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Abstract. This paper presents a Greedy-Least Saturation Degree (G-LSD) 
heuristic (which is an adaptation of the least saturation degree heuristic) to 
solve a real-world examination timetabling problem at the University 
Kebangsaan, Malaysia. We utilise a new objective function that was proposed 
in our previous work to evaluate the quality of the timetable. The objective 
function considers both timeslots and days in assigning exams to timeslots, 
where higher priority is given to minimise students having consecutive exams 
on the same day. The objective also tries to spread exams throughout the 
examination period. This heuristic has the potential to be used for the 
benchmark examination datasets (e.g. the Carter datasets) as well as other real 
world problems. Computational results are presented.        
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1   Introduction 

The examination timetabling problem is characterised by assigning a set of exams 
into a limited number of timeslots subject to a set of constraints (see [1], [2], [3], [12], 
[16], and [20]). These constraints are usually classified as hard and soft constraints. 
The hard constraints must be completely satisfied where solutions that satisfy all the 
hard constraints are called feasible. On the other hand, there might be some 
requirements that are not essential but should be satisfied as far as possible, which are 
referred to as soft constraints. Common hard constraints for examination timetabling 
problem are: (i) no student should be required to sit two exams at the same time and 
(ii) the scheduled exams must not exceed the room capacity. However, in practical 
examination timetabling problem, there are many other constraints, which are vary 
among institutions. Similarly in our dataset, we have some unique hard constraints, 
which we describe in section 2.  

A particularly common soft constraint aims to spread exams as evenly as possible 
throughout the schedule. Due to the complexity of the problem, it is not usually 
possible to have solutions that do not violate some of the soft constraints. Indeed, the 
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quality of the timetable is usually evaluated based on some cost which measures the 
violation of the soft constraints. A weighted penalty value is associated with each 
violation of a soft constraint and the objective is to minimize the total penalty value. 

Various approaches have been developed for solving examination timetabling 
problems. These include graph-based heuristics [3], tabu search [4], evolutionary 
algorithms ([5], [6], [13], [14], and [15]), simulated annealing [7], hyper-heuristics 
[8], and ant algorithms [9]. [8], for example, employed a tabu search approach to 
search a sequence of graph heuristics in constructing examination timetables within a 
hyper-heuristic framework. A move in tabu search chooses a new heuristic list by 
randomly swapping two graph heuristics in the previous heuristic list. The newly 
visited heuristic lists are added to the tabu list to avoid re-visiting them. To reduce the 
computational time, [8] introduced a failed list that stored any heuristic list that could 
not generate a feasible solution. Results showed that the approach can produce good 
quality solutions that are within the range of the best results reported in the literature 
for both exam and course timetabling problems. 

Graph based heuristics were among the earliest approaches to be used for the 
timetabling problem ([10] and [3]). They are used as constructive heuristics, 
constructing solutions by ordering the exams that have not yet been scheduled, 
according to the perceived difficulty in scheduling that exam into a feasible timeslot. 
The difficulty of an exam can be represented in various ways such as the degree of 
conflict it has with other exams, the number of student enrollments etc. Some 
common graph based heuristics are: 

1) Largest degree first. This heuristic first schedules the exam that has the largest 
number of conflicts with other exams. 

2) Colour degree. Exams with a greater number of conflicts with the exams that 
have already been scheduled have a higher priority of being scheduled next.    

3) Least Saturation degree. Exams with fewer feasible slots are scheduled as 
early as possible. The priority of exams (in the unscheduled list) to be scheduled 
are changed dynamically during the construction of solution. 

4) Largest weighted degree. Exams with the higher number of students in conflict 
are scheduled earlier. 

5) Largest enrolment degree. Exams with greater number of students are 
scheduled earlier. 

 

Interested readers are referred to [11], [12], [13], [14], [15], [16], [17], [18], and 
[19] for more information about examination timetabling. 

In this paper, we present a Greedy-Least Saturation Degree (G-LSD) heuristic in 
order to produce good quality solutions to the real-world examination timetabling 
problem faced by the University Kebangsaan Malaysia (UKM). The heuristic is an 
adaptation of the least saturation degree heuristic. We employ a hierarchical problem 
solving approach to generate solutions for UKM. We utilise a new objective function 
in order to evaluate the quality of a timetable. The objective function considers both 
timeslots and days in assigning exams to timeslots. Higher priority is given to 
minimise students having consecutive exams in the same day. The new objective 
function differs from the standard proximity cost ([20]), where the only measure is 
how close the exams are, with no account being taken of exams spanning days (i.e. 
two consecutive exams, on the same day, are penalised the same as an exam in the 
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evening and an exam the following morning). The new objective function, and the G-
LSD heuristic, can be applied to the standard benchmark examination datasets ([20]) 
by adding a new variable day to each timeslot. 

2   Problem Definition 

Until recently, human schedulers at the Universiti Kebangsaan Malaysia (UKM) were 
human decision makers who applied a greedy assignment procedure, based on their 
experience with a little guidance from computer software to avoid clashes. They did 
not consider students sitting two/three consecutive exams a day. They would like to 
take into account spreading exams evenly, and fairly, throughout the timetable but the 
size/complexity of the problem makes this unrealistic. Therefore, the human 
scheduler only concerns themselves with the constraint of not assigning a student to 
sit more than one exam in a given timeslot. Even this procedure usually takes the 
manual schedulers more than two weeks. After circulating the exam timetable to 
students, the schedulers invariably receive many complaints from students/lecturers. 
When students complain about sitting three consecutive exams in a day, they are 
rescheduled, with an emphasis on making as few adjustments to the rest of the 
timetable as possible. Usually, if this happen (i.e. complaints about three consecutive 
exams in a day), a new timeslot may be added (normally on Saturday) and the middle 
exam is scheduled to this new timeslot. This incurs extra overhead costs. Therefore, 
this work is motivated by attempting to automate this process, as much as possible, as 
well as take into account more of the requirements. Indeed, the authors based at UKM 
have been tasked to this do by the management at UKM.  

In this paper, we present our approach and experience in solving the examination 
timetabling problem for Semester I, year 2006 at UKM. The dataset (UKM06-1) has 
been preprocessed based on the supplied data which contains 818 exams, 14,047 
students, 75,857 enrollments, 42 timeslots and 15 exam days (this excludes the 
weekend break). The UKM06-1 dataset is held in four text files: UKM06-1.stu, 
UKM06-1.slt, UKM06-1.rom and UKM06-1.isl, which represent student enrollment, 
slot, room and isolated exams definition, respectively. The files are available at 
http://www.ftsm.ukm.my/jabatan/tk/masri/Exam/. The exam time-
tabling problems in UKM (particularly) have different datasets for each semester. In 
most cases, each student registers for different set of courses. That is the exam 
timetable of each semester is only valid for that semester. Therefore, in practice, the 
exam timetable need be generated at the end of each semester.      

The dataset has 3 weeks examination period. Each week has 5 exam days (Monday 
to Friday). Each day has 3 timeslots (morning, afternoon and evening), except Friday 
which has 2 timeslots (morning and evening only). In order to model the real-world 
timeslots (in days), we present the vector of days in Fig. 1. 

 
(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12,  
15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19) 

Fig. 1. Vector of days 



614 M. Ayob et al. 

In Fig. 1, we can see that in most cases we have three entries for each day (e.g. day 
1, we have three ‘1’) except on Friday i.e. on day 5, 12 and 19; there are only two 5 
entries (representing two timeslots on Friday). Saturdays (days 6 and 13) and Sundays 
(day 7 and 14) are missing because there are no examinations on Saturday and 
Sunday. A corresponding timeslot vector is presented in Fig. 2. 

 

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,  
33, 34, 36, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57) 
 

Fig. 2. Vector of timeslots 

Fig. 2 shows that the timeslots are represented as indexes. Timeslots 1, 2 and 3 
refer to day 1, timeslots 4, 5 and 6 refer to day 2, etc. Note that on day 5 (Friday the 
first week) there are only 2 timeslots i.e. 13 and 15 (morning and evening sessions). 
Since there is no afternoon session, we do not use a timeslot with an index of 14. The 
reason is that we want to utilise different weights since the students have gaps (2 gaps 
in this case i.e. 15-13=2) even though the exams are scheduled on the same day. Also 
notice that the timeslot indexes for Saturday the first week (16, 17 and 18) and 
Sunday the first week (19, 20, and 21) are missing because there are no exams 
scheduled on these days.  The same representation is used for the second and third 
weeks of the exam period. 

 

The input for the examination timetabling problem can be stated as follows: 
• N is the number of exams; 
• Ei is the ith exam where i Є {1,….,N}; 
• ei is number of students sitting exam Ei where i Є {1,….,N}; 
• B is the set of all N exams, B={ E1,…, EN}; 
• D is the number of days; 
• T is the given number of timeslots (including missing timeslots); 
• M is the number of students; 
• ti  specifies the assigned time slot for exam Ei, where ti Є{1,..,T} and i Є{1,..,N}; 
• di  specifies the assigned day for exam Ei, where di Є{1,..,D} and i Є{1,..,N}; 
• C=(cij)NxN  is the conflict matrix where each element denoted by cij, (i,jЄ{1,..,N}) 

is the number of students taking both exams Ei and Ej where cij=0 for i=j; 
• Δt =|ti-tj| is the timeslot different between exam Ei and Ej; 
• Δd=|di-dj| is the day different between exam Ei and Ej;  
• βij  is a decision variable where βij =1 if cij>0 and i ≠ j; or 0 otherwise.  

 

The constraints of our examination timetabling problem (excluding constraints for 
assigning exams to rooms) are: 

 
1) All exams must be scheduled and each exam must be scheduled only once. 

 

 (1) ∑
=

=
T

s
is

1

1λ for all i ∈  {1,..,N}. 
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if exam Ei is assigned to timeslot s; 

otherwise; 

for tЄ{1,..,T} ; 

where 

   

 
  

 

(2) 

2) No student can sit two exams concurrently. If exam Ei and Ej are scheduled in slot 
s, the number of students sitting both exams Ei and Ej must be equal to zero, i.e. 
cij=0.   

 
(3) 

where 

 

(4) 

3) For each timeslot t, the number of students sitting for exams (Studentst) must not 
exceed the maximum number of seats (MaxSeats) i.e. 2,400 seats per timeslot for 
the UKM06-1 dataset. 

 

   (5) 

4) No student can sit 3 consecutive exams in a day. 
 

If cij ≠ 0; cik  ≠ 0; ti = x; i≠j≠k; [tj = x+1 OR  tj = x-1] and di = dj; 
then dk ≠ di;   for all i,j∈  {1,...,N}; 

(6) 

 

Due to the complexity of the problem, we have partitioned the problem into two 
sub problems. That is, assigning exams to timeslots (the same as the capacitated 
examination timetabling problem but with extra hard constraints, i.e. we impose 
constraint 4) and the room assignment problem. In this paper, we only consider 
constraints related to the capacitated examination timetabling problem. Constraints 
for the room assignment problem will be the subject of our future work.  

Before assigning exams to timeslots the supplied data requires some preprocessing. 
Firstly, we exclude courses with no exams and combine exams that have to be 
scheduled together into a single exam. We also exclude courses from the Law faculty. 
These only have two timeslots per day, as their exam period is longer than the other 
exams. We also exclude co-curriculum courses, which have different (shorter) 
timeslots. In this work, we use a hierarchical problem solving approach, which 
focuses on the first stage that is assigning exams to timeslots. 

The output of the first stage will be used as input to subsequent stages. The next 
two stages, which assign exams to (suitably sized) rooms and schedules Law exams 
into slots and rooms, are not considered here and will be the focus of future work. 
Since the co-curriculum courses are university level courses which have many student 
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enrollments, from different faculties, and have shorter exam periods, i.e. different 
timeslots, they are usually scheduled outside the examination weeks. Therefore, 
scheduling the co-curriculum exams can be solved independently.   

To indicate the density of the conflicting exams, we use Conflict Density as defined 
in [20] and many other works. The Conflict Density can be calculated as: 

 

(7) 

Higher value of Conflict Density shows that, on average many exams are in 
conflict with each other.       

3   Objective Function 

As in the standard benchmark datasets, wherever possible, examinations should be 
spread out over timeslots so that students have large gaps between exams. In order to 
adhere with practical (real world) issues, we introduce our new cost function, which is 
adapted from the proximity cost ([20] and the objective function proposed by [13] and 
[14]). Our Penalty Cost, F, is calculated as follows: 

 

(8) 

where 
 
 
 
 

(9) 

Equation 9 presents a weighted penalty value that reflects the cost of assigning 
exam Ei and Ej to a timeslot. These being 0, 1, 2, 4, 8, 16, 64 and 256 where the cost 
is zero if the gap of timeslot for exam Ei and Ej is greater than 5 or the day gap is 
greater than 2. We only penalise up to a maximum of 5 timeslots in order to adhere to 
the well established proximity cost proposed by [20]. We also limit the penalty up to a 
maximum of 2 days because a 2 day gap between examinations gives enough free 
time for students. This observation is based on a pilot survey we have carried out at 
UKM. 

The new objective function (equations 8 and 9) aims to minimise the number of 
students having two exams in a row on the same day (highest penalty) and on the next 
day (lower penalty); and attempts to spread out exams over timeslots (lowest penalty). 
Indeed, these formulations emphasises avoiding students having two consecutive 
exams on the same day instead of avoiding having two consecutive exams on 
different days. The penalty for students having two consecutive exams on the same 
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day (penalty=256) is higher than the penalty value for students having two 
consecutive exams on different days (penalty=16). This factor is not highlighted in 
the objective function proposed by [13], [14], and [20]. In fact, [20] ignores the day 
effect by assuming that the practical time gap between each consecutive timeslot is 
the same. The objective function introduced in [13] penalised consecutive exams on 
the same day. That is, [13] only minimised the number of students having two 
consecutive exams on the same day without spreading exams over timeslots. 
Subsequently, [14] enhanced the objective function that was proposed in [13] by 
giving a higher penalty (3) to students having two consecutive exams in the same day 
and a lower penalty (1) for two consecutive exams spread across two consecutive 
days. By adapting the three objective functions, we proposed a Penalty Cost that 
combines the features of the above functions into one.        

4   Heuristic for the Examination Timetabling Problem  

This work presents a heuristic procedure which we call Greedy Least Saturation 
Degree (G-LSD). We use the term “greedy” because our heuristic attempts to assign 
each exam to the best timeslot which satisfies all the hard constraints. We randomly 
assign exams to timeslots when the exam has no conflict with the exams that have 
already been scheduled. While assigning exams to timeslots, we also ensure that all 
hard constraints are satisfied. This is an adaptation of the least saturation degree 
heuristic for classical graph colouring problem. Fig. 3 presents the pseudo-code for 
the G-LSD. The idea is to give a higher priority to exams still to be scheduled that 
have the least number of available slots, where the priority changes dynamically 
during the scheduling process.  

In the initialisation step, all exams in B are reset. That is, the number of available 
timeslots for each exam is set to the maximum available slot and the exam’s status is 
changed to unscheduled and copied into the unscheduled exam set B′={E1’, 
E2′….,EN′}. The heuristic first arranges the unscheduled exams in B′ in non-
decreasing order of the number of available timeslots, then in non-increasing order of 
the number of conflicts they have with other exams (in B) and, finally, by non-
increasing order of the number of student enrollments. The heuristic chooses the first 
exam in B′, Ei′, and assigns it to the best timeslot that minimises F (equation 8) and 
subject to the total number of students assigned to the timeslot that does not exceed 
the maximum seat capacity (i.e. 2400 for UKM06-1 dataset). However, when all slots 
are available for Ei′ (i.e. the exam has no conflict with the exams that have already 
been scheduled), we randomly choose a timeslot for Ei′. The idea is to allocate the 
best timeslot for Ei′, so as to obtain different solution for each run. While assigning 
exams to timeslots, we also ensure a clash free schedule (i.e. constraints 1 to 3 are 
satisfied) and larger exam (student enrollment>=400) are assigned to earlier timeslots 
(the first two weeks if possible). This is done as, based on discussions with UKM 
registry officers, they usually assign larger exams to earlier timeslots in order to give 
longer time for marking larger exams. After assigning exam Ei′ to the timeslot, we 
update the appropriate exam details such as timeslot index, number of available 
timeslots etc. in B and reduce the number of available timeslots for exams in B′ 
accordingly. Then, we eliminate Ei′ from B′ and repeat step 2.1 to 2.6 until all the 
exams have been scheduled, or until Ei′ cannot be assigned to any available timeslot. 
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Fig. 3. Psuedo-code of Greedy-Least Saturation Degree (G-LSD) heuristic 

If this occurs, we stop the process and start again (steps 1 to 3). After assigning all 
exams to timeslots, we verify that all hard constraints (constraint 1 to 4) are satisfied. If 
the solution is feasible, we end the process. Otherwise, we begin again (steps 1 to 3).  

Before assigning exam Ei′ to a timeslot we ensure that constraints 1 to 3 are 
satisfied. However, we can only verify if constraint 4 is satisfied when all exams have 
been assigned to timeslots. This is because we want to reduce the computational time 
due to the size of problem and the complexity of computing the three consecutive 
exams in a day. Moreover, our new objective function is able to avoid assigning 
students sitting three consecutive exams in a day by giving a very high penalty (i.e. 
penalty=256*256) for this case. Therefore, in many cases, our algorithm produces 
solutions where no students are sitting three consecutive exams in a day. However, 
the solution is rejected (infeasible) if there are students sitting three consecutive 

Step 1: Initialisaon  
Initialise all exams in B. 
Copy all exams in B into unscheduled exam set,  
B’={Ei’, E2’….,EN’}. 

 
Step 2: Assigning Exam to Slot. 

While(B’≠Ø) 
{ 

2.1 Arrange the exam in B’ using Procedure A. 
2.2 Choose the first exam, Ei’ in B’. 
2.3 If all timeslots are available for Ei’;  

Then, Randomly choose available timeslot, ti, 
s.t. the limit of seat capacity of the 
timeslot and larger size exam should be 
assigned to earlier timeslot.  

2.4 Else, choose timeslot, ti which has the minimum 
F, s.t. the limit of seat capacity of the 
timeslot and larger size exam should be 
assigned to earlier timeslot.  
If there is no clash free timeslot for Ei’, 
exit while loop and repeat step 1.  

2.5 Update appropriate exams in B and reduce the 
number of available timeslots for exams in B’ 
accordingly. 

2.6 Remove Ei’ from B’. 
}end while. 

 
Step 3: Verification 

If the solution is feasible concerning constraint (4), 
return the solution. 
Otherwise, repeat Step 1 to Step 3 until the feasible 
solution is obtained or exceed the time limit. 

 
Note: Procedure A arrange unscheduled exams in B’ in non-decreasing order of number 

of available timeslots then with non-increasing order of number of conflicts they 
have with other exams (in B) and non-increasing order of number of students 
enrollment. 
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exams in a day. Since this is a constructive heuristic, we stop the process when we 
obtain a feasible solution. Of course, we could extend this procedure to produce many 
feasible solutions and return the best solution found by repeating step 1 to 3 for a 
given number of iterations.   

5   Results  

Our heuristic was implemented using Microsoft Visual C++ 6.0. We ran the 
experiments on an Athlon 1.47 GHz processor, with 512 MB RAM and Windows XP 
Professional. The G-LSD heuristic was tested on the real world UKM06-1 dataset and 
also on the benchmark Carter datasets. In order to transform the Carter datasets into a 
form that is suitable for use with the recently proposed objective function, we apply a 
day and timeslots vectors (as in UKM06-1; see Fig. 1 and Fig. 2), except that for 
benchmark Carter datasets we have three timeslots on Friday and one timeslot on 
Saturday (as suggested in [14] and [15]). We also introduce a six timeslot gap 
between Saturday morning and Monday morning to cater for the weekend break. For 
each test, we perform 100 runs. Since there is a random element in selecting each 
timeslot, when all timeslots are available, we can usually obtain different solutions for 
each run. In all tests, we use the new Penalty Cost (see section 3) function to evaluate 
the quality of timetable.  

Table 1 shows the characteristics of original UKM06-1 and Carter datasets. For 
capacitated examination timetabling problems, no justification was stated on how the 
seat capacity limits were set (see [13], [14], and [15]). For example, the seat capacity 
limit for Car-s-91 was set to 1550 seats. If we divide the number of enrollment by the 
seat capacity, we need at least 37 timeslots (in ideal case where we can easily assign 
exams to any slots, i.e. exams have no conflict with each other) such that all students 
can have a seat in the exam room. We assume this is why [13] increased the number 
of timeslots from 35 to 51 for Car-s-91 and 23 timeslots to 35 for Tre-s-92. This work 
also introduces the sta-f-83 instance as a capacitated problem. Later (test B) we run a 
series of experiments to establish the number of timeslots and the seating capacity 
required for this revised dataset instance.  

Table 1. Characteristics of benchmark and UKM06-1 examination problems 

Dataset Exams Times-
lots 

Days Seat 
capacity 

Students Enrollment Conflict 
density 

UKM06-1 818 42 15 2400 14047 75857 0.05 
Car-f-92 543 32 12 2000 18419 55522 0.14 
Car-s-91 682 35/51 13/19 1550 16925 56877 0.13 
Kfu-s-93 461 20 8 1955 5349 25113 0.06 
Tre-s-92 261 23/35 9/13 655 4360 14901 0.18 
Sta-f-83 139 13 5 - 611 5751 0.14 
 Note: * Previously, days have not been properly defined. Based on discussion in [14] and 

[15], we compute the number of examination days (excluding day off). 
**Seat capacity was introduced later by [13] for five Carter datasets. 

 
For UKM06-1, we ran an initial test (we call it test A) to establish the best number 

of timeslots for this dataset. We varied the number of timeslots whilst fixing the 
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maximum room capacity (i.e. 2,400 seats as currently used). In practice, the number 
of timeslots available is 42. Actually, due to the difficulties of scheduling large 
exams, manual schedulers usually allocate certain timeslots for some exams. For 
example, exams ZZZT1032 and ZZZT1042 which have 2146 and 2110 student 
enrollments, respectively, were allocated to one entire timeslot for each exam. As a 
result no other exams were scheduled in these timeslots. Indeed, these exams were 
enrolled by many students from various faculties, i.e. the conflict density for these 
exams is very high. However, by using our approach, these exams can be scheduled 
together with other exams. Although, by setting the number of timeslots is equal to 42 
and the maximum room capacity is equal to 2400, human schedulers still struggle to 
provide good quality timetables. Indeed, they have no clear idea what is the criterion 
for a good quality timetable and how they can manage to find one, even manually. 
They always receive many complains after the tentative exam timetable has been 
circulated to students/lecturers. Therefore, we design test A to show that they can 
reduce the number of timeslot (that will ultimately reduce the management cost) 
without scarifying too much on solution quality. Results of this test, is shown in  
Table 2.   

Table 2. Results for the test A on UKM06-1 when varying the number of timeslots 

Time-
slots 

Exam 
Days 

Seat capacity Number of clash 
free solutions 

Feasible 
solutions (%)

Average feasible 
solution, Favg 

Best feasible 
solution, Fmin 

42 15 2400 100 79 4.76 4.25 

41 15 2400 100 70 5.30 4.81 

40 14 2400 100 35 6.08 5.44 

40 14 2106 0 - - - 

40 14 2250 100 36 6.21 5.86 

 
In Table 2, ‘Number of clash free solutions’ indicates the total number of solutions 

obtained (ignoring violations of students sitting three consecutive exams in a day) 
over the 100 runs; ‘Feasible solutions’ indicates the number of solutions obtained that 
satisfy all the hard constraints (1 to 4), including no student sitting three consecutive 
exams in a day. Results in Table 2 shows that we obtained 79%, 70% and 35% 
feasible solutions when seat capacity=2400 and timeslots is equal to 42, 41 or 40 
respectively. 

Some secondary rooms (i.e. LobiA(DECTAR) and LobiB(DECTAR)) allocated to 
the UKM06-1 dataset are actually not preferable due to practical constraints, so we 
eliminate these rooms from the list of available rooms. For UKM dataset, we also 
eliminate PSeni(DECTAR) from the list because the room is reserved for Law 
examinations. Therefore, the total room capacity is reduced to 2340 seats. As a result, 
we set 2106 or 2250 as the maximum seat capacity limit, i.e. 90% or 96% of the total 
seat capacity respectively. Table 2 shows that, out of 100 runs, no feasible solution is 
obtained when the number of timeslots is equal to 40 and seating capacity is equal to 
2106. Whereas, we obtained 36 feasible solutions with the best Penalty Cost, Fmin = 
5.86 when we used timeslots is equal to 40 and seat capacity is equal to 2250. These 
results show that our G-LSD is capable of reducing the number of timeslots and 
avoiding students sitting three consecutive exams a day, as well as spreading out 
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exams over timeslots. It shows that we can save two timeslots compared to manual 
scheduler (this might be of interest to the administrator because they could reduce 
their administration cost). Since the number of timeslots was reduced, the UKM06-1 
dataset is now even more constrained. 

We carried out a further test (test B) to find out a reasonable number of timeslots 
required in order to generate feasible solutions (that satisfies all constraints 1 to 4) for 
the sta-f-83 problem. Initially we set the seat capacity to 2400 such that all students 
(clash free schedule) have a seat in the exam room. We then, reduced the maximum 
seating capacity limit to a reasonable value. We also varied the number of timeslots 
for sta-f-83 starting from 13 timeslots until we found feasible solutions (20 timeslots). 
Table 3 shows the results of this test. We also extended our experiment to Kfu-s-93, 
Car-f-92, Car-s-91 and Tre-s-92. We initially tried not changing the number of 
timeslots and the maximum seat capacity that were set by [20], [13], and [14]. As we 
are enforcing an additional hard constraint (i.e. avoiding students sitting three 
consecutive exams in a day), we thought it is worth carrying out some further analysis 
on these datasets. Table 3 also shows the results of the experiments.  

Table 3. Results of test B on Sta-f-83 when varying the number of timeslots 

Dataset 
Time-
slots 

Exam 
Days 

Seat 
capacity 

Number of 
clash free 
solutions 

Feasible 
solutions 

Average 
feasible 

solution, Favg

Best feasible 
solution, 

Fmin 

Sta-f-83 19 7 2400 100(F’min=241.31) 0 - - 

Sta-f-83 20 8 2400 100(F’min=189.13) 46 215.58 189.13 

Sta-f-83 20 8 428 100(F’min=224.41) 18 258.05 241.52 

Kfu-s-93 20 8 1955 54(F’min=57.37) 0 - - 

Kfu-s-93 20 8 2400 67(F’min=55.48) 0 - - 

Kfu-s-93 40 15 2250 100(F’min=5.86) 36 6.21 5.86 

Car-f-92 49 19 2400 100(F’min=3.02) 0 - - 

Car-f-92 51 19 2400 100(F’min=2.76) 10 2.87 2.76 

Car-s-91 51 19 2400 100(F’min=4.11) 0 - - 

Car-s-91 53 20 2400 100(F’min=3.54) 16 3.98 3.84 

Tre-s-92 35 13 655 100(F’min=8.18) 11 8.88 8.55 

 Note: The exams day excluded day off (i.e. weekend breaks or public holidays) 

Table 4. New characteristics of existing benchmark and UKM06-1 examination datasets 

Dataset Exams Timeslots Days Seat 
capacity 

Students Enrollment Conflict 
density 

UKM06-1 818 40 14 2250 14047 75857 0.05 

Car-f-92 543 51 19 2400 18419 55522 0.14 

Car-s-91 682 53 20 2400 16925 56877 0.13 

Kfu-s-93 461 40 15 2250 5349 25113 0.06 

Tre-s-92 261 35 13 655 4360 14901 0.18 

Sta-f-83 139 20 8 428 611 5751 0.14 

 Note: We set the maximum seat capacity for sta-f-83 as 428 i.e. 70% of the sum of students. 
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As a result of the experiments reported above, we propose revised characteristics of 
the capacitated examination datasets (see Table 4) with the added hard constraint, new 
Penalty Cost and day vector. 

6   Conclusion and Future Work 

This paper has presented our experience in solving a real-world examination 
timetabling problem at the University Kebangsaan Malaysia (UKM) with an objective 
to minimise the Penalty Cost using a new objective function. The new objective 
function attempts to minimise the number of students having two consecutive exams 
on the same day (highest penalty) and on the next day (lower penalty). It also attempts 
to spread out exams over timeslots (lowest penalty). Due to the complexity of the 
problem, we divided the problem into two sub problems; i.e. capacitated examination 
timetabling and room assignment problems. We employed a hierarchical problem 
solving approach that has three stages to solve the problem. This work focused on the 
first stage, that is to assign exams to timeslots subject to a clash free schedule, no 
student sitting three consecutive exams in a day and total students sitting exams per 
slot should not exceed the seating capacity. The output of the first stage serves as 
input for the subsequent stages. The next two stages, which assign exams to rooms 
and scheduled law exams to slots and rooms will be discussed in our future work. 

The Greedy Least Saturation Degree (G-LSD), presented in this work, is an 
adaptation of basic least saturation degree heuristic for the classical graph colouring 
problem. As in the standard least saturation degree heuristic, the idea is to give high 
priority to the exams that are still to be scheduled and which have the least available 
slots, where the priority changes dynamically during the scheduling process. G-LSD 
was tested on the UKM06-1 dataset using the new Penalty Cost as an evaluation 
function. Since this is a new Penalty Cost, we are not able to make a comparative 
study. Moreover, no previous work has attempted to impose the hard constraint of no 
student sitting three consecutive exams in a day. Indeed, it is not fair to compare our 
solution with manually generated solution since their solution was generated without 
considering three consecutive exams in a day and not attempted to spread exams over 
timeslot (i.e. they do not have an objective function).   

In order to adhere with practical (real world) constraints, and to further test our 
approach, we add a new hard constraint to the Carter benchmark exam timetabling 
dataset in [20], i.e. no student should sit three consecutive exams in a day. That is, we 
proposed revised characteristics of the capacitated examination datasets with the 
added hard constraint, new Penalty Cost and day vector. This can further validate the 
approach we have suggested here. 

Since this approach has been adapted from a graph colouring approach, it could be 
applied to other wide range of problems such as course timetabling and school 
timetabling which can be modeled as graph colouring problems. 

We are currently designing and implementing a constructive heuristic for assigning 
exams to rooms. In order to solve the room assignment problem, we have to model 
the room assignment problem and design a new objective function because currently, 
no previous researchers have defined the objective function for room assignment. Our 
future work will also concentrate on scheduling examinations for a Law faculty which 
is slightly different from other faculties at the University Kebangsaan Malaysia. This 
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faculty only has two slots per day (because the exam periods are longer than other 
exams i.e. they start at 8:30am and 2:30pm). We will also try to schedule invigilators 
(which is carried manually at the moment) and to incorporate this requirement into the 
scheduling system. 
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