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Abstract - This paper proposes a methodology for the channel 
assignment problem in the cellular communication industry. 
The problem considers the assignment of a limited channel 
bandwidth to satisfy a growing channel demand without 
violating electromagnetic interference constraints. The initial 
solution is generated using random constructive heuristic. This 
solution is then improved using a hyper-heuristic technique 
based on the great deluge algorithm. Our experimental results, 
on benchmarks data sets, gives promising results. 

1. INTRODUCTION 

The choice of a cellular network as a communication 
platform has significantly increased in recent years and will 
continue to do so as mobile phones become more widespread 
and the number of services available increases. This 
phenomenon results in a requirement for efficiently allocate a 
limited frequency bandwidth to create extra channel capacity 
and coverage in a cellular network. The definition of channel 
refers to the access methods used in a cellular system. If the 
cellular system uses frequency division multiple access 
(FDMA), the channel is referred to as a frequency slot. It is 
referred to as a time slot in time division multiple access 
(TDMA) system. The 2nd generation cellular system, Global 
System for Mobile Communications (GSM) uses a 
combination of both FDMA/TDMA. 

 The methods available to increase channel capacity and 
coverage in a cellular network comprise of frequency reuse 
and cell splitting. Frequency reuse involves using the same 
frequency or channel simultaneously in other cells subject to 
the base transceivers station (BTS) distance. Cell splitting 
splits a larger cell into more than one cell to cover a particular 
geographical area. Each cell covers a smaller area, with a 
lower transmission power and thus offers the ability to reuse 
frequencies more often. 

The problem with these methods is the electromagnetic 
interference between channels in the same cell (co-site 
channel constraint), interference between neighbouring cells 
(adjacent channel constraint) and interference between other 
cells utilising the same channel (co-channel constraint).  

For a co-site channel constraint, the channels in the same site 
need to be separated by a minimum distance in the frequency 

domain. For an adjacent channel constraint, adjacent or 
neighborhood cells cannot use an adjacent channel 
simultaneously. For a co-channel constraint, the same channel 
cannot be assigned to certain pairs of radio cells 
simultaneously. 

The offline task of allocating a set of radio channels to meet 
the requested traffic demand for a given numbers of calls is 
referred to as the fixed channel assignment problem (CAP) or 
the fixed frequency assignment problem (FAP). The term 
‘fixed’ refers to the fact that channels are permanently 
assigned to a particular cell. The variant of this fixed scheme 
is dynamic CAP, where all channels are located in a central 
pool and dynamically assigned based on channel requests. In 
the 1st and 2nd generation cellular system, the performance of 
fixed CAP outperformed dynamic CAP under heavy traffic 
loads and uniform traffic distribution [1].  

There are two types of task involved in fixed CAP i.e. [2]: 

1. Minimum span problem (MS-CAP) 

Given a traffic demand,  cell station number and 
compatibility matrix, find the minimum number of 
consecutive channels used with free electromagnetic 
interference i.e. 

Minimise the number of radio channels  
s.t. traffic demand and interference constraint   

2. Minimum interference problem (MI-CAP) 

Given a fixed number of radio channels, cell station number, 
traffic  demand and compatibility matrix, minimise severity 
of channel interference i.e. 

Minimise severity of channel interferences 
s.t. demand constraints  

In this paper, we only consider the minimum span problem 
(MS-CAP).This paper is organized as follows. In Section 2 
we discuss the problem description and mathematical 
representation.  In Section 3 and 4 we then describe our 
proposed methodology followed by experimental result and 
conclusion in section 5 and 6. 
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meaning that only non-domain data can cross the barrier. 
Referring to the MS-CAP case, only the quality of solution 
(value of Z) and computation time is allowed to cross the 
domain barrier. The hyper-heuristic has no knowledge of the 
problem it is trying to solve, only that it has a set of LLHs, 
which it can call, and whether it is trying to minimise or 
maximise the evaluation function. The set of LLHs act as 
simple local search or other problem specific heuristics. Each 
LLH will typically, search a different neighborhood structure 
and each move by the LLHs will produce a new solution. The 
hyper-heuristic will make a decision as to whether to accept 
or reject the new solution. The hyper-heuristic is also used to 
decide as to which LLH to call at each iteration. 
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In the 1st and 2nd generation of cellular systems, the frequency 
spectrum is divided into evenly spaced consecutive channels 
using frequency division (FD) or time division (TD) [3].  
Therefore, the channels are represented by positive integers 1, 
2, 3,…,Z where Z is a maximum number of available 
channels. The basic model of MS-CAP can be represented as 
follows (mostly adopted from [4,5]) 
•  N : a set of cells in the network, where N = 

(cell1,cell2,..,cellN). 
• D : demand vector D = (d1,d2,�,dN) where di is the 

number of radio channels required in celli in order to 
satisfy the channel demand. satisfy the channel demand. 

• C : compatibility matrix, CNxN, where each element Cij 
denotes the frequency separation required between 
celli and cell j. 
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By continuously applying a single LLH, it can lead the final 
solution trapped in a local optima. One diversification 
strategy is to change the neighbourhood structure, i.e. by 
calling different LLHs. This is similar to the idea of Variable 
Neighbourhood Search(VNS) [12]. However, whereas VNS 
keeps applying a single heuristic, until it gets trapped in a 
local optima, hyper-heuristics have a ‘free’ choice at each 
decision point which heuristic to call. Previous works on 
hyper-heuristic have mainly concentrated on the calling 
sequence of LLHs. The choice function hyper-heuristic [13] 
ranks the solution quality performance of each LLH. Based 
on the previous quality result; the hyper-heuristic will decide 
which LLH should be called next. A genetic algorithm hyper-
heuristic [9] used a allele in a chromosome to represent each 
LLH. The quality of the solution is evaluated based on the  
sequence of calls within the chromosome. Another approach 
has used a tabu list to monitor the performance of each LLH 
in solving an examination timetabling problem [11]. Instead 
of concentrating on LLH sequences, a Monte Carlo hyper-
heuristic [10] used an acceptance criteria of solution quality 
performed by randomly calling LLHs.  
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fik = 0 if channel k is not assigned to celli, otherwise 1, 
for 1≤ k,l ≤ Z and 1≤ i,j ≤ N 

fik = 0 if channel k is not assigned to celli, otherwise 1, 
for 1≤ k,l ≤ Z and 1≤ i,j ≤ N 
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Many heuristics are problem dependent, meaning that one 
heuristic cannot be used to solve different problems [1]. In 
order to alleviate this problem, the concept of a hyper-
heuristic was introduced, which is, a (meta-)heuristics that 
operates on (meta-)heuristics [7].  Hyper-heuristics are 
problem independent and have been successfully applied to 
various optimisation and scheduling problem [8,9,10,11].  
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(GDA), was extended and the performance of the algorithm 
as a local search meta-heuristic was evaluated and gave a 
superior result on examination timetabling problem [15].  
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Non-domain data flow 

Non-domain data flow 

Evaluation function 

Set of low level heuristics 
                   ….. 
                   hnh2 h1 

Hyper-heuristic   

  
Step 1: Initialisation Step 1: Initialisation   (a) Choose an initial solution so Є S (a) Choose an initial solution so Є S 

(b) Compute an initial objective function f (so) (b) Compute an initial objective function f (so)   
(c) Set Initial LEVEL = f(so) (c) Set Initial LEVEL = f(so)   (d) Set DownRate  value (d) Set DownRate  value 

Step 2 : Operation and termination  Step 2 : Operation and termination    
(a) Call LLH to generate new neighbour  solution sn Є 

N(so) 
(a) Call LLH to generate new neighbour  solution sn Є 

N(so) 
  

(b) Compute neighbour objective function f(sn) (b) Compute neighbour objective function f(sn) Figure 1: Hyper-heuristic Framework 



(c) if  f(sn)≤ LEVEL, accept f(sn) then update so =sn  
(d) Reduce LEVEL= LEVEL � DownRate 
(e) If stopping condition = false, go to step 2(a) 

 
Figure 2: Great Deluge Hyper-heuristic Algorithm 

 
During initialisation stage, the objective function f(so) (which 
is Z value) is set as LEVEL at the beginning of iteration, it is 
slowly reduce with DownRate value at every iterations. We 
can say is that, the performance of this algorithm is dependent 
on the choice on single parameter (DownRate) and the 
starting value of LEVEL. In our case, we define DownRate 
using the concept adopted from [15] and shown in figure 3: 

DownRate = (f(so)-LB) / Iter  
Where  

LB  = Best result  
Iter = Number of iteration 

Figure 3: Calculation of DownRate 

Here, LB we define as best result found in the literature 
[16,17] and the number of iteration, Iter based on the 
suggestion in [4], which is Iter = N(N-1)/2. Because of the 
algorithm can easily hit the LB for easier benchmarks 
problem, we set our stooping criteria is define based on ‘hit 
the LB’ as priority stopping condition. For difficult 
benchmarks problem, we used run time duration as our 
stooping criteria, which is we set as 480 seconds for the 
whole run. 

Based on our preliminary experiment, the calling sequence of 
LLHs did not contribute or affect much in solution quality. 
Therefore, in this paper, we only used randomly called LLHs, 
but it can be extended to use other methods of calling LLHs 
as in [8,9,13]  

The proposed method is similar to a random decent method, 
which only accept an improve solution, but in our proposed 
algorithm, the acceptance of the new solution will be 
decreased according to DownRate value. As long as the 
returned solution is below the current value of LEVEL, the 
hyper-heuristic will accept this solution.  

4. LOW LEVEL HEURISTICS 

We have created four simple 2- opt local search methods to 
act as our low level heuristics (LLHs). The definition of each 
LLHs is as follows: 

h1 - Sort the channel from lowest to highest, delete the 
call with the highest channel assignment, randomly 
insert at any point and reassign the channel.  

h2 -  Same as h1, but randomly select the call to delete. 
h3 - Same as h1, but find the best point at which to 

reassign. 
h4 - Same as h1, but randomly change the call order 

starting from insertion point. 
All the proposed LLHs will create unique moves with zero 
violating constraint with faster computation time except for 
h3, which act like a steepest decent heuristic. h3 will find the 

best neighbour in the current nighbourhood structure; 
therefore it needs more computation time. 

5. TESTING AND RESULTS 

We have implemented and tested our algorithm on a Pentium 
III-700 MHz computer. We compare our performance with 
[16], which proposed an algorithm that generates a 
population of random valid solutions using a quadnary 
representation [0,+1,-1,+9], which means 
[assignable,used,unassignable,unused]. 

 Another comparison is with the latest work of Ghosh et al. 
[17], where they use a genetic algorithm based on geometric 
symmetry and Batiti et. al [18], where they used a 
combination of randomised saturation degree and local search 
approach. We implemented three different networks size (21, 
25 and 55) with different compatibility matrix, C, and traffic 
demand, D. The details C and D can be found in [16].  

We use a random constructive heuristic to generate an initial 
solution and use two stopping criteria (reach the best known 
result or the runtime is expired). We ran each experiment 10 
times. By applying our approach we were able to achieve 
promising results as presented in table 1 and table 2 which 
respectively shown the average of minimum bandwidth (Z) 
and time taken to produce the result. 

The results  show that we found the lower bound on 11 out of 
20 benchmarks problem with reasonable computation times. 
For the more difficult problems, (e.g.  test 11 and test 12) 
with the maximum allowed time (480 seconds) and ‘poor’ 
initial solutions, we still manage to improve the solution 
quality by 26.4% and 16.3% respectively. As stated in [17], 
these are the most difficult benchmarks problems and they 
had run times of 16-80 hours in order to achieve their 
solutions. Also, due to the random element in our LLHs, the 
computation time varies for each run. For example, the 
computation time for test 1 varies from 17s to 102s and for 
test 3, the computation time varies from 4s to 111s. 

6. CONCLUSION 
In this work, we have proposed an algorithm based on a 
hyper-heuristic approach. As a problem independent, 
methodology hyper-heuristics are a rapid development tool 
for optimisation problems. We use a greedy constructive 
heuristic to generate an initial solution then apply LLHs to 
improve the  solution quality. Results shows that our 
proposed algorithm can achieve promising results for all 
benchmarks problem, even though we can not produce better 
quality solutions compared to previous work for some of the 
benchmark problems. However, our results are competitive, if 
not superior with respect to run time. In future work, we will 
use other acceptance criteria to compare against our proposed 
great deluge acceptance criteria and, we will increase the 
number of low level heuristics. We will also use different 
strategies to produce initial solutions, such as the using of 
randomised saturation degree (RSD), which give superior 



result in previous work [18], whereby they used the 
combination of RSD for ‘good’ initial solution and enhanced 
those ‘unable to get good solution’ benchmarks with adaptive 
local search approach. With a good initial solution, intelligent 

LLHs and enhanced our approach by using the combination 
of calling sequence and acceptance criteria, we hope to 
produce even better  results in the future. 
 

 
TABLE 1 : PERFORMANCE COMPARISON 

 

Test C_Matric(C)/  
Demand(D)  

Trivial 
Lower 
Bound 

Chakraborty 
 [16] 

Ghosh et 
al.[17] 

 

Batiti et. al 
[18] 

Our Approach 
Initial/average 

1 C1_21/D1_21 533 533 533 533 538/533 
2 C1_21/D2_21 309 309 309 309 312/309 
3 C2_21/D1_21 533 533 533 533 540/533 
4 C2_21/D2_21 309 309 309 309 371/309 
5 C3_21/D1_21 457 457 - - 488/457 
6 C3_21/D2_21 265 265 - - 268/265 
7 C4_21/D1_21 457 457 - - 634/457 
8 C4_21/D2_21 265 280  - 350/274 
9 C5_21/D1_21 381 381 381 381 433/381 
10 C5_21/D2_21 221 221 221 221 235/221 
11 C6_21/D1_21 381 463 427 427 598/440 
12 C6_21/D2_21 221 273 253 254 318/266 
13 C7_21/D1_21 305 305 - - 396/305 
14 C7_21/D2_21 177 197 - - 222/187 
15 C8_21/D1_21 305 465 - - 538/451 
16 C8_21/D2_21 177 278 - - 323/275 
17 C1_25/D3_25 21 73 - 73 78/73 
18 C1_25/D4_25 89 121 - - 206/200 
19 C1_55/D5_55 309 309 - - 315/309 
20 C1_55/D6_55 71 79 - - 99/71 

 
TABLE 2 : COMPUTATION TIME COMPARISON 

 

Test C_Matric(C)/  
Demand(D)  

Chakraborty[16] 
 (DEC Alpha 
station) 

Ghosh et al. 
[17](DEC 
Alpha Station) 

 

Batiti et. al [18] 
(DEC 
AlphaServer) 

Our Approach 
(average time) 

1 C1_21/D1_21 8.2s 0.5-1s <1s 40s 
2 C1_21/D2_21 6.0s 0.5-1s <1s 0.8s 
3 C2_21/D1_21 11.1s 6-12s <1s 46s 
4 C2_21/D2_21 10.2s 6-17 <1s 29s 
5 C3_21/D1_21 8.9s - - 81s 
6 C3_21/D2_21 8.1s - - 14s 
7 C4_21/D1_21 9.8s - - 300s 
8 C4_21/D2_21 7.9s - - 480s 
9 C5_21/D1_21 7.5s 2-5s <1s 38s 
10 C5_21/D2_21 6.9s 2-7s <1ss 25s 
11 C6_21/D1_21 9.5s - <30s 480s 
12 C6_21/D2_21 7.7s - <35s 480s 



Test C_Matric(C)/  
Demand(D)  

Chakraborty[16] 
 (DEC Alpha 
station) 

Ghosh et al. 
[17](DEC 
Alpha Station) 

 

Batiti et. al [18] 
(DEC 
AlphaServer) 

Our Approach 
(average time) 

13 C7_21/D1_21 7.3s - - 147s 
14 C7_21/D2_21 6.8s - - 480s 
15 C8_21/D1_21 8.4s - - 480s 
16 C8_21/D2_21 7.5s - - 480s 
17 C1_25/D3_25 1.9s - <1s 480s 
18 C1_25/D4_25 6.3s - - 480s 
19 C1_55/D5_55 24.5s - - 120s 
20 C1_55/D6_55 16.7s - - 75s 
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