
 

Channel Assignment Optimisation Using a  
Hyper-heuristic 

  
 Abstract - The channel assignment problem is a real world 

problem from the mobile communications industry. The primary 
objective is to find the minimum frequency bandwidth given 
different traffic demand distribution within the mobile network. 
Besides fulfilling the channel demand requirement, we must also 
consider the minimum channel reuse distance in order to avoid 
the effect of call interference within the same cell or adjacent 
cells. Previous approaches have used graph-colouring algorithms, 
heuristic search, neural networks, simulated annealing and 
genetic algorithms (GA). In this paper, we propose a hyper-
heuristic methodology and compare our approach against 
channel assignment problems from the literature. 
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Fig. 1 : Typical 21 Cells Mobile Network [1] 

n,d  n : Cell Number; d : Channel demand 

I. INTRODUCTION  
Mobile users in a particular cell use  the channel that is 

allocated at the base station. A channel can simultaneously be 
used at another base station, subject to a minimum reuse 
distance, i.e., there is enough distance between the base 
stations in order to provide interference free communication. 

The technology supporting mobile communications has 
grown tremendously and continues to do so. The key aspect of 
this growth is due to the popularity of mobile 
communications, which is the ability to provide instant 
connectivity anytime and to anywhere in the world. Starting 
from an analog standard (known as 1st generation), we can see 
the full migration from an analog into a digital standard 
(known as 2nd generation) throughout the world. The 2nd 
generation mobile standard (GSM, D-APMS and CDMA), 
with high quality voice and the capability to provide high-
speed data services to the mobile user as an additional service, 
are the driving factors behind the high growth of sales in 
communication technology. The mobile communication has 
recently introduced a 3rd generation mobile wireless 
technology with the aim to have a global standard for all 
applications and countries.  

In mobile communication, all the information from mobile 
sets (MS) to the base stations (BS) travels via  radio channels. 
The geographical area covered by a BS is a cell. This can be 
represented as a hexagonal network (refer to Figure 1 [1]). A 
mobile communication network consists of thousand of cells 
in order to cover the required region, each with a BS at the 
centre. Each BS will have a dedicated radio channel and the 
number of the channels assigned will be based on the traffic 
requirement for the particular cell (for example, there will be a 
higher channel demand in metropolitan areas compared to 
suburban areas).  

Besides the traffic demand requirement, the assignment of 
radio channels is subject to the three types of interference 
constraints; 

The Federal Communications Commission (FCC), in their 
respective countries, controls the operating of mobile 
telephone networks and they issue licenses to mobile 
operators, which means the mobile operators, are allowed to 
use only the frequency bandwidth allocated to them. The 
allocated frequency bandwidth is divided into sets of carriers 
or channels using different techniques such as frequency  
division (FD), time division  (TD), or  code  division (CD), 
which  each channel uses for call establishment. 

a) Cochannel constraint. The same channel cannot be 
allocated to certain pairs of radio cells simultaneously. For 
example consider Fig. 1. Assuming we have mobile set i,that 
uses channel k in cell 17; the same channel, k can 
simultaneously be used in cell 17� by another mobile set j, if  
mobile set, i and mobile set, j are separated by minimum 
reuse distance (in this case 3).  
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b) Adjacent channel constraint. The same adjacent 
channel cannot be allocated to adjacent radio cells 
simultaneously. Assuming we have mobile set i, that uses 
channel k in cell 17, if, we have mobile set, l, that uses 
channel g in an adjacent cell (say cell 9), we can comply 
with adjacent channel constraint if channel k and channel g 
are separated by a minimum channel separation distance. 
c) Cosite constraint. Any pair of channels assigned in the 
same cell must be separated by a minimum channel 
separation distance.  

 The channel demand distribution over the whole region of a 
mobile network varies from cell to cell, according to a 
nonuniform distribution of business and social activities [1]. 
In. Fig.1, we can see the highest channel demand is 77 
channels at cell 9 and the lowest channel demand is 8 for 
several cells (1,3,4,etc). Mobile operators have to fully utilise 
a given limited spectrum bandwidth, which can satisfy mobile 
customers by avoiding or minimising call blocking especially 
in high channel demand cells (cell 9,16,etc.). With a limited 
frequency spectrum allocated to the system, the efficiency in 
which of radio channels are assigned is very important to 
overcome congestion problems in the network.  

The assignment of radio channel is generally called the 
Channel Assignment Problem (CAP). The CAP can be viewed 
as a combinatorial optimisation problem, with the difficulty of 
CAP increasing exponentially with the problem size. There 
are three kinds of channel assignment; Fixed Channel 
Assignment (FCA), Dynamic Channel Assignment (DCA) and 
Hybrid Channel Assignment (HCA) [2]. In FCA, the radio 
channels are assigned permanently to each cell based on a 
predefined channel demand. In DCA the channels are 
dynamically assigned to cells based on channel requests. DCA 
provides flexibility and traffic adaptability at the cost of 
higher complexity, but under heavy traffic conditions, DCA 
strategies are less efficient compared to FCA [3]. Since heavy 
traffic condition is expected in the future, the efficiency of an 
FCA scheme is highly desirable [2]. HCA is a combination 
between FCA and DCA. In this paper, we will consider only 
FCA schemes. 

Mobile customers can make a call using a channel of the 
cell in which the user is currently situated. Under heavy traffic 
conditions, the network planning engineers have to reduce the 
cell size (cell splitting) and use advanced antenna technology 
in order to cater for the increase in channel demand. This 
causes the number of base stations to increase. Under FCA, 
the CAP objective is to optimise the assignment of the limited 
channel resources to a base station without ignoring service 
quality such as cochannel and adjacent interference. Using an 
exhaustive search strategy, the optimum result could be 
obtained, but as the number of base station increases, finding 
an optimum solution is extremely difficult [4].  

In this paper, we will introduce a hyper-heuristic approach 
to tackle this problem and present computational results. 

II. RELATED WORK 

The channel assignment problem continues to be an active 
research area [5]. Previous approaches to solve CAP can be 
categorised as approaches using graph theory [6], heuristics 
[1,7, 8, 9], local search [10], neural networks [11, 12 ,13], the 
utilisation of simulated annealing [14] and genetic algorithms 
[15].  

Graph theory approaches used the sequential assignment of 
channels based on assignment difficulty. Zoellner and Bell [6] 
used a frequency-exhaustive strategy or a requirement-
exhaustive strategy to assign a channel to cells which were 
ranked in node-degree order or node-colouring order.  

Using an heuristic approach, Box [7], used the principle of 
assignment difficulty to arrange the cell sequence or ordering. 
With this sequence, he used a simple iterative method to 
assign the channel. Sivarajan et. al [9], produced eight CAP 
algorithms by ranking the calls in row-wise ordering or 
column-wise ordering and the cells in node-degree order or 
node-colouring order. With each rank, they used a 
requirement exhaustive strategy and a frequency exhaustive 
strategy to assign the channel. Chakraborty [1] proposed an 
algorithm for generating a pool of valid solutions. He claimed 
that the algorithm is very fast and could find optimum or near 
optimum solutions.  

Wang and Rushforth [10] used a local search approach. In 
the feasible region R with the current solution Xc, the next 
solution ,Xc+1 will be accepted if the cost function f(Xc+1) < 
f(Xc). Based on benchmark test results, this approach produced 
superior results to those reported in the literature.  

A neural network approach was proposed by Kunz [11] and 
the result was improved by Funabiki and Takefuji [12]. 
Subsequently, Kim et. al [13], proposed a modified discrete 
Hopfield neural network in order to escape from local optima. 
They formulated CAP as an energy-minimisation problem and 
claimed that the performance is better when compared to 
previous approaches. The simulated annealing approach [14], 
guarantees to find the global optimum but with the 
disadvantage that the rate of convergence is slow.  

A genetic algorithm approach was proposed by Lai and 
Coghill [15] who investigated the channel assignment problem 
using a computational technique that mimics the evolutionary 
process. The primary goal in solving CAP is to satisfy cosite 
and cochannel constraints and satisfy all channel demands 
required by each cell. They used a string structure to represent 
the channel required for each base station, where the total 
length of each string is the sum of channels required. The 
evolutionary process uses partially matched (PMX) crossover 
and basic mutation, with two extra parameters in order to bias 
cosite and cochannel constraints in their fitness function. They 
claim that their approach is elegant and simple. 

III. PROBLEM DEFINITION 

Frequency bandwidths are allocated to cellular service 
providers with a range of [bmin,bmax] [16]. The bandwidth is 
partitioned into a set of channels, F (or often called 
frequencies) and can be represented as positive integers 1, 2, 



 

3, ....,fmax  where fmax is a maximum channel number. A basic 
channel assignment problem for radio network planning 
consists of (mostly adopted from [9] and [10]) 

a. N : The number of cells in the network. 
b. D : demand vector, D = (d1,d2,�,dN) where di : the 

number of radio channel required in cell i in order to 
satisfy channel demand. 

c. C : Compatibility matrix, C=(cij)NxN denotes the 
frequency separation required between cell i and cell 
j. 

d. Callik : Cell i with call k where 1≤ i ≤ N, 1≤ k ≤ di. 
e. fik : A radio channel is assigned to Callik, where  fik Є 

F.  
f. Frequency separation constraint -  fik � fjm ≥ cij, for 

all i,j,k,m (i ≠ j ,k ≠ m), cij is defined in Compatibility 
Matrix, C. If i=j, it�s become co-site constraint. 

Therefore, the channel assignment problem (CAP) is a task to 
find the minimum bandwidth (span) required by the system 
i.e.: 

Given N, D, C,  
Span, f(s)=( fik max �fik min)  is minimised. 
     where   fik max = maximum channel used 

          fik min  = minimum channel used 

IV. THE ALGORITHM 

A. 

B. 

 Hyper-heuristic  

We propose using a hyper-heuristic approach to solve the 
channel assignment problem. A hyper-heuristic is a 
knowledge poor meta-heuristic that does not use problem 
specific information [17]. Based on non-domain information, 
such as CPU time, change in the objective function etc., a 
hyper-heuristic will decide which low level heuristic to call at 
each decision point. In order to implement the search, we may 
use simple neighbourhood heuristics such as delete, add and 
swap. The advantages of using a hyper-heuristics for practical 
scheduling and indeed optimisation problems are (mostly 
adapted from [18]): 

� It is easy for the problem owner to consider their 
problem by modeling it using simple heuristics.  

� Simple heuristics are typically faster to implement 
compared to some other approaches.  

� It is robust enough to effectively handle a wide range of 
problem instances by small modifications or additions. 

Hyper-heuristics operate at a higher level of abstraction than 
meta-heuristics by managing a set of low level heuristics 
(LLH). The general framework can be shown in figure 2 [17]. 

Hyper-heuristics are problem independent and have been 
successfully applied to various optimisation and scheduling 
problems [19,20,21,22]. For example, a genetic algorithm 
hyper-heuristic [20] used an allele in a chromosome to 
represent each LLH. The quality of the solution is evaluated 
based on the  sequence of calls within the chromosome. In 
[21], a Monte Carlo hyper-heuristic approach is used to 
optimise the scheduling of electrical component placement on 

a printed circuit board. They used an acceptance criteria to 
determine solution quality returned by each LLH. 

 
 
 Hyper-heuristic  
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Figure 2: A Hyper-heuristic Framework 
 
Another approach has used a tabu list to monitor the 
performance of each LLH in solving an examination 
timetabling problem [22]. The choice function hyper-heuristic 
[23] ranks the solution quality performance of each LLH. 
Based on the quality of the previous result; the hyper-heuristic 
will decide which LLH should be called next. 

Let us use the local search framework to define:  
Solution Space,  S : The set of possible ordered list of 

calls. 
Objective function: f(Smax) Є F,  the maximum frequency 

for solution Smax Є S. 
N : neighbourhood structure. 
H : A set of Low Level Heuristic (h1,h2,..hn)  

The hyper-heuristic algorithms is as follows: 
Step 1: (Initialisation) 

(A) Choose Initial solution S0 Є S; 
(B) Record the best obtained solution, Sbest = S0 and 

f(Sbest)= f(S0); 
Step 2: (Choice and termination) 

(A) Randomly choose an hc Є H; 
(B) Apply hc to produce Sc Є N(S0); 
(C) Compute δ = f(Sc) - f(S0); 
(D) If the acceptance criteria is true, then accept Sc (and 

proceed to Step 3); 
(E) If Sc is rejected and stopping condition=false, then 

return to Step2(A); 
(F) Terminate by a stopping condition. 

Step 3: (Update) 
Re-set S0 = Sc, and if f(Sc)<f(Sbest), perform Step1(C). 
Return to Step2 if stopping condition=false. 

 
List of Low level heuristic (LLHs) 

Low level heuristics are defined as simple local search 
operators, which are problem dependent. In this work, we 
randomly call LLHs to generate a unique move from the 
current solution to the new solution. The list of LLHs that we 
use are shown below: 



 

h1 - Sort the channel from lowest to highest, delete the 
call with the highest channel assignment, randomly 
insert at any point and reassign the channel.  

h2 -  Same as h1, but randomly select the call to delete. 
h3 - Same as h1, but find the best point at which to 

reassign. 
h4 - Same as h1, but randomly change the call order 

starting from insertion point. 
 

Each move will return the current frequency span (which 
represents the objective function).  

All the proposed LLHs will create unique moves with zero 
violating constraint with faster computation time except for h3, 
which acts as a steepest decent heuristic. h3 will find the best 
neighbour in the current nighbourhood structure; therefore it 
requires more computation time. 

C. 

A. 

Acceptance Criteria 

The acceptance of new solution (see 2(D) and 2(E) in 
above) will be decided by the hyper-heuristic. In this work, 
we use 4 different types of acceptance criteria. These are: 

Accept all moves (AM) � All the returned solutions from the 
LLHs will be accepted. The acceptance criteria is always 
true. 
Only improving moves (OI) � Only moves which improve on 
the current solution will be accepted (δ<0). 
Monte Carlo (MC) � The acceptance of worse solution will 
be based on a probability that decreases with increases of δ 
[21,24]. 
Record-to-Record Travel (RRT) � The idea of the RRT 
acceptance criteria was proposed by Dueck and is a variant 
of the Great Deluge acceptance criteria [25]. At each 
iteration, any configuration is accepted which is not much 
worse compared to the current solution. In the RRT 
algorithm [25], Dueck introduced a DEVIATION parameter, 
which is a small value added to the current solution quality 
in order to increase the possibility that it is accepted. If δ < 
DEVIATION, the algorithm will accept the new solution but 
will not update the solution quality for future comparison. 
Based on preliminary tests, the best DEVIATION value used 
in our experiments is 2. 

V. EXPERIMENTS AND RESULTS 

Benchmarks Instances 

We will use the channel assignment benchmark problems, 
used in previous works [1], [8]-[12]. They have different 
levels of problem difficulty. That is they have different 
engineering interference, different traffic demands and 
different network sizes. We will consider three different 
network sizes, 21, 25 and 55, which are the common sizes 
used by other researchers [1]. 

As reported in [1], some of the benchmarks (which can be 
considered as easy benchmark problems), can be solved to 
optimality.  Taking this into consideration, we only consider 
those benchmarks (difficult problems) where optimal results 

are still unknown.  
With different cluster sizes, we can set up different test 

environments using different Cii values, and different values 
for α and β which corresponds to minimum reuse distance and 
degree of interference between cells. The compatibility 
matrices we use are shown in table I [1]. These are used in 
conjunction with the traffic demands shown in table II. The 
traffic demand has uniform and non-uniform distribution, and 
are the values used by many other researchers. 

 
No Cluster 

Size (N) 
α β Distance 

cell i and 
cell j 

Cij 

entry 
Cii Cij name 

1 21 2 2 1 
2 
>2 

2 
1 
0 

6 C4_21 

2 21 2 2 1 
2 
>2 

2 
1 
0 

5 C6_21 

3 21 2 1 1 
2 
>2 

1 
1 
0 

4 C7_21 

4 21 2 2 1 
2 
>2 

2 
1 
0 

4 C8_21 

5 25 2 1 1 
2 
>2 

1 
1 
0 

2 C1_25 

6 55 2 1 1 
2 
>2 

1 
1 
0 

7 C1_55 

 TABLE I : COMPATIBILITY MATRIX 
Note : We use the same notation for Cij name (6th column) 

as in [1]. 
 
Cell Size Traffic Demand  
21 D1_21 : {8 25 8 8 8 15 18 52 77 28 13 15 31 15 36 57 28 8 10 

13 8} 
D2_21 : {5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 
20 20 25} 

25 D3_25 : {10 11 9 5 9 4 5 7 4 8 8 9 10 7 7 6 4 5 5 7 6 4 5 7 5}  
D4_25 : {5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 
20 20 25 8 5 5 5} 

55 D5_55 : {5 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 
20 20 25 8 5 5 5 5 5 5 8 12 25 30 25 30 40 40 45 20 30 20 15 
15 30 20 20 25 8 5 5 5 25 8 5 5 5} 
D6_55 : {10 11 9 5 9 4 5 7 4 8 8 9 10 7 7 6 4 5 5 7 6 4 5 7 5 10 
11 9 5 9 4 5 7 4 8 8 9 10 7 7 6 4 5 5 7 6 4 5 7 5 6 4 5 7 5} 

TABLE II : TRAFFIC DEMAND  
Note : The values in the 2nd column represent the number 

of channels needed in each cell. 
B. Results 

We have implemented and tested our algorithm on a 
Pentium III-700 MHz computer. We compare our 
performance with  [1], which proposed an algorithm that 
generates a population of random valid solutions using a 



 

quadnary representation [0,+1,-1,+9], which means 
[assignable,used,unassignable,unused]. 

 Another comparison is with recent work by Ghosh et al. 
[26], in which they use a genetic algorithm based on 
geometric symmetry. We run our experiments for 400 seconds 
for each benchmark problem.  

Using a random constructive heuristic to generate an initial 
solution and using �runtime expired� as our stopping criteria, 
we ran each experiment 10 times. By applying our approach 
we were able to achieve promising results as presented in 
table III (AM and OI) and table IV (MC and RRT). 

 
Test C_Matric(C)/  

Demand(D)  
Trivial 
Lower 
Bound 

Intial 
solution 

Chakraborty 
 [1] 

Ghosh et al. 
[26] 

AM Hyper-heuristic 
(span/ % 
improvement) 

OI Hyper-heuristic  
(span/ % 
improvement) 

1 C4_21/D1_21 457 622 457 - 457/26.5 457/26.5 
2 C4_21/D2_21 265 337 280  272/19.2 270/19.8 
3 C6_21/D1_21 381 595 463 427 448/24.7 446/25.4 
4 C6_21/D2_21 221 316 273 253 268/15.2 266/15.8 
5 C7_21/D1_21 305 353 305 - 305/13.6 305/13.6 
6 C7_21/D2_21 177 226 197 - 185/18.1 184/18.5 
7 C8_21/D1_21 305 507 465 - 447/11.8 442/12.8 
8 C8_21/D2_21 177 320 278 - 275/14.1 272/15.0 
9 C1_25/D3_25 21 78 73 - 73/6.4 73/6.4 
10 C1_25/D4_25 89 209 121 - 200/4.3 200/4.3 
11 C1_55/D5_55 309 336 309 - 309/8.0 309/8.0 
12 C1_55/D6_55 71 98 79 - 73/25.5 72/26.5 

 
TABLE III : AN AVERAGE RESULT OF TEN RUNS FOR ALL MOVES  AND ONLY IMPROVING 

 
Test C_Matric(C)/  

Demand(D)  
Trivial 
Lower 
Bound 

Intial 
solution 

Chakraborty 
 [1] 

Ghosh et al. 
[26] 

MC Hyper-heuristic  
(span/ % 
improvement) 

RRT  Hyper-heuristic 
(span/ % 
improvement) 

1 C4_21/D1_21 457 622 457 - 457/26.5 457/26.5 
2 C4_21/D2_21 265 337 280  270/19.8 270/19.8 
3 C6_21/D1_21 381 595 463 427 443/25.5 437/26.0 
4 C6_21/D2_21 221 316 273 253 266/15.8 261/17.4 
5 C7_21/D1_21 305 353 305 - 305/13.6 305/13.6 
6 C7_21/D2_21 177 226 197 - 184/18.6 182/19.5 
7 C8_21/D1_21 305 507 465 - 444/12.4 435/14.2 
8 C8_21/D2_21 177 320 278 - 274/14.4 268/16.2 
9 C1_25/D3_25 21 78 73 - 73/6.4 73/6.4 
10 C1_25/D4_25 89 209 121 - 200/4.3 200/4.3 
11 C1_55/D5_55 309 336 309 - 309/8.0 309/8.0 
12 C1_55/D6_55 71 98 79 - 72/26.5 71/27.6 

 
TABLE IV : AN AVERAGE RESULT OF TEN RUNS FOR MONTE CARLO AND RECORD-TO-RECORD TRAVEL 

 

VI.   DISCUSSION 

 When we compare the results in Table III and table IV, we 
can see that the performance of the RRT hyper-heuristic is 
superior compared to the other approaches. This suggests that 
by controlling the margin of the acceptance solution quality, it 
will lead to better results. In RRT, if the solution quality is 
worse, compared to the incumbent solution, but within the 
�margin limit�, it will become a new configuration for the next 
iteration. 

When we compare test 3 and test 4 which are the most 
difficult benchmark problems, even though our proposed 
algorithms cannot beat the existing result from [26], their 
solution took between 16-80 hours to produce such good  
quality solutions. Our result is promising especially for RRT, 

which is achieving an improvement of 26% and 17% when 
compared to the initial solution. 

For other test problems, when we compare our result with 
constructive heuristics as proposed in [1], all our proposed 
hyper-heuristic manage to find a better solution except for test 
10.  

 

VII.   CONCLUSIONS AND FUTURE WORK 

The channel assignment problem is a real world problem 
from the mobile communications industry. The primary 
objective is to find the minimum frequency bandwidth given 
different traffic demand distribution within the mobile 
network. Besides fulfilling the channel   demand   
requirement,  we   must   also  consider  the minimum channel 



 

reuse distance in order to avoid the effect of call interference 
within the same cell or adjacent cells. 

In this work, we have proposed a hyper-heuristic 
methodology which is problem independent. Unlike other 
meta-heuristic approaches such as variable neighbourhood 
search; we can freely move from one neighbourhood to 
another neighbourhood structure. Therefore, we see the 
motivation of using a hyper-heuristics as a rapid development 
tool for optimisation problems. 

We have proposed a hyper-heuristic with four different 
acceptance criteria. Based on experimental result, the RRT 
hyper-heuristics is superior compared to the other proposed 
hyper-heuristics. Our future interest is to use different 
strategies to produce initial solutions, using intelligent LLHs 
(LLHs which themselves have an acceptance criteria, based on 
random descent and steepest descent local search).  
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