, a high-level heuristic, operates over the low-level 
heuristics. From an initial solution, the high-level heuristic leads the search 
to a good quality solution by making calls to the low-level heuristics. The 
benefit of this approach is two-fold. Firstly, once the high-level heuristic 
algorithm has been developed, a new problem can be solved by replacing the 
set of low-level heuristics and the objective function, which is used to 
evaluate the quality of the solutions. Secondly, the high-level heuristic can 
adapt itself in order to tune to the new problem, or even a new problem 
instance. The application of hyper-heuristic approaches can be traced back to 
the 1960’s although the term “hyper-heuristic” was not used. Fisher and 
Thompson [17] used an unbiased random process to combine two 
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rules/heuristics to solve a job-shop  scheduling problem and the results 
showed that even this simple combination of rules produced much better 
results than any of them used separately. Recently, Hart et al. [19] solved a 
real world chicken factory scheduling problem using a GA based hyper-
heuristic. The problem involved scheduling the collection and delivery of 
chicken from farms to its processing factories.  The problem was 
decomposed into two stages and two separate GAs were used to tackle the 
problem. In the first stage, the orders were split into suitable tasks and these 
tasks were then assigned to different “catching squads”. The second stage 
dealt with the schedule of the arrival of these squads. The GA chromosome 
in the first stage represented a sequence of orders, a set of heuristics to split 
each order into suitable sized tasks and another set of heuristics to assign 
these tasks to the different “catching squads”.  The GA was used to evolve a 
strategy of building a good solution instead of finding the solution directly. 
The experimental results showed this approach is fast and robust and easy to 
implement. Another GA based hyper-heuristic framework was also proposed 
by Cowling et al. [9] in solving a trainer scheduling problem. Here, a GA 
chromosome represented an ordering of the low-level heuristics that were 
going to be applied to the current state. A good sequence was evolved during 
the search corresponding to the given problem instance. The computational 
results showed that the GA based hyper-heuristic outperformed both a 
conventional genetic algorithm and a memetic algorithm which directly 
encoded the problem as a chromosome. Recently, Ross et al. [25] proposed a 
different type of hyper-heuristic based on a genetic algorithm. The problem 
is one dimensional bin packing. Instead of working on feasible solutions as 
the hyper-heuristics mentioned above do, the proposed hyper-heuristic in 
this paper operates on a partial solution and gradually constructs the solution 
using different rules (heuristics) until a feasible solution is obtained. The 
heuristic selection is based on the state of current partial solution. Each state 
associates a rule or heuristic whose relationship with solution states is 
evolved by a genetic algorithm. The chromosomes of their GA are defined as 
a set of blocks and each block contains a set of parameters which is used to 
define a solution state and its corresponding heuristics. The algorithm is 
firstly trained on parts of benchmark problems. After the training, the fittest 
chromosome is then applied to every benchmark problem, 80% of which are 
solved to optimality. Yet another kind of hyper-heuristic used the ideas of 
reinforcement learning to guide the choice of the heuristics during the search 
[8, 23]. In [8], a sales summit scheduling problem was solved by a “choice 
function” based hyper-heuristic, in which the choice function dynamically 
selected suitable heuristics at each decision point. The computational results 
showed that the choice function based hyper-heuristic performed better than 
applying the heuristics randomly. Nareyek [23] used a non-stationary 
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reinforcement learning procedure to choose heuristics in solving the Orc 
Quest problem and the Logistics Domain problem. The author discussed the 
advantages of the hyper-heuristic approach, especially in solving complex 
real-world problems in which the computational cost is expensive. Burke et 
al. [4] applied a tabu search based hyper-heuristic to a nurse rostering 
problem and a university course timetabling problem, in which the set of 
heuristics were ranked according to their performances in the search history. 
A tabu list is also incorporated to prevent the selection of some heuristics at 
certain points in the search.  

The remainder of this paper is organised as follows: in the section 3, we 
give a description of the problem and formulate it as a non-linear 
combinatorial maximisation model. Section 4 will focus on the 
implementation of our simulated annealing hyper-heuristic. Section 5 gives 
the experimental results, together with some analysis. Section 6 concludes 
the paper.  

3. MODEL FORMULATION 

3.1 Model formulation 

The problem we are solving is the assignment of appropriate shelf space 
to every stock-keeping unit (SKU) in a given product category, without 
violating the given constraints, whilst maximising the overall profit. Each 
stock-keeping unit is defined by a five-tuple ( il , ip , iβ , iL , iU ) where il  
(respectively, ip , iβ , iL , iU ) is the length (respectively, profit, space 
elasticity, lower bounds, upper bounds) of item i. The length of shelf j is 
denoted by jT . We assume that: 1) Retailers prevent out-of-stock 
occurrences. 2) The total profit of item i is proportional to its unit profit ip . 
3) We ignore the physical constraints in the other two dimensions (height 
and depth).  

We employ Urban’s [26] demand function and disregard the cross 
elasticities not only because they are quite small compared with space 
elasticities but also because it is quite difficult to obtain a reliable estimation 
of them. Based on the assumptions we discussed earlier, we have the 
following space allocation model 

Maximise  
1
( )i

n

i i ii
P p xβα

=
=∑                                          (2) 

subject to: 



10 Chapter # 
 

1
    1,...,

n

i ij ji
l x T j m

=
≤ =∑                                             (3) 

 

1
      1,..., ;

m

i ij ij
L x U i n

=
≤ ≤ =∑                                          (4) 

 
{0,1,  2,  3 ...}   1,...,    1,...,ijx i n j m∈ = =                                    (5) 

 
where m is the number of shelves and n is the number of items. The decision 
variables are ijx , representing the number of facings of item i on shelf j 
and

1

m

i ijj
x x

=
=∑  is the total number of facings of item i. iα  is a scale 

parameter and iα >0. Constraint (3) ensures that the length of a shelf is 
greater than the total length of the facings assigned to this shelf. Constraint 
(4) ensures that the lower and upper bounds of the number of facings for 
each item are satisfied. Constraint (5) ensures that the number of facings for 
each item is an integer. The objective is to maximise the overall profit 
without violating the given constraints. The model is a non-linear, multi-
constraints optimisation problem. If 1iβ → , the model degenerates into a 
multi-knapsack problem. 

3.2 Upper bound of the model 

As shelf space allocation cannot be solved to optimality in polynomial 
time [2], we usually do not know the optimal solution and hence cannot 
evaluate the quality of a given solution by comparing it with the optimal 
solution. Yang [30] compared his results with the optimal solution obtained 
by carrying out a complete enumeration. However, this method is only 
suitable for very small problem instances. For a shelf space allocation 
problem with n items (each item has an upper bound of facings U) and m 
shelves, it requires m nU ×  iterations to find the optimal solution using an 
exhaustive search. Even for a small problem instance: n=6, m=3, U=6, this 
could take around 40 years, an extremely unrealistic computing time for a 
practical application. Another common method is to relax the problem to a  
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Figure #-2. Approximate objective with a linear function 



simpler one and obtain the upper bound of the objective. In this paper, we 
use a two-stage relaxation to get an upper bound of the model: 

Stage 1: we first relax our non-linear model to be a linear model. This is 
accomplished by applying a linear Taylor expansion at the point ix  
( i i iL x U≤ ≤ ) (as illustrated in figure #-2). The model hence becomes an 
integer programming (IP) problem: 

maximise  
( 1)

1
( ( ) )i i

n

IP i i i i i i ii
P p x x x xβ βα β −

=
= ⋅ ⋅ ⋅ ⋅ − + ⋅∑           (6) 

or  

maximise   
1
( )

n

IP i ii i
P A x B

=
= +∑                                         (7) 

subject to the constraints (3), (4) and (5), where ( 1)i

i i i i iA p x βα β −= ⋅ ⋅ ⋅  and 
( 1)i i

i i i i i i i i iB p x p x xβ βα α β −= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ . Suppose * * * *
1 2( , ,..., )nX x x x=  is the 

optimal solution for the original model (2) and *P is its corresponding 
optimal objective value. *

IPP  is the optimal objective value for the IP model 
(7). From figure #-2, we have: 
 

* * * * *

1 1 1 1
( ) ( ) [ ( ) ( ) ]i i

n n n n

i i i i i i i i i i i ii i i i
P p x A x B A x B p xβ βα α

= = = =
= = + − + −∑ ∑ ∑ ∑   

     * * *

1 1
[ ( ) ( ) ]i

n n

IP i i i i i ii i
P A x B p x βα

= =
≤ − + −∑ ∑     

  ( 1)* * *

1
[ ( ) ( ) ]i i i

n

IP i i i i i i i ii
P p x x x x xβ β βα β −

=
= − + − −∑   *

IPP≤                          (8) 

 
hence, the gap between *

IPP  and *P  is no less than: 

 
( 1)* *

1 1
[ ( ) ( ) ]i i i

n

i i i i i i i ii
G p x x x x xβ β βα β −

=
= + − −∑                            (9) 

From equation (9), we can see that the closer ix  is to *
ix , the smaller the gap 

is. In order to keep 1G  as a small value, we let ix = '
ix  where 

' ' ' '
1 2( , ,..., )nX x x x=  is the best solution found by the algorithms (see section 

5). 
Stage 2: based on the approximation form step 1, we ignore the integer 

constraint (5) in the IP model and the model becomes a linear programming 
(LP) model. We use “lp_solve” (a free LP software package) to obtain the 
optimal objective (denoted by *

LPP ) of this LP model. We take this value as 
the relaxed upper bound of our shelf space allocation model ubP , i.e. 

*ub
LPP P= . 
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4. SIMULATED ANNEALING HYPER-HEURISTIC 

4.1 Simulated annealing 

Simulated annealing is a local search method inspired by the process to 
simulate the physical cooling process. From an initial solution, SA 
repeatedly generates a neighbour of the current solution and transfers to it 
according to some strategy with the aim of improving the objective function 
value (we are assuming we are trying to maximise the objective function). 
During this process, SA has the possibility to visit worse neighbours in order 
to escape from a local optimal. Specifically, a parameter, called temperature 
t, is used to control the possibility of moving to a worse neighbour solution. 
The algorithm, starting from a high temperature, repeatedly decreases the 
temperature in a strategic manner (usually called a cooling schedule) until 
the temperature is low enough or some other stopping criteria is satisfied. In 
each iteration, the algorithm accepts all “good” moves and some of the “bad” 
moves according to the Metropolis probability, defined by exp( / )tδ−  where 
δ  is the decrease in the objective function value. Simulated annealing has 
been shown to be a powerful tool in solving a variety of combinatorial 
optimisation problems [15]. However, the drawback of SA is that the 
algorithms performance is sensitive to the parameters and problem instance. 
Many experiments need to be carried out in order to tune the parameters to 
the problem.  

4.2 Simulated annealing hyper-heuristic 

Hyper-heuristics were proposed to be a more general approach for most 
combinatorial optimisation problems and they have the ability to adapt 
themselves to different problems or problem instances. Here, we propose 
another type of hyper-heuristic: a simulated annealing based hyper-heuristic. 
The basic idea behind this approach is that we use simulated annealing to 
guide the selection and acceptance of the low-level heuristics (or 
neighbourhood functions, see section 4.3), instead of controlling the moves 
between neighbours. From an initial solution, simulated annealing leads the 
search in a promising direction by making calls to the appropriate low-level 
heuristics. Specifically, for a maximisation problem, the algorithm works as 
follows:  

Define an objective function f and a set of heuristics H; 
Define a cooling schedule: starting temperature 0st > , a temperature 
reduction function ϕ  and a number of iterations for each temperature 
nrep ;  
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Select an initial solution 0s ; 
Repeat  
  Randomly select a heuristic h H∈ ; 
  iteration_count = 0; 
  Repeat 
    iteration_count++; 

Applying h to 0s , get a new solution 1s ; 

1 0( ) ( )f s f sδ = −  
if ( 0δ ≥ ) then 0 1s s= ; 

 else  
Generate a random x uniformly in the range (0,1); 
if exp( / )x tδ<  then 0 1s s= ; 

  Until iteration_count = nrep; 
set ( )t tϕ= ; 

Until the stopping criteria = true.  

It should be noted that simulated annealing would normally only have 
access to one heuristic or neighbourhood function (e.g. 2-opt in a travelling 
salesman problem), but here we give it access to a set of heuristics which 
allows it to adapt itself to a given problem (instance) by utilising different 
heuristics.  

In the above algorithm, we have stated that we need to define a cooling 
schedule. In fact, we would like to do this automatically so that we have an 
adaptively parameterised algorithm. Compared with a geometric cooling, 
Lundy and Mees’s cooling schedule [22] has one less parameter because at 
each temperature only one iteration was performed. The temperature is 
reduced according to /(1 )t t tβ→ + . Hence, we use this cooling function in 
this paper. Suppose we allow allowedT  seconds for the search and the average 
time spent for one iteration was averageT , we have the total number of the 
iterations /allowed averageK T T= . After the mathematical derivation, we have 

( ) /   ( ) /s f s f s f average allowed s ft t K t t t t T T t tβ = − ⋅ ⋅ = − ⋅ ⋅ ⋅                (9) 

where st  (respectively ft ) is the starting temperature (respectively stopping 
temperature). In this paper, the algorithms stops when the temperature ( ft ) 
decreases to 0.1. Two different methods were used to determine the starting 
temperature (corresponding to two kinds of simulated annealing hyper-
heuristics, denoted as SAHH and SAHH_adpt respectively) in order to 
investigate the sensitivity of parameters in our simulated annealing based 
hyper-heuristic. In SAHH, after preliminary experiments, we let 

00.3 ( )st f s=  where 0( )f s  is the objective function value of the initial 
solution. To automate the decision of st , in SAHH_adpt , we use a similar 
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method described in [6]. /100K  random solutions were sampled from the 
initial solution to approximately determine the maximum objective 
difference maxδ . The starting temperature was then set to a value such that 
85% of “bad moves would be accepted. According to the Metropolis 
probability function, we have max / ln(0.85)st δ= − . 

4.3 Low-level heuristics 

Before we describe the low-level heuristics which are used in the hyper-
heuristics, we first define three order lists.  

− 01P : item_contribution_list: item list ordered by /i i ip lα⋅  decreasingly. 
− 02P : item_length_list: item list ordered by length il  increasingly; 
− 

0
S : shelf_freelength_list: shelf list sorted by the current free shelf space 
decreasingly. 

Twelve low-level heuristics are used. They are categorised into four 
types: add product(s), delete product(s), swap and interchange: 

− Add_random: this heuristic adds one facing of a random item to the first 
shelf of 

0
S . 

− Add_exact: this heuristic searches and adds one facing of the biggest 
possible item to all shelves (begins from the first shelf of 

0
S ) until all 

shelves cannot be assigned any more items.  
− Add_best_contribution: this heuristic repeatedly selects a shelf from 

0S (begins from the first shelf of 0S ), repeatedly searches and adds as 
many as possible facings of an item from 01P  (begins from the first item 
of 01P ) until all shelves cannot be allocated any more items. 

− Add_best_improvement: this heuristic selects the first shelf of 
0

S  and 
allocates one facing space to the item which gives the best improvement 
to the evaluation function. 

− Delete_random: this heuristic deletes one facing of a random item from 
a random shelf.  

− Delete_least_contribution1: this heuristic deletes one facing of the item 
with the least contribution value ( /i i ip lα⋅ ) from a random shelf. 

− Delete_least_contribution2: this heuristic deletes one facing of the item 
with the least contribution value from all shelves.  

− Delete_least_improvement: this heuristic deletes one facing of the item 
that causes the least decrease in the objective value from a random shelf.  

− Swap_random: this heuristic randomly deletes one facing of an item 
from a random shelf and adds as many possible facings of another 
randomly selected item.  
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− Swap_best: this heuristic repeatedly selects a shelf from 

0
S , deletes one 

facing of the item with the lowest contribution value, adds one facing of 
another item with a higher/highest contribution value, until the last shelf 
is swapped.   

− Interchange_improvement: this heuristic randomly selects two different 
items from two random shelves and interchanges one facing or multiple 
facings of two items. The basic idea behind this heuristic is that the 
small free space can be transferred to the shelf with a larger free space so 
that another facing could be added to that shelf later.  

− Interchange_random: this heuristic selects two different items from two 
random shelves and exchanges one facing of the two items. 

Note that each of above low-level heuristic is enforced to generate a 
feasible solution from the incumbent solution. If a low-level heuristic cannot 
produce a new feasible solution, the incumbent solution is returned.   

5. EXPERIMENTAL RESULTS 

As there is no real-world data available due to commercial confidentiality 
and neither is there any benchmark data available from the literature, a 
number of simulated problems were generated. The length of the products 
conformed to a uniform distribution between 25 and 60. The net profit of the 
products were created randomly by a normal distribution in the same way as 
described in [30]. iα , iβ , iL , iU  and jT  have uniform distributions in the 
ranges of [1, 2], [0.1, 0.4], [2, 3], [7,10] and [300, 450] respectively. In the 
light of Yang’s [30] experimental  results which show that the problem size 
is a potential factor affecting algorithm performance, in this paper, five 
problem instances with different problem sizes were generated to test this 
relationship. We also take into account the influence of space availability in 
the performance of the algorithms. Because each item has a lower bound and 
an upper bound of facings, the available shelf space of a problem must be 
greater than a minimal space value to satisfy the lower bound of facings and 
meanwhile it should not exceed a maximal space value in case that all items’ 
facings reach the upper bounds and no optimisation is required. Two 
parameters, r_min and r_max, were introduced to describe the space 
availability. r_min represents the ratio of the minimal space to the available 
space and r_max is the ratio of the available space to the maximal space. 
Hence both r_min and r_max are in the range of (0, 1). Seven problem 
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instances with different r_min and r_max values were also generated to test 
the corresponding algorithms performance.  

Two simple hyper-heuristics, RHOI (Random Heuristics Only 
Improving) and RHAM (Random Heuristics All Moves), were also applied 
to the problems for the purpose of comparison. RHOI repeatedly selects a 
random low-level heuristic and applies it to the current solution until some 
stopping criteria is met, during which only those heuristics that can improve 
the objective function value are accepted. RHAM works in the similar way 
but all moves are accepted. We also experimented with a “Choice Function” 
based hyper-heuristic which was proposed in [10]. In this approach, the 
selection of the low-level heuristics is guided by a “Choice Function”, which 
considers recent performance of each low-level heuristic 1( )f , recent 
improvement for consecutive pairs of low-level heuristics 2( )f  and the 
amount of time elapsed since the given heuristic has been called 3( )f . 
Overall, the function is defined as  

1 1 2 2 3 3( ) ( ) ( , ) ( )j j k j jCF h f h f h h f hπ π π= + +                        (10) 

Both 1f  and 2f  are used as a method to intensify the search and 3f  is used 
as a diversification strategy. 1π , 2π  and 3π  are scaling parameters to weight 
the different terms. Values of these parameters are changed adaptively 
according to the magnitude of recent improvement in the objective function. 
A more detailed description is provided in [10]. Two conventional simulated 
annealing algorithms, SA_swap and SA_interchange, were also applied to 
the problems. Both of the algorithms employ the same cooling schedule that 
is used in SAHH but utilising different neighbourhood structures. In 
SA_swap, the neighbourhood structure was defined by randomly swapping 
one facing of two different items on a random shelf. However, the 
neighbourhood in SA-interchange was generated by: randomly selecting two 
different items from two random shelves, interchanging one facing of the 
two items, and then adding as many facings as possible of the item with the 
largest possible item_contribution value to the shelf that has the largest free 
space.  

All algorithms were coded in Microsoft Visual C++ version 6.0 and all 
experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM 
running Microsoft Windows 2000 professional Version 5. All algorithms 
started from a solution produced by a greedy heuristic (the greedy heuristic 
repeatedly adds the item with the largest possible item_contribution value) 
and allowed 600 seconds computation time for a fair comparison. The 
algorithms’ performance was evaluated by the ratio of best objective value 
( hP ) obtained by the different algorithms to the relaxed upper bound ( ubP ). 
All results were averaged over 5 runs.  
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In the first round experiments, seven problem instances with different space 
ratios were solved by the algorithms. Figure #-3 shows the results. We can  
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Figure #-3. Algorithms performance for different space ratios 

see that all types of hyper-heuristics have greatly improved over the initial 
greedy heuristic. SA_swap also produced good quality solutions while 
SA_interchange performed much worse. This shows that the performance of 
the simple simulated annealing algorithm is greatly dependent on the 
neighbourhood structure. We can also see that our simulated annealing based 
hyper-heuristics outperformed all other algorithms in all cases with 
surprising high solution quality. Both types of simulated annealing hyper-
heuristics obtained over 98.5% of the upper bound (calculated by the two-
stage relaxation). The performance of SA based hyper-heuristic slightly 
decreased when r_min and r_max reached the middle of their ranges. This is 
probably because that, when the r_min is large while r_max is small, the 
shelf space is very scare, the optimal solution is near the lower bound and 
hence is relatively easier to obtain. Similarly, when r_min is small and 
r_max is large, the space is so ample that the optimal solution is almost the 
upper bound. However, when the available shelf space belongs to none of 
these two cases, the problem becomes harder to solve.   
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Figure #-4. Algorithms performance for different problem sizes 

 

To test the influence of the problem size, we also generated five problem 
instances with different problem sizes in terms of the number of the shelves 
and the number of the items. In case of the influence of the space 
availability, we let all the problems have almost the same space ratio (r_min 
= 0.95, r_max = 0.24). Figure #-4 and table #-1 show the corresponding 
experimental results and comparison. We can see that SAHH and 
SAHH_adpt outperformed all other algorithms, including the two simple 
simulated annealing algorithms. The results also show that our simulated 
annealing hyper-heuristic performed slightly worse when the problem size 
increased but still obtained more than 97% of the relaxed upper bound for a 
very large problem (m=40, n=100). From both figure #-3 and table #-1, we 
can see that SAHH and SAHH_adpt had almost the same performance. This 
shows that our simulated annealing hyper-heuristic is not sensitive to the 
change of the starting temperature and hence is a robust framework. In 
contrast, in figure #-4, we can see that both SA_swap and SA_interchange 
are very sensitive to the change of the problem instances. For small problem 
sizes, SA_swap performed better than SA_interchange. However, for the 
large problem sizes, SA-interchange performed better than SA_swap. This 
demonstrates that, for conventional SA, a good neighbourhood structure for 
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a given problem instance does not guarantee good performance for another 
problem instance. However, SA based hyper-heuristics can synergise several 
neighbourhood functions (or low-level heuristics) according to the 
characteristics of different problem instances.  

Table #-1. Algorithms performance for different problem sizes 

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24) 

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100) 

ubP  422.25 401.33 610.67 884.62 1077.38 

Greedy 
Ph  

Ph/Pub 
151.73 

0.813 
410.81 

0.973 
511.51 

0.838 
753.35 

0.852 
928.07 

0.861 

CFHH 
Ph  

Ph/Pub 
184.79 

0.991 
418.13 

0.990 
595.74 

0.976 
863.93 

0.977 
1036.23 

0.962 

SAHH 
Ph  

Ph/Pub 
186.53 

1.000 
418.68 

0.992 
598.50 

0.980 
868.15 

0.981 
1048.04 

0.973 

SAHH_adpt 
Ph  

Ph/Pub 
186.53 

1.000 
418.60 

0.991 
597.41 

0.978 
865.86 

0.979 
1050.60 

0.975 

RHOI 
Ph  

Ph/Pub 
186.53 

1.000 
418.14 

0.990 
596.60 

0.977 
864.59 

0.977 
1044.60 

0.970 

RHAM 
Ph  

Ph/Pub 
186.53 

1.000 
418.38 

0.991 
491.65 

0.969 
858.56 

0.971 
1036.01 

0.962 

SA_swap 
Ph  

Ph/Pub 
176.09 

0.944 
416.85 

0.987 
570.78 

0.935 
830.09 

0.938 
961.19 

0.892 

SA_ 
interchange 

Ph  
Ph/Pub 

151.73 
0.813 

412.99 
0.978 

568.37 
0.931 

817.71 
0.924 

1024.42 
0.951 

6. CONCLUSION 

In this paper, we have used a practical shelf space allocation model to 
generate automatic planograms. Several hyper-heuristic approaches were 
applied to solve this problem. As an extension of the multi-knapsack 
problem, the planogram problem is difficult to solve. We provided a set of 
simple low-level heuristics which have been shown to be very successful in 
bin packing and knapsack problems. A simulated annealing based hyper-
heuristic framework was proposed to solve the problem. In this approach, 
simulated annealing was used to guide the selection and acceptance of the 
appropriate heuristics at different search stages instead of controlling moves 
among neighbours. To give a better evaluation of the solution quality 
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obtained by different algorithms, the upper bound of the objective function 
was also derived by a two-stage relaxation. The experimental results show 
that the simulated annealing based hyper-heuristics used in this paper 
produced high quality solutions in different problem situations and 
outperformed three other hyper-heuristics and two versions of the 
conventional simulated annealing algorithms. The simulated annealing 
hyper-heuristic does not seem parameter sensitive, which has always been a 
problem for the conventional simulated annealing algorithms. 

Simulated annealing hyper-heuristic is a very promising technique for 
combinatorial optimisation problems. In the future, we will also investigate 
different problems in an attempt to demonstrate the generalisation of this 
approach. 
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