
Chapter #

AN INVESTIGATION OF AUTOMATED
PLANOGRAMS USING A SIMULATED
ANNEALING BASED HYPER-HEURISTIC

Ruibin Bai and Graham Kendall
Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science & IT, University of Nottingham
Nottingham NG8 1BB, UK Email: rzb/gxk@cs.nott.ac.uk

Abstract: This paper formulates the shelf space allocation problem as a non-linear
function of the product net profit and store-inventory. We show that this model
is an extension of multi-knapsack problem, which is itself an NP-hard
problem. A two-stage relaxation is carried to get an upper bound of the model.
A simulated annealing based hyper-heuristic algorithm is proposed to solve
several problem instances with different problem sizes and space ratios. The
results show that the simulated annealing hyper-heuristic significantly
outperforms two conventional simulated annealing algorithms and other
hyper-heuristics for all problem instances. The experimental results show that
our approach is a robust and efficient approach for the shelf space allocation
problem.

Key words: hyper-heuristics, simulated annealing, shelf space allocation, planograms

1. INTRODUCTION

The retailing sector in the UK is an extremely competitive arena. We
only need to consider some high profile companies to show that this is the
case. A particular example is provided by the recent decline of Marks and
Spencer, who were the leading high street retailer (and in recent years they
are starting to show an improvement in their profitability). A further
example is given by C&A’s decision to close all of its high street outlets. Yet
another example is the decline of J Sainsburys from its position as the

2 Chapter #

leading food retailer in the UK in the 1990’s (in 1996, Tesco opened up a
2% lead over their rivals and continue to maintain an advantage). Asda, after
merging with Wal-Mart, increased its market share dramatically and
overtook Sainsbury’s as the second biggest supermarket in the UK. In July
2003, Asda had gained 17% of market share, while Sainsbury’s had slipped
from 17.1% to 16.2%. Tesco retains the top spot with 27% of the overall
market share. Finally, there was a battle over Safeways, which was recently
up for sale.

This level of competitiveness is unlikely to decline. On the contrary, the
high street (or more likely, out of town shopping centres) is likely to become
even more competitive.

Figure #-1. An example of a simple planogram

Several factors are used to influence consumers’ purchases, including
product assortment (which merchandise to sell), store layout and space
planning, merchandise pricing, services offered, advertising and other
promotional programs [21]. Store layout and space planning focuses on the
improvement of the visual effect of the shopping environment and space
productivity. Planograms (see figure #-1 for an example) are used to show
exactly where and how many facings of each item should physically be
placed onto the store shelves. Due to the limited shelf space, planograms are
one of the most important aspects that are used to improve financial
performance [31]. Electronic planograms can be also used for inventory
control and vendor relation improvement [21]. However, generating
planograms is a challenging and time-consuming process because the
simplest form of planogram problem (ignoring all marketing and retailing
variables) is already a multi-knapsack problem, a well-known NP-hard
problem which is very difficult to solve. The difficulty is further increased
when we consider other merchandise, such as fresh food, clothing and frozen
food. This is due to their special display requirements and the fact that they
do not use standard shelf fitments. Currently, producing planograms is
largely a manual process (there is software assistance available (e.g.

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

3

Galaxxi) but it involves significant human interaction and does not provide
any guidance or suggestions in deciding a good quality layout) and the shelf
space allocation is mainly based on historical market share. However, this
approach may lose substantial sales [2] as the display space may have
different sales influence with respect to different items [11, 12, 14, 20].
Using the same display space, different items may obtain different sales and
hence affect the profits of the organisation.

A recent publication [31] conducted a survey of the area. This work
demonstrated the lack of academic work that has been conducted in this
domain. Only twelve references were cited. Five of these date back to the
1970’s, four were drawn from the 1980’s and only three were from the
1990’s. It seems timely that this area should receive research attention, given
the recent advances in AI search techniques.

At present, commercial systems use simple heuristic rules to allow
retailers to plan their shelf space allocation [32]. Some research [2, 26] has
proposed models which integrate product assortment, inventory control
management and shelf space allocation. However, these models are too
complicated to put into practice. Yang [30] used a model based on a
knapsack problem and presented a heuristic to solve some numerical
instances of shelf space allocation problems. However, the linear objective
function assumption does not fit well with the real world retailing
environment.

Planograms are a subset of the wider domain of space planning which
includes more well known research areas such as bin packing and knapsack
problems [31]. Some of techniques that have already been successfully
applied to problems within this wider domain may also be promising to shelf
space allocation problems.

2. RELATED WORK

2.1 Experiments and studies

Due to the scarcity of space within stores, some researchers have
concentrated on studying the relationship between the space allocated to an
item and the sales of that item. Most have reached a common conclusion that
a weak link exists between them and the significance depended on the type
of items [11, 12, 14, 16, 20]. Earlier, in 1969, Kotzan and Evanson [20]
began to investigate the relationship between the shelf space allocated to an
item and the sales of that item and found that a significant relationship

4 Chapter #

existed within the three tested drug stores. Cox’s research [11] found that
this relationship was very weak and depended on the category of products.
However, his experimental results may be affected by limited experiment
brand samples (only two brands are measured for each of the two
categories). Curhan [12] defined the space elasticity as “the ratio of relative
change in unit sales to relative change in shelf space” and argued that there
existed a small, positive space elasticity for each item but the value
depended on the products, stores and in-store layout [13]. Drèze et al. [16]
carried out a series of experiments to evaluate the effectiveness of shelf
space management and cross-category merchandise reorganisation. The shelf
space manipulation included changing product facings, deletion of slow
moving items, changes of shelf height, etc. Cross-category merchandise
reorganisation included manipulation to enhance the complementary
shopping within merchandise assortment and easier shopping. The results
showed that, compared with the number of facings assigned to a brand,
location had a larger impact as long as a minimum inventory (to avoid out-
of-stocks) was guaranteed. On the contrary, recent research [14] showed that
direct space elasticities were significantly non-zero and varied considerably
through different categories. Costume jewellery, fruit and vegetables,
underwear, shoes were among the highest space elasticities while textile,
kitchen and do-it-yourself products had low values.

If the products are always available and the consumers would never
switch to another brand, the change of space allocated to an item has no
effect on its sales [2]. However, in fact, nearly half of the consumers would
switch to other stores or change their previous choice to an alternative brand
if their first choice is out-of-stock [28]. On the other hand, the purchase of
some merchandise could increase the possibility of buying other
merchandise with the complementary functions (for example, a customer
who bought a toothbrush may also buy toothpaste). Cross elasticities were
introduced to evaluate the interdependence between two different items in
Corstjens and Doyle’s model [7]. Borin et al. [2] and Urban [26] also used
cross elasticities in their models but with different definitions. In Borin et
al.’s model, the cross elasticities were in the range [–1, 0]. Urban extended
the range of cross elasticities to [-1, 1]. It was positive if two items were
complementary and negative if they could be substituted for each other.
Although cross elasticities are helpful in revealing the relationships between
different items, it is quite difficult to obtain a reliable estimation of so many
values (n n× for n items) due to the complicated merchandise relationships.
Therefore, recent researchers disregarded it in their models [14, 27].

Display location is another factor that has been studied. Campo et al. [5]
investigated the impact of location factors on the attractiveness of product
categories and stated that the sales of the whole store were dependent on the

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

5

intrinsic attractiveness based on category, store and trading area
characteristics as well as cross elasticities between the categories. However,
the model did not consider the difference in visibility or prominence between
various locations in the store.

2.2 Shelf space allocation models and searching methods

Several space allocation models have been proposed by market
researchers. Most formulated the demand rate of an item as a function of the
space allocated to the item, of which a classic model appears as a polynomial
form proposed by Baker and Urban [1]:

() 0, 0 1D x xβα α β= > < < (1)

where ()D x is the demand rate of the product, x is the number of facings or
the displayed inventory. α is a scale parameter and β is the space elasticity
of the product. The advantageous characteristics of this model included the
diminishing returns (the increase in the demand rate decreased as the space
allocated to this shelf increased), inventory-level elasticity (the shape
parameter represents the sensitivity of the demand rate to the changes of the
shelf space), intrinsic linearity (the model can be easily transformed to a
linear function by a logarithmic transformation and parameters can then be
estimated by a simple linear regression) and its richness. Corstjens and
Doyle [7] formulated their model as a multiplicative form and incorporated
both the space elasticities and cross elasticities. The inventory and handling
cost effects were also considered. The model allowed different product profit
margins corresponding to different locations and hence captured the location
impact on the sales. However, due to the characteristic of the polynomial
function, this model tends to scatter the facings of each item into different
locations in order to obtain a larger objective function value. Based on this
model, some non-space factors were also taken into account by Zufryden’s
model [32], such as price, advertisement, promotion, store characteristics,
etc. A dynamic programming approached was proposed to solve this model.
However, this approach ignored the integer nature of the number of facings
of the items and hence only produced suboptimal solutions.

Some integrated models were also proposed based on the correlation of
retailing decision process [2, 26]. Borin et al. [2] developed a different
model which tried to maximise the category return on inventory. This model
was supposed to help the retailer to decide which products to stock (products
assortment) and how much space should be allocated to them. The demand
function was formulated into three components: unmodified demand,

6 Chapter #

modified demand and acquired demand. Unmodified demand represented the
customers’ direct preference of an item and was calculated according to its
market share. Modified demand took account of the interdependence and
substitution of different merchandise. Acquired demand represented the
indirect demand captured from those products which were excluded from the
assortment. A heuristic procedure, based on simulated annealing, was
employed to optimise the model. The neighbourhood was defined by
exchanging one facing of two random items. The result showed that
simulated annealing was more efficient and flexible compared with the shelf
allocation rule based on the share of sales (a common space allocation rule).
The above-mentioned models used the number of facings to foresee the
demand quantity of that item. However, the effect of part-stocked items
(some facings are missing) was not explicitly reflected. Urban [26] replaced
the number of facings with average inventory in his model which integrated
existing inventory-control model, product assortment model and shelf-space
allocation model. A greedy heuristic and a genetic algorithm (GA) were
proposed to solve the problem. A GA chromosome represented a given
product assortment vector (i.e. “0”: excluded, “1”: included). The violations
of some constraints were allowed in the initial solutions and then repaired by
scaling down the number of facings of each item and their order quantities.
However, the GA operations (crossover and mutation) were applied to only
produce a good product assortment based on the given objective function.
No procedure was carried out to evolve a good space allocation decision.
The drawback mainly results from the fact that the model includes many
parameters and is difficult to be optimised by current AI search techniques.
In fact, Yang [30] argued that: “for commercial models, a very important
criterion for selecting a space allocation method is the simplicity and ease of
operation of the method”. He proposed a simpler linear model based on
Zufryden’s work [32], by assuming that total net profit was linear with the
number of facings of an item. However, this is unrealistic for the real world
retail environment. A greedy algorithm, in conjunction with three simple
heuristics, was proposed to optimise the model. However, only several
numerical examples were used to justify the algorithm and they are far from
the real world shelf space allocation problems which are usually much larger
and more complicated. In addition, the three heuristics rejected all “bad
moves” (a decrease in the objective value for a maximisation problem). The
algorithm, in fact, worked in a random greedy fashion and was easily
trapped in local optima.

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

7

2.3 Hyper-heuristics

Meta-heuristics has been intensively investigated and applied to a wide
variety of applications in the last twenty years, including scheduling,
production planning, resource assignment, supply chain management,
decision support systems and bio-informatics [18, 24]. Most of these
applications require a thorough study of the problem and a fixed problem
definition. Many of the publications also reported that these algorithms
perform very well in solving their specific problems. However, once the
problem changes (even slightly), the performance of the already developed
meta-heuristic may decrease dramatically for the new problem. Significant
parameter tuning may need to be carried out for the purpose of adapting the
algorithms to the new problem or the new problem instance. It should also
be recognised that real-world problems are subject to changes due to them
reflecting changes in the business requirements either by management
decisions or other factors, such as trading conditions, research and
development, employing new technology etc.

The “No Free Lunch Theorem” [29] showed that there is no one
algorithm that could beat all other algorithms in all classes of problems. If an
algorithm outperforms other algorithms on a specific class of problems, there
must exist another class of problems on which this algorithm is worse than
the others. Hence, a good way to raise the generality of meta-heuristics is to
apply different (meta-)heuristics at different times of the search. In this
context, a generalised approach (termed hyper-heuristics) is proposed [3]
which “broadly describes the process of using (meta-)heuristics to choose
(meta-)heuristics to solve the problem in hand”. This approach differs from
the more usual meta-heuristic approach, which operates over the solution
space directly. A hyper-heuristic approach operates over the solution space
indirectly by searching the heuristic space. In this approach, there is a set of
“low-level heuristics” that are designed for the problem to be solved.
Another heuristic, a high-level heuristic, operates over the low-level
heuristics. From an initial solution, the high-level heuristic leads the search
to a good quality solution by making calls to the low-level heuristics. The
benefit of this approach is two-fold. Firstly, once the high-level heuristic
algorithm has been developed, a new problem can be solved by replacing the
set of low-level heuristics and the objective function, which is used to
evaluate the quality of the solutions. Secondly, the high-level heuristic can
adapt itself in order to tune to the new problem, or even a new problem
instance. The application of hyper-heuristic approaches can be traced back to
the 1960’s although the term “hyper-heuristic” was not used. Fisher and
Thompson [17] used an unbiased random process to combine two

8 Chapter #

rules/heuristics to solve a job-shop scheduling problem and the results
showed that even this simple combination of rules produced much better
results than any of them used separately. Recently, Hart et al. [19] solved a
real world chicken factory scheduling problem using a GA based hyper-
heuristic. The problem involved scheduling the collection and delivery of
chicken from farms to its processing factories. The problem was
decomposed into two stages and two separate GAs were used to tackle the
problem. In the first stage, the orders were split into suitable tasks and these
tasks were then assigned to different “catching squads”. The second stage
dealt with the schedule of the arrival of these squads. The GA chromosome
in the first stage represented a sequence of orders, a set of heuristics to split
each order into suitable sized tasks and another set of heuristics to assign
these tasks to the different “catching squads”. The GA was used to evolve a
strategy of building a good solution instead of finding the solution directly.
The experimental results showed this approach is fast and robust and easy to
implement. Another GA based hyper-heuristic framework was also proposed
by Cowling et al. [9] in solving a trainer scheduling problem. Here, a GA
chromosome represented an ordering of the low-level heuristics that were
going to be applied to the current state. A good sequence was evolved during
the search corresponding to the given problem instance. The computational
results showed that the GA based hyper-heuristic outperformed both a
conventional genetic algorithm and a memetic algorithm which directly
encoded the problem as a chromosome. Recently, Ross et al. [25] proposed a
different type of hyper-heuristic based on a genetic algorithm. The problem
is one dimensional bin packing. Instead of working on feasible solutions as
the hyper-heuristics mentioned above do, the proposed hyper-heuristic in
this paper operates on a partial solution and gradually constructs the solution
using different rules (heuristics) until a feasible solution is obtained. The
heuristic selection is based on the state of current partial solution. Each state
associates a rule or heuristic whose relationship with solution states is
evolved by a genetic algorithm. The chromosomes of their GA are defined as
a set of blocks and each block contains a set of parameters which is used to
define a solution state and its corresponding heuristics. The algorithm is
firstly trained on parts of benchmark problems. After the training, the fittest
chromosome is then applied to every benchmark problem, 80% of which are
solved to optimality. Yet another kind of hyper-heuristic used the ideas of
reinforcement learning to guide the choice of the heuristics during the search
[8, 23]. In [8], a sales summit scheduling problem was solved by a “choice
function” based hyper-heuristic, in which the choice function dynamically
selected suitable heuristics at each decision point. The computational results
showed that the choice function based hyper-heuristic performed better than
applying the heuristics randomly. Nareyek [23] used a non-stationary

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

9

reinforcement learning procedure to choose heuristics in solving the Orc
Quest problem and the Logistics Domain problem. The author discussed the
advantages of the hyper-heuristic approach, especially in solving complex
real-world problems in which the computational cost is expensive. Burke et
al. [4] applied a tabu search based hyper-heuristic to a nurse rostering
problem and a university course timetabling problem, in which the set of
heuristics were ranked according to their performances in the search history.
A tabu list is also incorporated to prevent the selection of some heuristics at
certain points in the search.

The remainder of this paper is organised as follows: in the section 3, we
give a description of the problem and formulate it as a non-linear
combinatorial maximisation model. Section 4 will focus on the
implementation of our simulated annealing hyper-heuristic. Section 5 gives
the experimental results, together with some analysis. Section 6 concludes
the paper.

3. MODEL FORMULATION

3.1 Model formulation

The problem we are solving is the assignment of appropriate shelf space
to every stock-keeping unit (SKU) in a given product category, without
violating the given constraints, whilst maximising the overall profit. Each
stock-keeping unit is defined by a five-tuple (il , ip , iβ , iL , iU) where il
(respectively, ip , iβ , iL , iU) is the length (respectively, profit, space
elasticity, lower bounds, upper bounds) of item i. The length of shelf j is
denoted by jT . We assume that: 1) Retailers prevent out-of-stock
occurrences. 2) The total profit of item i is proportional to its unit profit ip .
3) We ignore the physical constraints in the other two dimensions (height
and depth).

We employ Urban’s [26] demand function and disregard the cross
elasticities not only because they are quite small compared with space
elasticities but also because it is quite difficult to obtain a reliable estimation
of them. Based on the assumptions we discussed earlier, we have the
following space allocation model

Maximise
1
()i

n

i i ii
P p xβα

=
=∑ (2)

subject to:

10 Chapter #

1
 1,...,

n

i ij ji
l x T j m

=
≤ =∑ (3)

1
 1,..., ;

m

i ij ij
L x U i n

=
≤ ≤ =∑ (4)

{0,1, 2, 3 ...} 1,..., 1,...,ijx i n j m∈ = = (5)

where m is the number of shelves and n is the number of items. The decision
variables are ijx , representing the number of facings of item i on shelf j
and

1

m

i ijj
x x

=
=∑ is the total number of facings of item i. iα is a scale

parameter and iα >0. Constraint (3) ensures that the length of a shelf is
greater than the total length of the facings assigned to this shelf. Constraint
(4) ensures that the lower and upper bounds of the number of facings for
each item are satisfied. Constraint (5) ensures that the number of facings for
each item is an integer. The objective is to maximise the overall profit
without violating the given constraints. The model is a non-linear, multi-
constraints optimisation problem. If 1iβ → , the model degenerates into a
multi-knapsack problem.

3.2 Upper bound of the model

As shelf space allocation cannot be solved to optimality in polynomial
time [2], we usually do not know the optimal solution and hence cannot
evaluate the quality of a given solution by comparing it with the optimal
solution. Yang [30] compared his results with the optimal solution obtained
by carrying out a complete enumeration. However, this method is only
suitable for very small problem instances. For a shelf space allocation
problem with n items (each item has an upper bound of facings U) and m
shelves, it requires m nU × iterations to find the optimal solution using an
exhaustive search. Even for a small problem instance: n=6, m=3, U=6, this
could take around 40 years, an extremely unrealistic computing time for a
practical application. Another common method is to relax the problem to a

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1 2 3 4 5 6 7 8 9 10 11 12

ix

() () '()()i i i il x f x f x x x= + −

() a
if x x=

Figure #-2. Approximate objective with a linear function

simpler one and obtain the upper bound of the objective. In this paper, we
use a two-stage relaxation to get an upper bound of the model:

Stage 1: we first relax our non-linear model to be a linear model. This is
accomplished by applying a linear Taylor expansion at the point ix
(i i iL x U≤ ≤) (as illustrated in figure #-2). The model hence becomes an
integer programming (IP) problem:

maximise
(1)

1
(())i i

n

IP i i i i i i ii
P p x x x xβ βα β −

=
= ⋅ ⋅ ⋅ ⋅ − + ⋅∑ (6)

or

maximise
1
()

n

IP i ii i
P A x B

=
= +∑ (7)

subject to the constraints (3), (4) and (5), where (1)i

i i i i iA p x βα β −= ⋅ ⋅ ⋅ and
(1)i i

i i i i i i i i iB p x p x xβ βα α β −= ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ . Suppose * * * *
1 2(, ,...,)nX x x x= is the

optimal solution for the original model (2) and *P is its corresponding
optimal objective value. *

IPP is the optimal objective value for the IP model
(7). From figure #-2, we have:

* * * * *

1 1 1 1
() () [() ()]i i

n n n n

i i i i i i i i i i i ii i i i
P p x A x B A x B p xβ βα α

= = = =
= = + − + −∑ ∑ ∑ ∑

 * * *

1 1
[() ()]i

n n

IP i i i i i ii i
P A x B p x βα

= =
≤ − + −∑ ∑

 (1)* * *

1
[() ()]i i i

n

IP i i i i i i i ii
P p x x x x xβ β βα β −

=
= − + − −∑ *

IPP≤ (8)

hence, the gap between *

IPP and *P is no less than:

(1)* *

1 1
[() ()]i i i

n

i i i i i i i ii
G p x x x x xβ β βα β −

=
= + − −∑ (9)

From equation (9), we can see that the closer ix is to *
ix , the smaller the gap

is. In order to keep 1G as a small value, we let ix = '
ix where

' ' ' '
1 2(, ,...,)nX x x x= is the best solution found by the algorithms (see section

5).
Stage 2: based on the approximation form step 1, we ignore the integer

constraint (5) in the IP model and the model becomes a linear programming
(LP) model. We use “lp_solve” (a free LP software package) to obtain the
optimal objective (denoted by *

LPP) of this LP model. We take this value as
the relaxed upper bound of our shelf space allocation model ubP , i.e.

*ub
LPP P= .

12 Chapter #

4. SIMULATED ANNEALING HYPER-HEURISTIC

4.1 Simulated annealing

Simulated annealing is a local search method inspired by the process to
simulate the physical cooling process. From an initial solution, SA
repeatedly generates a neighbour of the current solution and transfers to it
according to some strategy with the aim of improving the objective function
value (we are assuming we are trying to maximise the objective function).
During this process, SA has the possibility to visit worse neighbours in order
to escape from a local optimal. Specifically, a parameter, called temperature
t, is used to control the possibility of moving to a worse neighbour solution.
The algorithm, starting from a high temperature, repeatedly decreases the
temperature in a strategic manner (usually called a cooling schedule) until
the temperature is low enough or some other stopping criteria is satisfied. In
each iteration, the algorithm accepts all “good” moves and some of the “bad”
moves according to the Metropolis probability, defined by exp(/)tδ− where
δ is the decrease in the objective function value. Simulated annealing has
been shown to be a powerful tool in solving a variety of combinatorial
optimisation problems [15]. However, the drawback of SA is that the
algorithms performance is sensitive to the parameters and problem instance.
Many experiments need to be carried out in order to tune the parameters to
the problem.

4.2 Simulated annealing hyper-heuristic

Hyper-heuristics were proposed to be a more general approach for most
combinatorial optimisation problems and they have the ability to adapt
themselves to different problems or problem instances. Here, we propose
another type of hyper-heuristic: a simulated annealing based hyper-heuristic.
The basic idea behind this approach is that we use simulated annealing to
guide the selection and acceptance of the low-level heuristics (or
neighbourhood functions, see section 4.3), instead of controlling the moves
between neighbours. From an initial solution, simulated annealing leads the
search in a promising direction by making calls to the appropriate low-level
heuristics. Specifically, for a maximisation problem, the algorithm works as
follows:

Define an objective function f and a set of heuristics H;
Define a cooling schedule: starting temperature 0st > , a temperature
reduction function ϕ and a number of iterations for each temperature
nrep ;

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

13

Select an initial solution 0s ;
Repeat
 Randomly select a heuristic h H∈ ;
 iteration_count = 0;
 Repeat
 iteration_count++;

Applying h to 0s , get a new solution 1s ;

1 0() ()f s f sδ = −
if (0δ ≥) then 0 1s s= ;

 else
Generate a random x uniformly in the range (0,1);
if exp(/)x tδ< then 0 1s s= ;

 Until iteration_count = nrep;
set ()t tϕ= ;

Until the stopping criteria = true.

It should be noted that simulated annealing would normally only have
access to one heuristic or neighbourhood function (e.g. 2-opt in a travelling
salesman problem), but here we give it access to a set of heuristics which
allows it to adapt itself to a given problem (instance) by utilising different
heuristics.

In the above algorithm, we have stated that we need to define a cooling
schedule. In fact, we would like to do this automatically so that we have an
adaptively parameterised algorithm. Compared with a geometric cooling,
Lundy and Mees’s cooling schedule [22] has one less parameter because at
each temperature only one iteration was performed. The temperature is
reduced according to /(1)t t tβ→ + . Hence, we use this cooling function in
this paper. Suppose we allow allowedT seconds for the search and the average
time spent for one iteration was averageT , we have the total number of the
iterations /allowed averageK T T= . After the mathematical derivation, we have

() / () /s f s f s f average allowed s ft t K t t t t T T t tβ = − ⋅ ⋅ = − ⋅ ⋅ ⋅ (9)

where st (respectively ft) is the starting temperature (respectively stopping
temperature). In this paper, the algorithms stops when the temperature (ft)
decreases to 0.1. Two different methods were used to determine the starting
temperature (corresponding to two kinds of simulated annealing hyper-
heuristics, denoted as SAHH and SAHH_adpt respectively) in order to
investigate the sensitivity of parameters in our simulated annealing based
hyper-heuristic. In SAHH, after preliminary experiments, we let

00.3 ()st f s= where 0()f s is the objective function value of the initial
solution. To automate the decision of st , in SAHH_adpt , we use a similar

14 Chapter #

method described in [6]. /100K random solutions were sampled from the
initial solution to approximately determine the maximum objective
difference maxδ . The starting temperature was then set to a value such that
85% of “bad moves would be accepted. According to the Metropolis
probability function, we have max / ln(0.85)st δ= − .

4.3 Low-level heuristics

Before we describe the low-level heuristics which are used in the hyper-
heuristics, we first define three order lists.

− 01P : item_contribution_list: item list ordered by /i i ip lα⋅ decreasingly.
− 02P : item_length_list: item list ordered by length il increasingly;
−

0
S : shelf_freelength_list: shelf list sorted by the current free shelf space
decreasingly.

Twelve low-level heuristics are used. They are categorised into four
types: add product(s), delete product(s), swap and interchange:

− Add_random: this heuristic adds one facing of a random item to the first
shelf of

0
S .

− Add_exact: this heuristic searches and adds one facing of the biggest
possible item to all shelves (begins from the first shelf of

0
S) until all

shelves cannot be assigned any more items.
− Add_best_contribution: this heuristic repeatedly selects a shelf from

0S (begins from the first shelf of 0S), repeatedly searches and adds as
many as possible facings of an item from 01P (begins from the first item
of 01P) until all shelves cannot be allocated any more items.

− Add_best_improvement: this heuristic selects the first shelf of
0

S and
allocates one facing space to the item which gives the best improvement
to the evaluation function.

− Delete_random: this heuristic deletes one facing of a random item from
a random shelf.

− Delete_least_contribution1: this heuristic deletes one facing of the item
with the least contribution value (/i i ip lα⋅) from a random shelf.

− Delete_least_contribution2: this heuristic deletes one facing of the item
with the least contribution value from all shelves.

− Delete_least_improvement: this heuristic deletes one facing of the item
that causes the least decrease in the objective value from a random shelf.

− Swap_random: this heuristic randomly deletes one facing of an item
from a random shelf and adds as many possible facings of another
randomly selected item.

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

15

− Swap_best: this heuristic repeatedly selects a shelf from

0
S , deletes one

facing of the item with the lowest contribution value, adds one facing of
another item with a higher/highest contribution value, until the last shelf
is swapped.

− Interchange_improvement: this heuristic randomly selects two different
items from two random shelves and interchanges one facing or multiple
facings of two items. The basic idea behind this heuristic is that the
small free space can be transferred to the shelf with a larger free space so
that another facing could be added to that shelf later.

− Interchange_random: this heuristic selects two different items from two
random shelves and exchanges one facing of the two items.

Note that each of above low-level heuristic is enforced to generate a
feasible solution from the incumbent solution. If a low-level heuristic cannot
produce a new feasible solution, the incumbent solution is returned.

5. EXPERIMENTAL RESULTS

As there is no real-world data available due to commercial confidentiality
and neither is there any benchmark data available from the literature, a
number of simulated problems were generated. The length of the products
conformed to a uniform distribution between 25 and 60. The net profit of the
products were created randomly by a normal distribution in the same way as
described in [30]. iα , iβ , iL , iU and jT have uniform distributions in the
ranges of [1, 2], [0.1, 0.4], [2, 3], [7,10] and [300, 450] respectively. In the
light of Yang’s [30] experimental results which show that the problem size
is a potential factor affecting algorithm performance, in this paper, five
problem instances with different problem sizes were generated to test this
relationship. We also take into account the influence of space availability in
the performance of the algorithms. Because each item has a lower bound and
an upper bound of facings, the available shelf space of a problem must be
greater than a minimal space value to satisfy the lower bound of facings and
meanwhile it should not exceed a maximal space value in case that all items’
facings reach the upper bounds and no optimisation is required. Two
parameters, r_min and r_max, were introduced to describe the space
availability. r_min represents the ratio of the minimal space to the available
space and r_max is the ratio of the available space to the maximal space.
Hence both r_min and r_max are in the range of (0, 1). Seven problem

16 Chapter #

instances with different r_min and r_max values were also generated to test
the corresponding algorithms performance.

Two simple hyper-heuristics, RHOI (Random Heuristics Only
Improving) and RHAM (Random Heuristics All Moves), were also applied
to the problems for the purpose of comparison. RHOI repeatedly selects a
random low-level heuristic and applies it to the current solution until some
stopping criteria is met, during which only those heuristics that can improve
the objective function value are accepted. RHAM works in the similar way
but all moves are accepted. We also experimented with a “Choice Function”
based hyper-heuristic which was proposed in [10]. In this approach, the
selection of the low-level heuristics is guided by a “Choice Function”, which
considers recent performance of each low-level heuristic 1()f , recent
improvement for consecutive pairs of low-level heuristics 2()f and the
amount of time elapsed since the given heuristic has been called 3()f .
Overall, the function is defined as

1 1 2 2 3 3() () (,) ()j j k j jCF h f h f h h f hπ π π= + + (10)

Both 1f and 2f are used as a method to intensify the search and 3f is used
as a diversification strategy. 1π , 2π and 3π are scaling parameters to weight
the different terms. Values of these parameters are changed adaptively
according to the magnitude of recent improvement in the objective function.
A more detailed description is provided in [10]. Two conventional simulated
annealing algorithms, SA_swap and SA_interchange, were also applied to
the problems. Both of the algorithms employ the same cooling schedule that
is used in SAHH but utilising different neighbourhood structures. In
SA_swap, the neighbourhood structure was defined by randomly swapping
one facing of two different items on a random shelf. However, the
neighbourhood in SA-interchange was generated by: randomly selecting two
different items from two random shelves, interchanging one facing of the
two items, and then adding as many facings as possible of the item with the
largest possible item_contribution value to the shelf that has the largest free
space.

All algorithms were coded in Microsoft Visual C++ version 6.0 and all
experiments were run on a PC Pentium IV 1.8GHZ with 256MB RAM
running Microsoft Windows 2000 professional Version 5. All algorithms
started from a solution produced by a greedy heuristic (the greedy heuristic
repeatedly adds the item with the largest possible item_contribution value)
and allowed 600 seconds computation time for a fair comparison. The
algorithms’ performance was evaluated by the ratio of best objective value
(hP) obtained by the different algorithms to the relaxed upper bound (ubP).
All results were averaged over 5 runs.

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

17

In the first round experiments, seven problem instances with different space
ratios were solved by the algorithms. Figure #-3 shows the results. We can

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0.95 /0.33 0.85 /0.35 0.7 / 0.46 0.6 / 0.53 0.5 / 0.66 0.4 / 0.79 0.34 /0.95
r_min / r_max

P
h /P

ub

Greedy CFHH SAHH
SAHH_Adpt RHOI RHAM
SA_swap SA_interchange

Figure #-3. Algorithms performance for different space ratios

see that all types of hyper-heuristics have greatly improved over the initial
greedy heuristic. SA_swap also produced good quality solutions while
SA_interchange performed much worse. This shows that the performance of
the simple simulated annealing algorithm is greatly dependent on the
neighbourhood structure. We can also see that our simulated annealing based
hyper-heuristics outperformed all other algorithms in all cases with
surprising high solution quality. Both types of simulated annealing hyper-
heuristics obtained over 98.5% of the upper bound (calculated by the two-
stage relaxation). The performance of SA based hyper-heuristic slightly
decreased when r_min and r_max reached the middle of their ranges. This is
probably because that, when the r_min is large while r_max is small, the
shelf space is very scare, the optimal solution is near the lower bound and
hence is relatively easier to obtain. Similarly, when r_min is small and
r_max is large, the space is so ample that the optimal solution is almost the
upper bound. However, when the available shelf space belongs to none of
these two cases, the problem becomes harder to solve.

18 Chapter #

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

0.960

0.980

1.000

(5,20) (12, 54) (22, 60) (30,80) (40, 100)
(m , n)

P
h /P

ub

Greedy SAHH SAHH_adpt
RHOI RHAM SA_swap
SA_interchange CFHH

Figure #-4. Algorithms performance for different problem sizes

To test the influence of the problem size, we also generated five problem
instances with different problem sizes in terms of the number of the shelves
and the number of the items. In case of the influence of the space
availability, we let all the problems have almost the same space ratio (r_min
= 0.95, r_max = 0.24). Figure #-4 and table #-1 show the corresponding
experimental results and comparison. We can see that SAHH and
SAHH_adpt outperformed all other algorithms, including the two simple
simulated annealing algorithms. The results also show that our simulated
annealing hyper-heuristic performed slightly worse when the problem size
increased but still obtained more than 97% of the relaxed upper bound for a
very large problem (m=40, n=100). From both figure #-3 and table #-1, we
can see that SAHH and SAHH_adpt had almost the same performance. This
shows that our simulated annealing hyper-heuristic is not sensitive to the
change of the starting temperature and hence is a robust framework. In
contrast, in figure #-4, we can see that both SA_swap and SA_interchange
are very sensitive to the change of the problem instances. For small problem
sizes, SA_swap performed better than SA_interchange. However, for the
large problem sizes, SA-interchange performed better than SA_swap. This
demonstrates that, for conventional SA, a good neighbourhood structure for

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

19

a given problem instance does not guarantee good performance for another
problem instance. However, SA based hyper-heuristics can synergise several
neighbourhood functions (or low-level heuristics) according to the
characteristics of different problem instances.

Table #-1. Algorithms performance for different problem sizes

(r_min, r_max) (0.95, 0.24) (0.95, 0.33) (0.95, 0.25) (0.95, 0.24) (0.95, 0.24)

(m, n) (5,20) (12, 54) (22, 60) (30,80) (40, 100)

ubP 422.25 401.33 610.67 884.62 1077.38

Greedy
Ph

Ph/Pub
151.73

0.813
410.81

0.973
511.51

0.838
753.35

0.852
928.07

0.861

CFHH
Ph

Ph/Pub
184.79

0.991
418.13

0.990
595.74

0.976
863.93

0.977
1036.23

0.962

SAHH
Ph

Ph/Pub
186.53

1.000
418.68

0.992
598.50

0.980
868.15

0.981
1048.04

0.973

SAHH_adpt
Ph

Ph/Pub
186.53

1.000
418.60

0.991
597.41

0.978
865.86

0.979
1050.60

0.975

RHOI
Ph

Ph/Pub
186.53

1.000
418.14

0.990
596.60

0.977
864.59

0.977
1044.60

0.970

RHAM
Ph

Ph/Pub
186.53

1.000
418.38

0.991
491.65

0.969
858.56

0.971
1036.01

0.962

SA_swap
Ph

Ph/Pub
176.09

0.944
416.85

0.987
570.78

0.935
830.09

0.938
961.19

0.892

SA_
interchange

Ph
Ph/Pub

151.73
0.813

412.99
0.978

568.37
0.931

817.71
0.924

1024.42
0.951

6. CONCLUSION

In this paper, we have used a practical shelf space allocation model to
generate automatic planograms. Several hyper-heuristic approaches were
applied to solve this problem. As an extension of the multi-knapsack
problem, the planogram problem is difficult to solve. We provided a set of
simple low-level heuristics which have been shown to be very successful in
bin packing and knapsack problems. A simulated annealing based hyper-
heuristic framework was proposed to solve the problem. In this approach,
simulated annealing was used to guide the selection and acceptance of the
appropriate heuristics at different search stages instead of controlling moves
among neighbours. To give a better evaluation of the solution quality

20 Chapter #

obtained by different algorithms, the upper bound of the objective function
was also derived by a two-stage relaxation. The experimental results show
that the simulated annealing based hyper-heuristics used in this paper
produced high quality solutions in different problem situations and
outperformed three other hyper-heuristics and two versions of the
conventional simulated annealing algorithms. The simulated annealing
hyper-heuristic does not seem parameter sensitive, which has always been a
problem for the conventional simulated annealing algorithms.

Simulated annealing hyper-heuristic is a very promising technique for
combinatorial optimisation problems. In the future, we will also investigate
different problems in an attempt to demonstrate the generalisation of this
approach.

REFERENCES

 1 Baker, R. C. and Urban, T. L., A Deterministic Inventory System with an Inventory-Level-
Dependent Demand Rate. Journal of the Operational Research Society, 39(9): 823-831,
1988.

 2 Borin, N., Farris, P. W. and Freeland, J. R., A Model for Determining Retail Product
Category Assortment and Shelf Space Allocation. Decision Sciences, 25(3): 359-384,
1994.

 3 Burke, E., Hart, E., Kendall, G, Newall, J., Ross, P, and Schulenburg, S., "Hyper-
Heuristics: An Emerging Direction in Modern Search Technology" in Handbook of
Meta-Heuristics (Glover F. and Kochenberger, G. eds.), Kluwer, ISBN: 1-4020-7263-5,
457-474, 2003.

 4 Burke, E., Kendall, G. and Soubeiga, E., A Tabu-Search Hyperheuristic for Timetabling
and Rostering. Journal of Heuristics, 9: 451-470, 2003.

 5 Campo, K., Gijsbrechts, E., Goossens, T. and Verhetsel, A., The Impact of Location
Factors on the Attractiveness and Optimal Space Shares of Product Categories.
International Journal of Research in Marketing, 17: 255-279, 2000.

 6 Connolly, D. T., An Improved Annealing Scheme For the QAP. European Journal of
Operational Research, 46: 93-100, 1990.

 7 Corstjens, M. and Doyle, P., A Model for Optimaizing Retail Space Allocations.
Management Science, 27(7): 822-833, 1981.

 8 Cowling, P., Kendall, G. and Soubeiga, E., Adaptively Parameterised Hyperheuristics for
Sales Summit Scheduling. 4th Metahuristics International Conference [MIC 2001], 2001.

 9 Cowling, P., Kendall, G. and Han, L., An Investigation of a Hyperheuristic Genetic
Algorithm Applied to a Trainer Scheduling Problem. Proceedings of Congress on
Evolutionary Computation (CEC2002), Hilton Hawaiian Village Hotel, Honolulu,
Hawaii, 1185-1190, 2002.

10 Cowling, P., Kendall, G. and Soubeiga, E., A Parameter-free Hyperheuristic for
Scheduling a Sales Summit. Proceedings of the 4th Metaheuristic International
Conference[MIC 2001], 127-131, 2001.

#. An Investigation of Automated Planograms Using A Simulated
Annealing Based Hyper-heuristic

21

11 Cox, K., The Effect of Shelf Space Upon Sales of Branded Products. Journal of

Marketing Research, 7: 55-58, 1970.
12 Curhan, R., The Relationship Between Space and Unit Sales in Supermarkets. Journal of

Marketing Research, 9: 406-412, 1972.
13 Curhan, R., Shelf Space Allocation and Profit Maximization in Mass Retailing. Journal of

Retailing, 37: 54-60, 1973.
14 Desmet, P. and Renaudin, V., Estimation of Product Category Sales Responsiveness to

Allocated Shelf Space. International Journal of Research in Marketing, 15: 443-457,
1998.

15 Dowsland, Kathryn A., "Simulated Annealing" in Modern Heuristic Techniques for
Combinatorial Problems (Reeves, C. R. ed.), McGraw-Hill, ISBN: 0-07-709239-2, 21-
69, 1995.

16 Drèze, X., Hoch, S. J. and Purk, M. E., Shelf Management and Space Elasticity. Journal
of Retailing, 70(4): 301-326, 1994.

17 Fisher, H. and Thompson, G. L., Probabilistic Learning Combinations of Local Job-shop
Scheduling Rules. Factory Scheduling Conference, Carnegie Institute of Technology,
May: 10-12, 1961.

18 Glover, F. and Kochenberger, G. A., Handbook of Meta-Heuristics., Kluwer, ISBN: 1-
4020-7263-5, 2003.

19 Hart, E., Ross, P. and Nelson, J. A., Solving a Real-World Problem Using An Evolving
Heuristically Driven Schedule Builder. Evolutionary Computing, 6(1): 61-80, 1998.

20 Kotzan, J. and Evanson, R., Responsiveness of Drug Store Sales to Shelf Space
Allocations. Journal of Marketing Research, 6: 465-469, 1969.

21 Levy, Michael and Weitz, Barton, Retailing Management, Homewood, IL., ISBN: 0-256-
05989-6, 1992.

22 Lundy, M. and Mees, A., Convergence of An Annealing Algorithm. Mathematical
Programming, 34: 111-124, 1986.

23 Nareyek, A., Choosing Search Heuristics by Non-Stationary Reinforcement Learning.
Metaheuristics: Computer Decision-Making (Resende, M.G.C., and de Sousa,
J.P.ed.).Kluwer, 523-544, 2003.

24 Reeves, Colin R., Modern Heuristic Techniques For Combinatorial Problems, McGraw-
Hill, ISBN: 0-07-709239-2, 1995.

25 Ross, P., Marin-Blazquez, J. G., Schulenburg, S. and Hart, E., Learning a Procedure
That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-
heurstics. Proceeding of the Genetic and Evolutionary Computation Conference,
GECCO2003, Berlin, Germany: 1295-1306, 2003.

26 Urban, T., An Inventory-Theoretic Approach to Product Assortment and Shelf-Space
Allocation. Journal of Retailing, 74(1): 15-35, 1998.

27 Urban, T., The interdependence of inventory management and retail shelf management.
International Journal of Physical Distribution & Logistics Management, 32(1): 41-58,
2002.

28 Verbeke, W., Farris, P. and Thurik, R., Consumer Response to the Preferred Brand Out-
of-Stock Situation. European Journal of Marketing, 32(11/12): 1008-1028, 1998.

29 Wolpert, D. and MacReady, W. G., No Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation, 1(1): 67-82, 1997.

22 Chapter #

30 Yang, M.-H., An Efficient Algorithm to Allocate Shelf Space. European Journal of

Operational Research, 131: 107-118, 2001.
31 Yang, M.-H. and Chen, W.-C., A Study on shelf Space Allocation and Management.

International Journal of Production Economics, 60(61): 309-317, 1999.
32 Zufryden, F., A Dynamic Programming Approach for Product Selection and

Supermarket Shelf-Space Allocation. Journal of Operations Research Society, 37(4): 413-
422, 1986.

