
 G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 1213–1218, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Ant Colonies Discover Knight’s Tours

Philip Hingston1 and Graham Kendall2

1 Edith Cowan University, Australia
p.hingston@ecu.edu.au

2 The University of Nottingham, UK
gkx@cs.nott.ac.uk

Abstract. In this paper we introduce an Ant Colony Optimisation (ACO)
algorithm to find solutions for the well-known Knight’s Tour problem. The al-
gorithm utilizes the implicit parallelism of ACO’s to simultaneously search for
tours starting from all positions on the chessboard. We compare the new algo-
rithm to a recently reported genetic algorithm, and to a depth-first backtracking
search using Warnsdorff’s heuristic. The new algorithm is superior in terms of
search bias and also in terms of the rate of finding solutions.

1 Introduction

A Knight’s Tour is a Hamiltonian path of a graph defined by the legal moves for a
knight on a chessboard. That is, a knight must make a sequence of 63 legal moves
visiting each square of an 8x8 chessboard exactly once. Murray [1] traces the earliest
solutions to this problem back to an Arabic text in 840 ad. Leonhard Euler carried out
the first mathematical analysis of the problem in 1759 [2]. Other well-known mathe-
maticians to work on the problem include Taylor, de Moivre and Lagrange.

There is interest in finding both open and closed tours. A closed tour has the extra
property that the 63rd move ends on a square that is a knight’s move away from the
start square, so that the knight could complete a Hamiltonian circuit with a 64th move.
Closed tours are more difficult to find. An upper bound of the number of open tours
was found to be approximately 1.305x1035 [3]. Löbbing and Ingo [4], calculated the
number of closed tours, later corrected by McKay to be 13,267,364,410,532 tours [5].
Though there are many tours, the search space is even larger, at around 5.02x1058.

A depth-first search, with backtracking, is perhaps the most obvious search
method, though rather slow. A heuristic approach due to Warnsdorff in 1843, is the
most widely known approach [6]. Using Warnsdorff’s heuristic, at each move, the
knight moves to a square that has the lowest number of next moves available. The idea
is that the end of the tour will visit squares that have more move choices available.

A recent approach to finding knight’s tours used a genetic algorithm [7]. This used
a simple genetic algorithm [8], encoding a knight’s tour as a sequence of 63x3 bits.
Each triple represents a single move by the knight, with the fitness being defined by
the number of legal moves (maximum = 63) before the knight jumps off the board or
revisits a square. If a candidate tour leads to an illegal move, a repair operator checks
the other seven possible knight’s moves, replaces the illegal move with a legal move if

P. Hingston and G. Kendall 1214

there is one, and then attempts to continue the tour, repairing as needed. Without re-
pair, the genetic algorithm found no complete tours. With repair, the maximum num-
ber of tours reported in a single run of 1,000,000 evaluations was 642.

2 The Ant Colony Algorithm

Ant colony optimization (ACO) algorithms are based on the observation that ants,
despite being almost blind and having very simple brains, are able to find their way to
a food source and back to their nest, using the shortest route. ACO’s were introduced
by Marco Dorigo [9], [10]. In [10] the algorithm is introduced by considering what
happens when an ant comes across an obstacle and has to decide the best route to take
around the obstacle. Initially, there is equal probability as to which way the ant will
turn in order to negotiate the obstacle. Now consider a colony of ants making many
trips around the obstacle and back to the nest. As they move, ants deposit a chemical
(a pheromone) along their trail. If we assume that one route around the obstacle is
shorter than the alternative route, then in a given period of time, a greater proportion
of trips can be made over the shorter route. Thus, over time, there will be more
pheromone deposited on the shorter route. Now the ants can increase their chance of
finding the shorter route by preferentially choosing the one with more pheromone.
This sets up a positive feedback cycle, known stygmergy or autocatalytic behaviour.

This idea has been adapted to derive various search algorithms, by augmenting
pheromone trails with a problem specific heuristic. In the most famous example, ants
can be used to search for solutions of the traveling salesman problem (TSP). Each ant
traverses the city graph, depositing pheromone on edges between cities. High levels of
pheromone indicate an edge that is in shorter tours found by previous ants. When
choosing edges, ants consider the level of pheromone and a heuristic value, distance to
the next city. The combination determines which city an ant moves to next.

We now present the new ACO algorithm that we use to discover knight’s tours. As
for the TSP, ants traverse a graph, depositing pheromones as they do so. In this case
of the Knight’s Tour Problem, the vertices of the graph correspond to the squares on a
chessboard, and edges correspond to legal knight’s moves between the squares. Each
ant starts on some square and moves from square to square by choosing an edge to
follow, always making sure that the destination square has not been visited before. An
ant that visits all the squares on the board will have discovered a knight’s tour.

We found it best to search for solutions from all starting squares simultaneously.
We hypothesise that an ant starting on one square can utilize the knowledge gained by
ants starting on more remote squares – knowledge that is harder to obtain from other
ants starting on the same square.

We need some notation to describe the algorithm in detail. First, we define

kcolrowT ,, to be the amount of pheromone on the kth edge from the square in row row

and column col. For squares near the edge of the chessboard, some moves would take
the knight off the board and are illegal. We set 0,, =kcolrowT for those edges. We use

kcolrowdest ,, to denote the square reached by following edge k from square ()colrow, .

Ant Colonies Discover Knight’s Tours 1215

Initialising the Chessboard. Initially, some pheromone is laid on each edge. In our

simulations we used 6
,, 10−=kcolrowT for all edges corresponding to legal moves.

Evaporating Pheromones. Pheromones evaporate over time, preventing levels be-
coming unbounded, and allowing the ant colony to “forget” old information. We im-
plemented this by reducing the amount of pheromone on each edge once per cycle,
using:

kcolrowkcolrow TT ,,,,)1(×−→ ρ

where 10 << ρ is the called the evaporation rate.

Starting an Ant. Each ant has a current square ()colrow, and a tabu list, which is the

set of squares that the ant has visited so far. Initially, ()startColstartRowcolrow ,),(= ,

and (){ }startColstartRowtabu ,= . Each ant also remembers her start square, and her

sequence of moves. Initially, =<>moves , an empty list.

Choosing the Next Move. To choose her next move, an ant computes, for each edge
leading to a square not in her tabu list, the following quantity:

α)(,, kcolrowk Tp =

where 0>α , the strength parameter, is a constant that determines how strongly to
favour edges with more pheromone. She then chooses edge k with probability:

∑
∉

=

tabudestj
j

k
k

jcolrow

p

p
prob

,,:

Moving to the New Square. In some ACO algorithms, ants deposit pheromone as
they traverse each edge. Another alternative, which we use in our algorithm, is for no
pheromone to be deposited until the ant has finished her attempted tour. Hence, hav-
ing chosen edge k, she simply moves to kcolrowdest ,, , and sets:

{ }kcolrowdesttabutabu ,,∪→ , and

><+→ kmovesmoves
Keep Going Until Finished. Eventually, the ant will find herself on a square where
all potential moves lead to a square in her tabu list. If she has visited all the squares on
the chessboard, she has found a valid knight’s tour, otherwise a partial tour.

Lay Pheromone. When she has finished her attempted tour, the ant retraces her steps
and adds pheromone to the edges that she traverses. In order to reinforce more suc-
cessful attempts, more pheromone is added for longer tours. We have found that we
obtain slightly better results by reinforcing moves at the start of the tour more than
those towards the end of it. Specifically, we define, for each ant a, for each row and
column, and each edge k:

)63(

)(
,,, i

imoves
QT kcolrowa −

−
×=∆ , if ant a’s ith move used edge k from row, col, and

P. Hingston and G. Kendall 1216

0,,, =∆ kcolrowaT , otherwise

where the parameter Q is the update rate, and the value 63 here represents the length
of a complete open tour. Thus, each ant contributes an amount of pheromone between
0 and Q. Once all ants complete their attempted tours, we update the pheromone using
the formula:

∑∆+→
a

kcolrowakcolrowkcolrow TTT ,,,,,,, .

3 Experiments and Results

In this section we describe the experiments that we conducted and present the results
we obtained. While the Knight’s Tour is a puzzle or mathematical curiosity, it is a
special case of an important NP-complete graph theoretic problem - that of finding a
Hamiltonian path in a graph. In many applications, one is interested in finding Hamil-
tonian paths that optimize some figure of merit (such as tour length in TSP), so algo-
rithms that generate Hamiltonian paths for evaluation are required. (Though in the
case of TSP, finding paths is not the hard part, as the graph is usually well connected.)
With this in mind, the aim of these experiments is to gather evidence on how well the
ant colony algorithm does at generating as many knight’s tours as possible. In addi-
tion, it is desirable that the algorithm achieves coverage of the complete set of knight’s
tours, and not be biased towards generating particular kinds of tours.

Firstly, we ran searches using a standard depth-first search with a fixed ordering of
moves, and similar searches using Warnsdorff’s heuristic to determine candidate
moves. These experiments provide a baseline, indicating how difficult it is to locate
complete tours. We then ran searches using our ant colony algorithm.

A naïve depth-first search was implemented, using the fixed move ordering given
in [7]. For each possible starting square, we ran the search until 100,000,000 tours had
been tried. The algorithm found an average of 308.6 complete tours for each square,
all open.

We also implemented a variant of depth-first search using Warnsdorff’s heuristic,
in which a move is only considered valid if it obeys the heuristic. All these searches
ran to completion, so we effectively enumerated all tours that obey the heuristic. The
total number of “Warnsdorff tours” was found to be 7,894,584 - a tiny fraction of the
total number of tours. About 15% (1,188,384) of these are closed tours. This variant is
clearly very efficient in generating knight’s tours, but it is also highly biased - indeed
it is unable to reach most of the search space. The high proportion of closed tours
found suggests that the portion of the search space that is reached is highly atypical.

For the ant colony algorithm, we first did some experimentation to discover a good
set of parameters, settling on the following: evaporation rate 25.0=ρ ; update rate

0.1=Q ; strength 0.1=α ; in each cycle, start one ant from each start square; and

greater pheromone update for moves near the end of a tour. If the evaporation rate is
too low, there is not enough exploration, whilst if it is too high, there is not enough
exploitation. Strength also affects this balance. Starting ants from all start squares in
each cycle produces an order of magnitude more solutions compared to running the

Ant Colonies Discover Knight’s Tours 1217

search once for each starting square. For the update rule, we also tried adding a con-
stant amount of pheromone to each edge of a partial tour, or adding an amount propor-
tional to the length of the partial tour. Both were inferior to the chosen formula.

0

100000

200000

300000

400000

500000

600000

700000

1000 11000 21000 31000 41000 51000 61000 71000 81000 91000

cycle

to
u

rs

0

1

2

3

4

5

6

7

so
lu

ti
o

ns
 p

er
 c

yc
le

Unique tours

Repeated tours

Production rate

Fig. 1. Mean performance of the ant colony algorithm

Fig. 2. Pheromone patterns at the completion of two runs of the ant colony algorithm

With these choices made, we ran the ant colony algorithm 20 times for 100,000
cycles each time. The mean number of unique complete tours found in each run was
488,245.4 (with, on average, 9,192.0 closed tours), three orders of magnitude better
than the genetic algorithm. A better competitor is the heuristic depth-first search,
which is more efficient than the ant colony, but only finds Warnsdorff tours.

Fig. 1 shows the mean number of unique tours discovered and the number of re-
peated tours for progressively more cycles. It also shows the “production rate” - the

P. Hingston and G. Kendall 1218

number of new tours found per cycle. Production rate increases for about the first
20,000-25,000 cycles, while the ant colony is learning a good pheromone pattern.
After this, repeated tours are found, and the production rate slowly falls. A remedy
might be to restart the algorithm after a few thousand cycles. We tried this idea, run-
ning the algorithm multiple times for 5,000 cycles each time. In no case were any
tours discovered in more than one run. Fig. 2 shows pheromone patterns from two
typical runs when the patterns have more or less converged. Each pattern has eight
8x8 grey scale rectangles. Each rectangle shows pheromone levels for one of the eight
knight’s moves at each square on the chessboard, darker grey indicating more phero-
mone. Patterns for different runs are quite different from each other.

4 Conclusion

We have introduced a new ant colony algorithm for discovering knight’s tours on an
8x8 chessboard. The new algorithm is able to discover tours efficiently, without
the bias of existing heuristic approaches. Just as graph theory itself was developed in
the 18th century to study problems such as the Konigsberg Bridge Problem and the
Knight’s Tour Problem, this algorithm should be adapted easily to solve other prob-
lems involving Hamiltonian paths or cycles in other graphs.

References

[1] Murray H.J.R. (1913) History of Chess
[2] Euler L. (1766) Mémoires de l'Academie Royale des Sciences et Belles Lettres, Année

1759, vol.15, pp. 310–337, Berlin.
[3] Mordecki E. (2001) On the Number of Knight’s Tours. Pre-publicaciones de Matematica

de la Universidad de la Republica, Uruguay, 2001/57 (http://premat.fing.edu.uy/)
[4] Löbbing M. and Wegener I. (1996) The Number of Knight’s Tours Equals

33,439,123,484,294 – Counting with Binary Decision Diagrams. Electronic Journal of
Combinatorics. 3(1), R5.

[5] McKay B.D. (1997) Knight's tours of an 8x8 chessboard, Tech. Rpt. TR-CS-97-03, Dept.
Computer Science, Australian National University.

[6] Warnsdorff H.C. (1823) Des Rösselsprungs einfachste und allgemeinste Lösung.
Schmalkalden

[7] Gordon V.S. and Slocum T.J. (2004) The Knight’s Tour – Evolutionary vs. Depth-First
Search. In proceedings of the Congress of Evolutionary Computation 2004 (CEC’04),
Portland, Oregon, pp. 1435-1440

[8] Goldberg D. (1989) Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley

[9] Dorigo M. (1992). Optimization, Learning and Natural Algorithms. Ph.D.Thesis,
Politecnico di Milano, Italy, in Italian

[10] Dorigo M., V. Maniezzo & A. Colorni (1996). The Ant System: Optimization by a Col-
ony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics-Part
B, 26(1):29-41

	Introduction
	The Ant Colony Algorithm
	Experiments and Results
	Conclusion
	References

