
O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, Part III, pp. 611–624, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Solving a Practical Examination Timetabling Problem:
A Case Study

Masri Ayob1, Ariff Md Ab Malik1, Salwani Abdullah1, Abdul Razak Hamdan1,
Graham Kendall2, and Rong Qu2

1 Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia
43600 Bangi,Selangor, Malaysia

{masri,salwani,arh}@ftsm.ukm.my, ariff215@salam.uitm.edu.my
2 ASAP Research Group, School of Computer Science and Information Technology,

The University of Nottingham,Nottingham NG8 1BB, UK
{gxk,rxq}@cs.nott.ac.uk

Abstract. This paper presents a Greedy-Least Saturation Degree (G-LSD)
heuristic (which is an adaptation of the least saturation degree heuristic) to
solve a real-world examination timetabling problem at the University
Kebangsaan, Malaysia. We utilise a new objective function that was proposed
in our previous work to evaluate the quality of the timetable. The objective
function considers both timeslots and days in assigning exams to timeslots,
where higher priority is given to minimise students having consecutive exams
on the same day. The objective also tries to spread exams throughout the
examination period. This heuristic has the potential to be used for the
benchmark examination datasets (e.g. the Carter datasets) as well as other real
world problems. Computational results are presented.

Keywords: Timetabling, Heuristic, Graph colouring.

1 Introduction

The examination timetabling problem is characterised by assigning a set of exams
into a limited number of timeslots subject to a set of constraints (see [1], [2], [3], [12],
[16], and [20]). These constraints are usually classified as hard and soft constraints.
The hard constraints must be completely satisfied where solutions that satisfy all the
hard constraints are called feasible. On the other hand, there might be some
requirements that are not essential but should be satisfied as far as possible, which are
referred to as soft constraints. Common hard constraints for examination timetabling
problem are: (i) no student should be required to sit two exams at the same time and
(ii) the scheduled exams must not exceed the room capacity. However, in practical
examination timetabling problem, there are many other constraints, which are vary
among institutions. Similarly in our dataset, we have some unique hard constraints,
which we describe in section 2.

A particularly common soft constraint aims to spread exams as evenly as possible
throughout the schedule. Due to the complexity of the problem, it is not usually
possible to have solutions that do not violate some of the soft constraints. Indeed, the

612 M. Ayob et al.

quality of the timetable is usually evaluated based on some cost which measures the
violation of the soft constraints. A weighted penalty value is associated with each
violation of a soft constraint and the objective is to minimize the total penalty value.

Various approaches have been developed for solving examination timetabling
problems. These include graph-based heuristics [3], tabu search [4], evolutionary
algorithms ([5], [6], [13], [14], and [15]), simulated annealing [7], hyper-heuristics
[8], and ant algorithms [9]. [8], for example, employed a tabu search approach to
search a sequence of graph heuristics in constructing examination timetables within a
hyper-heuristic framework. A move in tabu search chooses a new heuristic list by
randomly swapping two graph heuristics in the previous heuristic list. The newly
visited heuristic lists are added to the tabu list to avoid re-visiting them. To reduce the
computational time, [8] introduced a failed list that stored any heuristic list that could
not generate a feasible solution. Results showed that the approach can produce good
quality solutions that are within the range of the best results reported in the literature
for both exam and course timetabling problems.

Graph based heuristics were among the earliest approaches to be used for the
timetabling problem ([10] and [3]). They are used as constructive heuristics,
constructing solutions by ordering the exams that have not yet been scheduled,
according to the perceived difficulty in scheduling that exam into a feasible timeslot.
The difficulty of an exam can be represented in various ways such as the degree of
conflict it has with other exams, the number of student enrollments etc. Some
common graph based heuristics are:

1) Largest degree first. This heuristic first schedules the exam that has the largest
number of conflicts with other exams.

2) Colour degree. Exams with a greater number of conflicts with the exams that
have already been scheduled have a higher priority of being scheduled next.

3) Least Saturation degree. Exams with fewer feasible slots are scheduled as
early as possible. The priority of exams (in the unscheduled list) to be scheduled
are changed dynamically during the construction of solution.

4) Largest weighted degree. Exams with the higher number of students in conflict
are scheduled earlier.

5) Largest enrolment degree. Exams with greater number of students are
scheduled earlier.

Interested readers are referred to [11], [12], [13], [14], [15], [16], [17], [18], and
[19] for more information about examination timetabling.

In this paper, we present a Greedy-Least Saturation Degree (G-LSD) heuristic in
order to produce good quality solutions to the real-world examination timetabling
problem faced by the University Kebangsaan Malaysia (UKM). The heuristic is an
adaptation of the least saturation degree heuristic. We employ a hierarchical problem
solving approach to generate solutions for UKM. We utilise a new objective function
in order to evaluate the quality of a timetable. The objective function considers both
timeslots and days in assigning exams to timeslots. Higher priority is given to
minimise students having consecutive exams in the same day. The new objective
function differs from the standard proximity cost ([20]), where the only measure is
how close the exams are, with no account being taken of exams spanning days (i.e.
two consecutive exams, on the same day, are penalised the same as an exam in the

 Solving a Practical Examination Timetabling Problem: A Case Study 613

evening and an exam the following morning). The new objective function, and the G-
LSD heuristic, can be applied to the standard benchmark examination datasets ([20])
by adding a new variable day to each timeslot.

2 Problem Definition

Until recently, human schedulers at the Universiti Kebangsaan Malaysia (UKM) were
human decision makers who applied a greedy assignment procedure, based on their
experience with a little guidance from computer software to avoid clashes. They did
not consider students sitting two/three consecutive exams a day. They would like to
take into account spreading exams evenly, and fairly, throughout the timetable but the
size/complexity of the problem makes this unrealistic. Therefore, the human
scheduler only concerns themselves with the constraint of not assigning a student to
sit more than one exam in a given timeslot. Even this procedure usually takes the
manual schedulers more than two weeks. After circulating the exam timetable to
students, the schedulers invariably receive many complaints from students/lecturers.
When students complain about sitting three consecutive exams in a day, they are
rescheduled, with an emphasis on making as few adjustments to the rest of the
timetable as possible. Usually, if this happen (i.e. complaints about three consecutive
exams in a day), a new timeslot may be added (normally on Saturday) and the middle
exam is scheduled to this new timeslot. This incurs extra overhead costs. Therefore,
this work is motivated by attempting to automate this process, as much as possible, as
well as take into account more of the requirements. Indeed, the authors based at UKM
have been tasked to this do by the management at UKM.

In this paper, we present our approach and experience in solving the examination
timetabling problem for Semester I, year 2006 at UKM. The dataset (UKM06-1) has
been preprocessed based on the supplied data which contains 818 exams, 14,047
students, 75,857 enrollments, 42 timeslots and 15 exam days (this excludes the
weekend break). The UKM06-1 dataset is held in four text files: UKM06-1.stu,
UKM06-1.slt, UKM06-1.rom and UKM06-1.isl, which represent student enrollment,
slot, room and isolated exams definition, respectively. The files are available at
http://www.ftsm.ukm.my/jabatan/tk/masri/Exam/. The exam time-
tabling problems in UKM (particularly) have different datasets for each semester. In
most cases, each student registers for different set of courses. That is the exam
timetable of each semester is only valid for that semester. Therefore, in practice, the
exam timetable need be generated at the end of each semester.

The dataset has 3 weeks examination period. Each week has 5 exam days (Monday
to Friday). Each day has 3 timeslots (morning, afternoon and evening), except Friday
which has 2 timeslots (morning and evening only). In order to model the real-world
timeslots (in days), we present the vector of days in Fig. 1.

(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12,
15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19)

Fig. 1. Vector of days

614 M. Ayob et al.

In Fig. 1, we can see that in most cases we have three entries for each day (e.g. day
1, we have three ‘1’) except on Friday i.e. on day 5, 12 and 19; there are only two 5
entries (representing two timeslots on Friday). Saturdays (days 6 and 13) and Sundays
(day 7 and 14) are missing because there are no examinations on Saturday and
Sunday. A corresponding timeslot vector is presented in Fig. 2.

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 36, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57)

Fig. 2. Vector of timeslots

Fig. 2 shows that the timeslots are represented as indexes. Timeslots 1, 2 and 3
refer to day 1, timeslots 4, 5 and 6 refer to day 2, etc. Note that on day 5 (Friday the
first week) there are only 2 timeslots i.e. 13 and 15 (morning and evening sessions).
Since there is no afternoon session, we do not use a timeslot with an index of 14. The
reason is that we want to utilise different weights since the students have gaps (2 gaps
in this case i.e. 15-13=2) even though the exams are scheduled on the same day. Also
notice that the timeslot indexes for Saturday the first week (16, 17 and 18) and
Sunday the first week (19, 20, and 21) are missing because there are no exams
scheduled on these days. The same representation is used for the second and third
weeks of the exam period.

The input for the examination timetabling problem can be stated as follows:
• N is the number of exams;
• Ei is the ith exam where i Є {1,….,N};
• ei is number of students sitting exam Ei where i Є {1,….,N};
• B is the set of all N exams, B={ E1,…, EN};
• D is the number of days;
• T is the given number of timeslots (including missing timeslots);
• M is the number of students;
• ti specifies the assigned time slot for exam Ei, where ti Є{1,..,T} and i Є{1,..,N};
• di specifies the assigned day for exam Ei, where di Є{1,..,D} and i Є{1,..,N};
• C=(cij)NxN is the conflict matrix where each element denoted by cij, (i,jЄ{1,..,N})

is the number of students taking both exams Ei and Ej where cij=0 for i=j;
• Δt =|ti-tj| is the timeslot different between exam Ei and Ej;
• Δd=|di-dj| is the day different between exam Ei and Ej;
• βij is a decision variable where βij =1 if cij>0 and i ≠ j; or 0 otherwise.

The constraints of our examination timetabling problem (excluding constraints for
assigning exams to rooms) are:

1) All exams must be scheduled and each exam must be scheduled only once.

 (1) ∑
=

=
T

s
is

1

1λ for all i ∈ {1,..,N}.

 Solving a Practical Examination Timetabling Problem: A Case Study 615

if exam Ei is assigned to timeslot s;

otherwise;

for tЄ{1,..,T} ;

where

(2)

2) No student can sit two exams concurrently. If exam Ei and Ej are scheduled in slot
s, the number of students sitting both exams Ei and Ej must be equal to zero, i.e.
cij=0.

(3)

where

(4)

3) For each timeslot t, the number of students sitting for exams (Studentst) must not
exceed the maximum number of seats (MaxSeats) i.e. 2,400 seats per timeslot for
the UKM06-1 dataset.

 (5)

4) No student can sit 3 consecutive exams in a day.

If cij ≠ 0; cik ≠ 0; ti = x; i≠j≠k; [tj = x+1 OR tj = x-1] and di = dj;
then dk ≠ di; for all i,j∈ {1,...,N};

(6)

Due to the complexity of the problem, we have partitioned the problem into two
sub problems. That is, assigning exams to timeslots (the same as the capacitated
examination timetabling problem but with extra hard constraints, i.e. we impose
constraint 4) and the room assignment problem. In this paper, we only consider
constraints related to the capacitated examination timetabling problem. Constraints
for the room assignment problem will be the subject of our future work.

Before assigning exams to timeslots the supplied data requires some preprocessing.
Firstly, we exclude courses with no exams and combine exams that have to be
scheduled together into a single exam. We also exclude courses from the Law faculty.
These only have two timeslots per day, as their exam period is longer than the other
exams. We also exclude co-curriculum courses, which have different (shorter)
timeslots. In this work, we use a hierarchical problem solving approach, which
focuses on the first stage that is assigning exams to timeslots.

The output of the first stage will be used as input to subsequent stages. The next
two stages, which assign exams to (suitably sized) rooms and schedules Law exams
into slots and rooms, are not considered here and will be the focus of future work.
Since the co-curriculum courses are university level courses which have many student

⎪
⎩

⎪
⎨

⎧
=

0

1

isλ

.0),(.
1

1 1

=∑ ∑
−

= +=

N

i

N

ij
jiij ttxc

MaxSeatsStudents t ≤

⎩
⎨
⎧=

1

0

),(ji ttx
if ti = tj ;

otherwise;

616 M. Ayob et al.

enrollments, from different faculties, and have shorter exam periods, i.e. different
timeslots, they are usually scheduled outside the examination weeks. Therefore,
scheduling the co-curriculum exams can be solved independently.

To indicate the density of the conflicting exams, we use Conflict Density as defined
in [20] and many other works. The Conflict Density can be calculated as:

(7)

Higher value of Conflict Density shows that, on average many exams are in
conflict with each other.

3 Objective Function

As in the standard benchmark datasets, wherever possible, examinations should be
spread out over timeslots so that students have large gaps between exams. In order to
adhere with practical (real world) issues, we introduce our new cost function, which is
adapted from the proximity cost ([20] and the objective function proposed by [13] and
[14]). Our Penalty Cost, F, is calculated as follows:

(8)

where

(9)

Equation 9 presents a weighted penalty value that reflects the cost of assigning
exam Ei and Ej to a timeslot. These being 0, 1, 2, 4, 8, 16, 64 and 256 where the cost
is zero if the gap of timeslot for exam Ei and Ej is greater than 5 or the day gap is
greater than 2. We only penalise up to a maximum of 5 timeslots in order to adhere to
the well established proximity cost proposed by [20]. We also limit the penalty up to a
maximum of 2 days because a 2 day gap between examinations gives enough free
time for students. This observation is based on a pilot survey we have carried out at
UKM.

The new objective function (equations 8 and 9) aims to minimise the number of
students having two exams in a row on the same day (highest penalty) and on the next
day (lower penalty); and attempts to spread out exams over timeslots (lowest penalty).
Indeed, these formulations emphasises avoiding students having two consecutive
exams on the same day instead of avoiding having two consecutive exams on
different days. The penalty for students having two consecutive exams on the same

Conflict Density =

N

N

N

i

N

ij

ij∑ ∑
−

= +=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛1

1 1

β

M

ttPenaltyc

F

N

i

N

ij
jiij∑ ∑

−

= +==

1

1 1

),(.

Minimise

⎪
⎩

⎪
⎨

⎧

=

Δ−Δ−

0

2

),(

)2)(5(dt

ji ttpenalty

 Solving a Practical Examination Timetabling Problem: A Case Study 617

day (penalty=256) is higher than the penalty value for students having two
consecutive exams on different days (penalty=16). This factor is not highlighted in
the objective function proposed by [13], [14], and [20]. In fact, [20] ignores the day
effect by assuming that the practical time gap between each consecutive timeslot is
the same. The objective function introduced in [13] penalised consecutive exams on
the same day. That is, [13] only minimised the number of students having two
consecutive exams on the same day without spreading exams over timeslots.
Subsequently, [14] enhanced the objective function that was proposed in [13] by
giving a higher penalty (3) to students having two consecutive exams in the same day
and a lower penalty (1) for two consecutive exams spread across two consecutive
days. By adapting the three objective functions, we proposed a Penalty Cost that
combines the features of the above functions into one.

4 Heuristic for the Examination Timetabling Problem

This work presents a heuristic procedure which we call Greedy Least Saturation
Degree (G-LSD). We use the term “greedy” because our heuristic attempts to assign
each exam to the best timeslot which satisfies all the hard constraints. We randomly
assign exams to timeslots when the exam has no conflict with the exams that have
already been scheduled. While assigning exams to timeslots, we also ensure that all
hard constraints are satisfied. This is an adaptation of the least saturation degree
heuristic for classical graph colouring problem. Fig. 3 presents the pseudo-code for
the G-LSD. The idea is to give a higher priority to exams still to be scheduled that
have the least number of available slots, where the priority changes dynamically
during the scheduling process.

In the initialisation step, all exams in B are reset. That is, the number of available
timeslots for each exam is set to the maximum available slot and the exam’s status is
changed to unscheduled and copied into the unscheduled exam set B′={E1’,
E2′….,EN′}. The heuristic first arranges the unscheduled exams in B′ in non-
decreasing order of the number of available timeslots, then in non-increasing order of
the number of conflicts they have with other exams (in B) and, finally, by non-
increasing order of the number of student enrollments. The heuristic chooses the first
exam in B′, Ei′, and assigns it to the best timeslot that minimises F (equation 8) and
subject to the total number of students assigned to the timeslot that does not exceed
the maximum seat capacity (i.e. 2400 for UKM06-1 dataset). However, when all slots
are available for Ei′ (i.e. the exam has no conflict with the exams that have already
been scheduled), we randomly choose a timeslot for Ei′. The idea is to allocate the
best timeslot for Ei′, so as to obtain different solution for each run. While assigning
exams to timeslots, we also ensure a clash free schedule (i.e. constraints 1 to 3 are
satisfied) and larger exam (student enrollment>=400) are assigned to earlier timeslots
(the first two weeks if possible). This is done as, based on discussions with UKM
registry officers, they usually assign larger exams to earlier timeslots in order to give
longer time for marking larger exams. After assigning exam Ei′ to the timeslot, we
update the appropriate exam details such as timeslot index, number of available
timeslots etc. in B and reduce the number of available timeslots for exams in B′
accordingly. Then, we eliminate Ei′ from B′ and repeat step 2.1 to 2.6 until all the
exams have been scheduled, or until Ei′ cannot be assigned to any available timeslot.

618 M. Ayob et al.

Fig. 3. Psuedo-code of Greedy-Least Saturation Degree (G-LSD) heuristic

If this occurs, we stop the process and start again (steps 1 to 3). After assigning all
exams to timeslots, we verify that all hard constraints (constraint 1 to 4) are satisfied. If
the solution is feasible, we end the process. Otherwise, we begin again (steps 1 to 3).

Before assigning exam Ei′ to a timeslot we ensure that constraints 1 to 3 are
satisfied. However, we can only verify if constraint 4 is satisfied when all exams have
been assigned to timeslots. This is because we want to reduce the computational time
due to the size of problem and the complexity of computing the three consecutive
exams in a day. Moreover, our new objective function is able to avoid assigning
students sitting three consecutive exams in a day by giving a very high penalty (i.e.
penalty=256*256) for this case. Therefore, in many cases, our algorithm produces
solutions where no students are sitting three consecutive exams in a day. However,
the solution is rejected (infeasible) if there are students sitting three consecutive

Step 1: Initialisaon
Initialise all exams in B.
Copy all exams in B into unscheduled exam set,
B’={Ei’, E2’….,EN’}.

Step 2: Assigning Exam to Slot.

While(B’≠Ø)
{

2.1 Arrange the exam in B’ using Procedure A.
2.2 Choose the first exam, Ei’ in B’.
2.3 If all timeslots are available for Ei’;

Then, Randomly choose available timeslot, ti,
s.t. the limit of seat capacity of the
timeslot and larger size exam should be
assigned to earlier timeslot.

2.4 Else, choose timeslot, ti which has the minimum
F, s.t. the limit of seat capacity of the
timeslot and larger size exam should be
assigned to earlier timeslot.
If there is no clash free timeslot for Ei’,
exit while loop and repeat step 1.

2.5 Update appropriate exams in B and reduce the
number of available timeslots for exams in B’
accordingly.

2.6 Remove Ei’ from B’.
}end while.

Step 3: Verification

If the solution is feasible concerning constraint (4),
return the solution.
Otherwise, repeat Step 1 to Step 3 until the feasible
solution is obtained or exceed the time limit.

Note: Procedure A arrange unscheduled exams in B’ in non-decreasing order of number

of available timeslots then with non-increasing order of number of conflicts they
have with other exams (in B) and non-increasing order of number of students
enrollment.

 Solving a Practical Examination Timetabling Problem: A Case Study 619

exams in a day. Since this is a constructive heuristic, we stop the process when we
obtain a feasible solution. Of course, we could extend this procedure to produce many
feasible solutions and return the best solution found by repeating step 1 to 3 for a
given number of iterations.

5 Results

Our heuristic was implemented using Microsoft Visual C++ 6.0. We ran the
experiments on an Athlon 1.47 GHz processor, with 512 MB RAM and Windows XP
Professional. The G-LSD heuristic was tested on the real world UKM06-1 dataset and
also on the benchmark Carter datasets. In order to transform the Carter datasets into a
form that is suitable for use with the recently proposed objective function, we apply a
day and timeslots vectors (as in UKM06-1; see Fig. 1 and Fig. 2), except that for
benchmark Carter datasets we have three timeslots on Friday and one timeslot on
Saturday (as suggested in [14] and [15]). We also introduce a six timeslot gap
between Saturday morning and Monday morning to cater for the weekend break. For
each test, we perform 100 runs. Since there is a random element in selecting each
timeslot, when all timeslots are available, we can usually obtain different solutions for
each run. In all tests, we use the new Penalty Cost (see section 3) function to evaluate
the quality of timetable.

Table 1 shows the characteristics of original UKM06-1 and Carter datasets. For
capacitated examination timetabling problems, no justification was stated on how the
seat capacity limits were set (see [13], [14], and [15]). For example, the seat capacity
limit for Car-s-91 was set to 1550 seats. If we divide the number of enrollment by the
seat capacity, we need at least 37 timeslots (in ideal case where we can easily assign
exams to any slots, i.e. exams have no conflict with each other) such that all students
can have a seat in the exam room. We assume this is why [13] increased the number
of timeslots from 35 to 51 for Car-s-91 and 23 timeslots to 35 for Tre-s-92. This work
also introduces the sta-f-83 instance as a capacitated problem. Later (test B) we run a
series of experiments to establish the number of timeslots and the seating capacity
required for this revised dataset instance.

Table 1. Characteristics of benchmark and UKM06-1 examination problems

Dataset Exams Times-
lots

Days Seat
capacity

Students Enrollment Conflict
density

UKM06-1 818 42 15 2400 14047 75857 0.05
Car-f-92 543 32 12 2000 18419 55522 0.14
Car-s-91 682 35/51 13/19 1550 16925 56877 0.13
Kfu-s-93 461 20 8 1955 5349 25113 0.06
Tre-s-92 261 23/35 9/13 655 4360 14901 0.18
Sta-f-83 139 13 5 - 611 5751 0.14
 Note: * Previously, days have not been properly defined. Based on discussion in [14] and

[15], we compute the number of examination days (excluding day off).
**Seat capacity was introduced later by [13] for five Carter datasets.

For UKM06-1, we ran an initial test (we call it test A) to establish the best number

of timeslots for this dataset. We varied the number of timeslots whilst fixing the

620 M. Ayob et al.

maximum room capacity (i.e. 2,400 seats as currently used). In practice, the number
of timeslots available is 42. Actually, due to the difficulties of scheduling large
exams, manual schedulers usually allocate certain timeslots for some exams. For
example, exams ZZZT1032 and ZZZT1042 which have 2146 and 2110 student
enrollments, respectively, were allocated to one entire timeslot for each exam. As a
result no other exams were scheduled in these timeslots. Indeed, these exams were
enrolled by many students from various faculties, i.e. the conflict density for these
exams is very high. However, by using our approach, these exams can be scheduled
together with other exams. Although, by setting the number of timeslots is equal to 42
and the maximum room capacity is equal to 2400, human schedulers still struggle to
provide good quality timetables. Indeed, they have no clear idea what is the criterion
for a good quality timetable and how they can manage to find one, even manually.
They always receive many complains after the tentative exam timetable has been
circulated to students/lecturers. Therefore, we design test A to show that they can
reduce the number of timeslot (that will ultimately reduce the management cost)
without scarifying too much on solution quality. Results of this test, is shown in
Table 2.

Table 2. Results for the test A on UKM06-1 when varying the number of timeslots

Time-
slots

Exam
Days

Seat capacity Number of clash
free solutions

Feasible
solutions (%)

Average feasible
solution, Favg

Best feasible
solution, Fmin

42 15 2400 100 79 4.76 4.25

41 15 2400 100 70 5.30 4.81

40 14 2400 100 35 6.08 5.44

40 14 2106 0 - - -

40 14 2250 100 36 6.21 5.86

In Table 2, ‘Number of clash free solutions’ indicates the total number of solutions

obtained (ignoring violations of students sitting three consecutive exams in a day)
over the 100 runs; ‘Feasible solutions’ indicates the number of solutions obtained that
satisfy all the hard constraints (1 to 4), including no student sitting three consecutive
exams in a day. Results in Table 2 shows that we obtained 79%, 70% and 35%
feasible solutions when seat capacity=2400 and timeslots is equal to 42, 41 or 40
respectively.

Some secondary rooms (i.e. LobiA(DECTAR) and LobiB(DECTAR)) allocated to
the UKM06-1 dataset are actually not preferable due to practical constraints, so we
eliminate these rooms from the list of available rooms. For UKM dataset, we also
eliminate PSeni(DECTAR) from the list because the room is reserved for Law
examinations. Therefore, the total room capacity is reduced to 2340 seats. As a result,
we set 2106 or 2250 as the maximum seat capacity limit, i.e. 90% or 96% of the total
seat capacity respectively. Table 2 shows that, out of 100 runs, no feasible solution is
obtained when the number of timeslots is equal to 40 and seating capacity is equal to
2106. Whereas, we obtained 36 feasible solutions with the best Penalty Cost, Fmin =
5.86 when we used timeslots is equal to 40 and seat capacity is equal to 2250. These
results show that our G-LSD is capable of reducing the number of timeslots and
avoiding students sitting three consecutive exams a day, as well as spreading out

 Solving a Practical Examination Timetabling Problem: A Case Study 621

exams over timeslots. It shows that we can save two timeslots compared to manual
scheduler (this might be of interest to the administrator because they could reduce
their administration cost). Since the number of timeslots was reduced, the UKM06-1
dataset is now even more constrained.

We carried out a further test (test B) to find out a reasonable number of timeslots
required in order to generate feasible solutions (that satisfies all constraints 1 to 4) for
the sta-f-83 problem. Initially we set the seat capacity to 2400 such that all students
(clash free schedule) have a seat in the exam room. We then, reduced the maximum
seating capacity limit to a reasonable value. We also varied the number of timeslots
for sta-f-83 starting from 13 timeslots until we found feasible solutions (20 timeslots).
Table 3 shows the results of this test. We also extended our experiment to Kfu-s-93,
Car-f-92, Car-s-91 and Tre-s-92. We initially tried not changing the number of
timeslots and the maximum seat capacity that were set by [20], [13], and [14]. As we
are enforcing an additional hard constraint (i.e. avoiding students sitting three
consecutive exams in a day), we thought it is worth carrying out some further analysis
on these datasets. Table 3 also shows the results of the experiments.

Table 3. Results of test B on Sta-f-83 when varying the number of timeslots

Dataset
Time-
slots

Exam
Days

Seat
capacity

Number of
clash free
solutions

Feasible
solutions

Average
feasible

solution, Favg

Best feasible
solution,

Fmin

Sta-f-83 19 7 2400 100(F’min=241.31) 0 - -

Sta-f-83 20 8 2400 100(F’min=189.13) 46 215.58 189.13

Sta-f-83 20 8 428 100(F’min=224.41) 18 258.05 241.52

Kfu-s-93 20 8 1955 54(F’min=57.37) 0 - -

Kfu-s-93 20 8 2400 67(F’min=55.48) 0 - -

Kfu-s-93 40 15 2250 100(F’min=5.86) 36 6.21 5.86

Car-f-92 49 19 2400 100(F’min=3.02) 0 - -

Car-f-92 51 19 2400 100(F’min=2.76) 10 2.87 2.76

Car-s-91 51 19 2400 100(F’min=4.11) 0 - -

Car-s-91 53 20 2400 100(F’min=3.54) 16 3.98 3.84

Tre-s-92 35 13 655 100(F’min=8.18) 11 8.88 8.55

 Note: The exams day excluded day off (i.e. weekend breaks or public holidays)

Table 4. New characteristics of existing benchmark and UKM06-1 examination datasets

Dataset Exams Timeslots Days Seat
capacity

Students Enrollment Conflict
density

UKM06-1 818 40 14 2250 14047 75857 0.05

Car-f-92 543 51 19 2400 18419 55522 0.14

Car-s-91 682 53 20 2400 16925 56877 0.13

Kfu-s-93 461 40 15 2250 5349 25113 0.06

Tre-s-92 261 35 13 655 4360 14901 0.18

Sta-f-83 139 20 8 428 611 5751 0.14

 Note: We set the maximum seat capacity for sta-f-83 as 428 i.e. 70% of the sum of students.

622 M. Ayob et al.

As a result of the experiments reported above, we propose revised characteristics of
the capacitated examination datasets (see Table 4) with the added hard constraint, new
Penalty Cost and day vector.

6 Conclusion and Future Work

This paper has presented our experience in solving a real-world examination
timetabling problem at the University Kebangsaan Malaysia (UKM) with an objective
to minimise the Penalty Cost using a new objective function. The new objective
function attempts to minimise the number of students having two consecutive exams
on the same day (highest penalty) and on the next day (lower penalty). It also attempts
to spread out exams over timeslots (lowest penalty). Due to the complexity of the
problem, we divided the problem into two sub problems; i.e. capacitated examination
timetabling and room assignment problems. We employed a hierarchical problem
solving approach that has three stages to solve the problem. This work focused on the
first stage, that is to assign exams to timeslots subject to a clash free schedule, no
student sitting three consecutive exams in a day and total students sitting exams per
slot should not exceed the seating capacity. The output of the first stage serves as
input for the subsequent stages. The next two stages, which assign exams to rooms
and scheduled law exams to slots and rooms will be discussed in our future work.

The Greedy Least Saturation Degree (G-LSD), presented in this work, is an
adaptation of basic least saturation degree heuristic for the classical graph colouring
problem. As in the standard least saturation degree heuristic, the idea is to give high
priority to the exams that are still to be scheduled and which have the least available
slots, where the priority changes dynamically during the scheduling process. G-LSD
was tested on the UKM06-1 dataset using the new Penalty Cost as an evaluation
function. Since this is a new Penalty Cost, we are not able to make a comparative
study. Moreover, no previous work has attempted to impose the hard constraint of no
student sitting three consecutive exams in a day. Indeed, it is not fair to compare our
solution with manually generated solution since their solution was generated without
considering three consecutive exams in a day and not attempted to spread exams over
timeslot (i.e. they do not have an objective function).

In order to adhere with practical (real world) constraints, and to further test our
approach, we add a new hard constraint to the Carter benchmark exam timetabling
dataset in [20], i.e. no student should sit three consecutive exams in a day. That is, we
proposed revised characteristics of the capacitated examination datasets with the
added hard constraint, new Penalty Cost and day vector. This can further validate the
approach we have suggested here.

Since this approach has been adapted from a graph colouring approach, it could be
applied to other wide range of problems such as course timetabling and school
timetabling which can be modeled as graph colouring problems.

We are currently designing and implementing a constructive heuristic for assigning
exams to rooms. In order to solve the room assignment problem, we have to model
the room assignment problem and design a new objective function because currently,
no previous researchers have defined the objective function for room assignment. Our
future work will also concentrate on scheduling examinations for a Law faculty which
is slightly different from other faculties at the University Kebangsaan Malaysia. This

 Solving a Practical Examination Timetabling Problem: A Case Study 623

faculty only has two slots per day (because the exam periods are longer than other
exams i.e. they start at 8:30am and 2:30pm). We will also try to schedule invigilators
(which is carried manually at the moment) and to incorporate this requirement into the
scheduling system.

Acknowledgment. This work was supported by The University Kebangsaan
Malaysia (UKM). We wish to thank Nor Ashikin Baharom from Computing Center,
UKM and Student Registry Department for fruitful discussion and contribution of
UKM dataset.

References

1. McCollum, B.: University timetabling: Bridging the gap between research and practice. In:
Burke, E.K., Rudová, H. (eds.): Proceedings of the 6th International Conference on the
Practice and Theory of Automated Timetabling. 30th August-1st September 2006, Brno,
Czech Republic, pp. 15–35 (2006)

2. Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination timetabling in British
universities - A survey. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling. LNCS, vol. 1153, pp. 76–92. Springer, Heidelberg (1996)

3. Burke, E.K., Kingston, J., de Werra, D.: In: Gross, J., Yellen, J. (eds.) Applications to
timetabling. Handbook of Graph Theory, pp. 445–474. Chapman Hall/CRC Press (2004)

4. Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In:
Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer,
Heidelberg (2001)

5. Erben, W.: A grouping genetic algorithm for graph coloring and exam timetabling. In:
Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 132–158. Springer,
Heidelberg (2001)

6. Côté, P.: A hybrid multi-objective evolutionary algorithm for the uncapacitated exam
proximity problem. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616,
pp. 294–312. Springer, Heidelberg (2005)

7. Dowsland, K.: Off the peg or made to measure. In: Burke, E.K., Carter, M. (eds.) PATAT
1997. LNCS, vol. 1408, pp. 37–52. Springer, Heidelberg (1998)

8. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-
heuristic for educational timetabling problems. European Journal of Operational
Research 176, 177–192 (2007)

9. Eley, M.: Ant algorithm for the exam timetabling problem. In: Burke, E.K., Rudová, E.K.
(eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 167–180.
Springer, Heidelberg (1996)

10. Welsh, D.J.A., Powell, M.B.: The upper bound for the chromatic number of a graph and its
application to timetabling problems. The Computer Journal 11, 41–47 (1967)

11. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja-Orlin’s Large
Neighbourhood Search Approach for Examination Timetabling. OR Spectrum 29(2), 351–
372 (2007)

12. Qu, R, Burke, E., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search
methodologies and automated approaches for examination timetabling. Technical Report
No. NOTTCS-TR-2006-4, School of Computer Science & IT, University of Nottingham
(2006)

624 M. Ayob et al.

13. Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam
Timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated
Timetabling I. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)

14. Burke, E.K., Newall, J.P., Weare, R.F.: Initialization strategies and diversity in
evolutionary timetabling. Evolutionary Computation 6(1), 81–103 (1998)

15. Burke, E.K., Newall, J.P.: A multistage evolutionary algorithm for the timetable problem.
IEEE Trans. Evolutionary Computation. 3, 63–74 (1999)

16. Carter, M.W.: A survey of practical applications of examination timetabling. Operations
Research 34, 193–202 (1986)

17. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the
examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT
2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)

18. Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B.: Fuzzy multiple ordering criteria
for examination timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 334–353. Springer, Heidelberg (2005)

19. Ayob, M., Burke, E.K., Kendall, G.: An iterative re-start variable neighbourhood search
for the examination timetabling problem. In: Burke, E.K., Ross, P. (eds.) Practice and
Theory of Automated Timetabling. LNCS, vol. 1153, pp. 336–344. Springer, Heidelberg
(1996)

20. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: Algorithmic strategies and
applications. Journal of Operational Research Society 47(3), 373–383 (1996)

	Solving a Practical Examination Timetabling Problem: A Case Study
	Introduction
	Problem Definition
	Objective Function
	Heuristic for the Examination Timetabling Problem
	Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

