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Abstract—Hyper-heuristics are an emergent optimisation length approaches are proposed and investigated in section V
methodology which aims to give a higher level of flexibility and and section VI concludes the paper.
domain-independence than is currently possible. Hyper-heuristics
are able to adapt to the different problems or problem instances
by dynamically choosing between heuristics during the search. Il. HYPER-HEURISTICS
This paper is concerned with the issues of memory length on the
performance of hyper-heuristics. We focus on a recently proposed ~ Hyper-heuristics are high-level heuristic strategies that
simulated annealing hyper-heuristic and choose a set of hard choose between heuristics to solve a given problem [12], [13].
university course timetabling problems as the test bed for this Hyper-heuristics search in the heuristic space as opposed to

empirical study. The experimental results show that the memory . . _ .. .
length can affect the performance of hyper-heuristics and a good most implementations of meta-heuristics which operate on the

choice of memory length is able to improve solution quality. Solution space. One of the challenges behind the develop-
Finally, two dynamic approaches are investigated and one of the ment of hyper-heuristic methodologies is how to manage a
approaches is shown to be able to produce promising results group of simple heuristics in such a way that the algorithm
without introducing extra sensitive algorithmic parameters. can adaptively combine these simple heuristics to tackle the
problems under consideration, with the help of some classifier
systems or machine learning technigques to adapt the search to
|. INTRODUCTION the problem domain.

The study of hyper-heuristics is clearly related to widely

Considerable research has been carried out in developmoqjpted multi-neighbourhood meta-heuristic approaches. For

optimisation methodologies to tackle various challenging pro%iéample, one of the most popular classes of multi-

!ems [1].' Despite many successful gppllcatlons being reportneighbourhood approaches is variable neighbourhood search
in the literature, using these techniques normally requwesg?NS) which systematically switches neighbourhoods in a
n

high level of expertise and experience. In many cases, ' . .
: . ) ) . redefined sequence so that the search can explore increasingly
implementation of a particular technique (or choosing ttf?

. . N %stant neighbourhoods of the current solution [14]. Here,
best one from a group of those available) involves S'gmﬂcaa%signing a set of neighbourhood structures and arranging

parameter tuning. Hyper-heuristics are an emerging S€UEM into an increased cardinality sequence requires a good

technique which aims to raise algorithms’ domain indepenhderstanding and knowledge of both the problem domain
dence level such that minimal expertise is needed in orauer . R .
t0 apolv it to solve a given oroblem. Althouah manv h er<'31nd the search algorithm. Some other applications of multi-

i g P ' g y hyp .nei%qhbourhood approaches allow users to change the sequence

heuristic frameworks have been proposed and tested on varig . ; .

; L or the neighbourhood during the search either randomly or
;chedullng and application proplems recgntly [21-[11], vey ased on a predefined rule, for example, [15]-[17]. However
!|m|ted research ha_s been_ carried out \.N't.h regard_to SO neighbourhood structures of many of these approaches
Important memory issues in hyper-heuristics. In this PapPeire very complicated and rely heavily on problem domain

we focus on the issues surrounding how different memog uctures. The design of these neighbourhoods requires a high
lengths affect the performance of hyper-heuristics and wt]a{ ' 9 9 q 9

type of self-adaptive approaches can be used to dynamic ﬁvel of expertise and experience. In contrast, when studying

. per-heuristics we often aim to provide a system which can
change the memory length at different stages of the search. _. .
.c]pnsuderably reduce the requirement of user knowledge about

The paper is structured as follows: section Il gives a bri : . . ?

i L . e problem under consideration by allowing the algorithm to
review of hyper-heuristics and issues that are worthy of further, . . : . .
. L . : , . . adapt itself to the different search scenarios either online or
investigation. In section Ill, a university course tlmetablln%

problem is introduced and chosen as a test problem for thfﬂme‘

IS I - .
study. Section IV describes the heuristic selection function andApart from designing sophisticated neighbourhood moves,

weight adaption strategies that are used in the hyper-heuri%"’hncmher cgntral issue for muItl—ne|ghpourhood approaches 'S
0 determine a strategy of systematically changing between

algorithm investigated in this paper. Two dynamic memorP{eighbourhoods during the search or to assign a probability
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change. One may have to tune the parameters again or redesigh
the algorithm completely. This may be appropriate for some
applications where ample re-development time is allowed and
a high quality solution is a priority. However, there are many
other scenarios where users are only interested in satisfactory
solutions and the problem situations change very quickly so

. . . . . Selection Mechanism
that time-consuming parameter tuning is not appropriate. In

this case, a flexible, adaptive system with satisfactory solution A

Simulated Annealing Hyper-heuristics

Apply the Selected
Heuristic

SA Acceptance
Criterion

quality is preferable to a highly sophisticated, but “brittle”
system.

Several hyper-heuristic approaches have been proposed Low-level _
and applied to difficult scheduling problems. The heuristic [ Problem Domain }
selection mechanisms that were used in these approaches
are either based on offline classifier models [5], [8]-[10] drg. 1. A diagram of the simulated annealing hyper-heuristic
online machine learning techniques [2], [4], [6], [7]. In an
offline learning based hyper-heuristic approach, the heuristic
selection mechanism is trained before it is employed to sol#ge framework of a simulated annealing hyper-heuristic that
a new problem instance (of course, the heuristic selectigias studied in [19]. The reason we choose this simulated
mechanism can be updated after this new experience bubrhealing hyper-heuristic algorithm is that it has demonstrated
generally does not change during the problem solving periodjgnificant improvement over other types of hyper-heuristics
However, an online learning based hyper-heuristic approagh several difficult scheduling and optimisation problems
adapts its heuristic selection strategies during the search\fiyhout lowering the generality of the algorithm [19]. See
learning from previous search stages. Previous research ppg 1 for a diagrammatic presentation of the algorithm.
shown that hyper-heuristics with online learning have adhe main features of this simulated annealing hyper-heuristic
vantages over offline learning hyper-heuristic approachesiitiude a stochastic heuristic selection mechanism, a simulated
terms of solution quality and algorithm domain independenggnealing acceptance criterion and a short-term memory [19].
[6]. However, offline learning hyper-heuristics are generallyhe heuristic selection mechanism plays a pivotal role. It
computationally faster since no online learning is involve&onstantly adapts the priorities of the low-level heuristics
Several online learning hyper-heuristic mechanisms have beRRting the search. Initially, the heuristic selection mechanism
based on the ideas of reinforcement learning [18], in whigfbes not know which heuristic will perform better than any
historical information is utilised in order to choose heuristicsther. Therefore, the heuristics are selected uniformly. As
more intelligently in the next stage of the search. That ifhe search proceeds, the heuristic selection mechanism starts
each heuristic is subject to a reinforcement procedure 9 apply preferences among different low-level heuristics by
increase or reduce its chances of being chosen in future. [garning from, and adapting to, their historical performance.
do this, some quantitative measurements are generally usg@refore, the heuristics that have been performing well are
to evaluate the performance of each heuristic throughout tere likely to be chosen. To successfully apply a selected
search. Preferences or priorities are then applied to thasguristic, the simulated annealing acceptance criterion also has
heuristics that have obtained good overall performance duriftgbe satisfied. That is, once a decision is made by the heuristic
the search history. However, few studies have been carrigslection mechanism, the chosen heuristic is then applied
out to investigate the issues of what types of informatiogy the current solution. The simulated annealing acceptance
to be exploited and in which way. Currently, most hypefriterion is employed to decide whether to accept this heuristic
heuristic approaches have used long-term memories. Thatnipve or not. Information about the acceptance decisions by the
information gathered during the early stage of the search hageptance criterion is then fed back to the heuristic selection
the same influence as the information which was obtained omhechanism in order to make better decisions in future.
recently. For example, in [4], [2] and [7], the utility weights of More specifically, in this paper we are interested in investi-
heuristics are based on the entire historical information Wlﬁh“ng how different memory |engths affect the performance of
equal impact, which may not be appropriate. It is also possilige hyper-heuristics and how the algorithm can automatically
that these values are getting either very large or very smaline the influence of the information attained at different
To constrain these values, within a meaningful range, all tigages of the search.
three papers employed a lower bound and an upper boung typical university course timetabling problem is chosen

for these values. HOWeVer, this method introduces two n% a test bed to investigate these fundamental issues.
parameters into the algorithm which may harm the generality

of the method. In addition, as pointed out in [7], improving
moves during the middle and later stages of the search are
expected to be low, which leads to the situation that all the The university course timetabling problem involves assign-
heuristic utility weights are approaching their lower boundsg a given number of events (including lectures, seminars,
and the hyper-heuristic starts to operate in a random way. labs, tutorials, etc) into a limited number of time-slots and
In this study, we investigate these fundamental issues rmoms subject to a given set of constraints. Several problem

Ill. PROBLEM DOMAIN: COURSETIMETABLING



models have been introduced in the literature due to the difiat stochastic ranking is superior to other popular selection
ferent practical requirements by different universities [20]. Istrategies in the context of an evolutionary algorithm [26].
this paper, we consider a model that was originally presentids also compatible with the stochastic nature of simulated
in [21] and [22]. This model provides a representation of annealing. Here we use a simple selection method similar to
typical university course timetabling problem and has beeaulette-wheel selection. The probability that a heuristis
used in many academic publications. The model formulateslected from a collection of alternative low-level heuristts
the problem as follows: is proportional to its weightv;:

Given a set of event# and a number of room®&, with
each room having one or more features out of featurefset i =
Each event is attended by a given number of students from %7:1 Wi
student setS and requires some of the room features. The
aim of the problem is to assign every event E to a time

slott,(k =1, ...,45) and a roomy € R so that the following
hard constraints are satisfied: Weight adaption is the key phase for the success of the

« No student should be assigned to more than one evenpwer—heuristic. This is also the area that is particularly focused
a time slot: upon in this paper. Both [4] and [2] used a reinforcement

« The room assigned to an event should have sufficigf@Ming function with a long-term memory. The weight of
capacity and all the features required by the given evet}i‘f?ur's“m at an arbitrary iteratiork can be calculated by:

w;

1)

B. Weight adaption

« No more than two events can be scheduled in one room h
in a time slot. Wy, = Z“k @)
The objective of the problem is to minimise the number of k=1
students involved in the following soft constraint violationg nare r i the positive (or negative) reinforcement value

(Scv): applied to heuristici at iteration k. Therefore, the current

« An event is scheduled in the last time slot of the day; weight of a heuristic is a collective reflection of its previous

« A student has only one event in a day; performance. At each iteratioh, a positive reinforcement

« A student has more than two consecutive events. r; is rewarded to a heuristic that has improved the cur-

We adopted the same solution representation that was ugeat solution in terms of the objective value and a negative
in both [22] and [2]. In this representation, a solution wakeinforcement is applied if it fails to do so. However, we
encoded as ai’ dimensional vector where a position in theobserved that during the search, although some heuristics
vector denotes an event index and the value correspondsamnot improve the solution directly, they are still useful in
the time slots assigned to the given events. creating some intermediate situations, from which the optimal

Instead of using many complex neighbourhoods as in masglution (or a good quality solution) could be reached. It is not
other research publications (for example [23], [24]), here wational to penalise these heuristics. Hence in this research,

only use three simple heuristics: we give a minor positive score to those heuristics which
H1 Shiftt Move a random event from its current time slofould transfer the state of the solution but could not improve
to another random time slot. the objective value. Meanwhile, we penalise those heuristics

H2 Swap event:Swap the time slots of two random eventsWhich could neither improve the current solution nor generate

lected time slots.

, 0>0
Similar to [22] and [2], room assighments are dealt with fc 5<0
separately using a matching algorithm. All of the above rin = c ’ 5 = 0 and new solution 3)

heur_istics were designed to ensure_tha_t the search proceeds in —¢, 6 =0 ant no new solution
fea5|_ble space. If an infeasible sol.utllon is pro_duc_ed, the current 0, if not selected
solution is returned and the heuristic move is discarded.

A total of twenty prob|em instances are used here a\_&}'lerec is a positive value and is a relatively small positive
testing instances, drawn from the International Timetablinglue. In this application, we set= 1, e = 0.1. As mentioned
Competition organised by the Metaheuristic Network [25]. Thearlier, the majority of moves at the middle and latter stages
parameters of these instances are as follouis] e [350,440], of the search are non-improving, which would lead to most
| S |€ [200,350], | R |€ [10,11], and| F |€ [5,10). of the heuristics being assigned a very large negative weight.
Equation (3) does not generate probability distributions as we
expected. Although the lower and upper bounds used in [4] and
[2] can ensure that these weights are held within a reasonable
range, setting these two bound parameters can be difficult.

The heuristic selection mechanism in this simulated annedl-bad choice of the parameters may lead the algorithm to
ing hyper-heuristic is based on the ideas of stochastic rankingcoming a random search since these weights are not able
[26], in contrast with the deterministic approaches in mosb distinguish between the performance of heuristics. In this
of the other hyper-heuristic algorithms. It has been showpaper, instead of assigning a lower and upper bound for each

IV. HEURISTIC SELECTION MECHANISM
A. Selection function
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Fig. 2. The average performance of the simulated annealing hyper-heurigtig. 3. The average results by the simulated annealing hyper-heuristic with
with different learning rates over 10 runs for six randomly selected instancaifferent learning rates over all the 20 instances. min: The best objective in
10 runs. mean: The mean objective in 10 runs.

weight, the following simple method is used to solve this
problem. Letwn, = min{0,w; | i € H}, the heuristic bestfor every problem instance. For example, the bastlue

selection function is now defined as: (among the values we have tried) for the instance Comp8
appears around 0.9. However, for the instance Compl5, the

py = it Wmin (4) besta value is around 0.8. Indeed, this is a common problem
g;{(“’i + Wmin) associated with many optimisation techniques whose parame-

ters are not only sensitive to a change of problem domain, but
The following standard reinforcement a learning function igjso to a change of instance within the same domain.

used: N Fig. 3 presents the average results over 20 instances by the
wip = Zakm (5) simulated annealing hyper-heuristic, W|t_h different Iear_nlng
P rates. It can be seen that across 20 instances, an infinite

. . . memory ¢ =1 in r overall performance than th
where o is learning rate or discount factor to balance th emory ) obtained better overall performance than the

) . : . . . memoryless approach (i.e.= 0) but it is not as good as when
influence of the rewards gained at different iterations durlr{ﬁe Iear);ing ra?epis set t(o be 0 23 or 0.9. Over th?s set of problem
the search historyx = 0 implies a random heuristic selection. ’ o

aporoach whilen — 1 corresponds to the long-term memormstances, the hyper-heuristic with a learning rate= 0.9
fupnF::tion used in [_4] and [2]p Anvy value bet\g/]veen 0 and 1yperforms best. However, one would have to run a considerable

. - A . ) pumber of experiments to tune this parameter, which contrasts
would exp_on_entlally ;cale down the reinforcement _apphed v(\?#'th the motivating goals of this research. We are aiming
each heurlst|c. over time. For_ example, for a learning rat_e & develop algorithms which are generic and self-adaptive
a = 0.5, the influence of reinforcement will almost vanish

i . 10 in the sense that the parameters in the algorithm are either

aft::eirglg g?;gugr;(}fparg gﬁogflzﬁe simulated annealing hyp en(_)t sepsitive to a change of prob_lem or the parameters are

T . ) . il namically tuned to the problem instance during the search.
heuristic with different learning rates for six problem mstancg;g. h this obiective in mind. we investigated two alternative
(to keep the paper brief, only six randomly selected problem't ) L 9 .
. - .m%thods which are presented in the next section.
instances are presented here. Similar plots can be obtaine
for other problem instances). The parameters, with respect to
simulated annealing, are set with the same values as in [19]
except that the reheating strategy is turned off to eliminateFrom Fig. 2, it can be seen that the bestalue changes
potential factors which could have added disturbance to tlrem instance to instance. It might be beneficial to allow
experimental results. For each version of the algorithm, 1Be algorithm to change the learning rate during the search.
independent runs were carried out and both the best resulte first simple approach that we investigated (denoted by
and average results were recorded. For each single run, Bjeis similar to the mechanism used in the reactive GRASP
number of total iterations was set #%=2,000,000. It can be (greedy randomised adaptive search procedure) [27]. The
seen that in most cases, the algorithm without learning (igearch is divided into 10 identical sub-periods, with each
a = 0) performs worst when compared with the simulatepgeriod using a learning rate randomly selected from the set
annealing hyper-heuristics with different learning rates. It ¥0.5,0.6,0.7,0.8,0.9,0.99
also interesting to see that some short-term memory based alfhe second approach is slightly more complex and is based
gorithms outperformed the algorithm with long-term memorgn the following observation: at the middle and latter stages
or infinite memory as referred to in some other places (i.ef the simulated annealing search, most heuristic moves will
«a = 1). Unfortunately, it is difficult to determine an value be rejected and the ratio of improving solutions to non-

with which the simulated annealing hyper-heuristic performsiproving solutions is generally small. In this scenario, it

V. DYNAMIC MEMORY LENGTH



180 —e— Compl approach (i.e. when = 0.9) which can only be achieved via
1702 —&— Comp3 a time-consuming parameter tuning process. Also note that
1 S| Comes the performances of D0.1 and DO0.5 are very similar when
y N w _"_gompi; compared with each other, which indicates that this dynamic
§ 150 X M 1632218 memory length approach is not sensitive to the initial leaning
é 140 4% ratecp. The main advantages of D0.1 and DO0.5 over the static
g learning rate is that there is no parameter tuning involved and
130 . L
. ) the algorithm performed well across all 20 test instances.
120 B e S Note that the purpose of this paper is to study the impact
110 . ~ of the memory length on the performance of the hyper-
\/ heuristics. To exclude non-correlated disturbances, we turned
100 — . . . ,
00 02 04 06 08 09 10 DOLDO5 R off some strategies that are able to improve Fhe glgorlthms
Learning Rate performance. Therefore, the results presented in this paper are

not as good as those reported in [24], [28]. For example, we
Fig. 4. A comparison of dynamic memory length approaches with statitSed significantly less iterations than in [24] which, if allowed,

memory length approaches on six problem instances will significantly improve our results. Also, introducing a
reheating strategy that is similar to [19] has the potential to
170.0 improve the results. In addition, we used three very simple
—o—min heuristics as opposed to other algorithms that relied on much

160.0 -
L

——mean more complex heuristics/neighbourhood moves (for example,
150.0 \\—\/\‘—/ [23] and [24]).

140.0

VI. CONCLUSION
1300 W Memory represents a key component in hyper-heuristics
120.0 research. This paper is concerned with the issue of memory

length in hyper-heuristics. We specifically investigated how
the memory length can affect the performance of a newly
100.0 —— proposed simulated annealing hyper-heuristic. The empirical
00 02 04 06 08 09 10 DO1DO5S R study on a university course timetabling problem showed
Learning Rate that hyper-heuristics using a short-term memory produced

better results than both the algorithm without memory and

e algorithm with infinite memory. A possible explanation is
that the search landscape is different at different stages of the
search and information about how a heuristic behaved during

would need a longer period of historical information for th&h® past may only be useful for a limited period in the future.
algorithm to distinguish between the performance of low-levéiformation gathered a long time ago may be not valid any
heuristics. Therefore, it is reasonable to increase the mem8igre. Unfortunately, the parameter of memory length seems
length systematically as the search proceeds. With the learnffigP€ Sensitive to different problem instances and it is also
function (5) used in this paper, this would be equivalent f§M€-consuming to tune this parameter to a given problem. In
increasing the learning rate. In the paper, the search is’order tp increase the. level of domamllndepender‘]ce of hyper-
again, divided into 10 identical sub-periods. In the first S’u@_eurlstlc.methodologles and automatically set 'thIS p'arameter,
period, we assign a relatively small initial learning ratg. @ dynamic memory length approach has been investigated and
After each period, we increase the learning rate by the functiBfPPosed in this paper. It has been shown to be robust across
a = \/a, corresponding to roughly doubling the memor@ﬁerent instances V\./IthOU.t a parameter tuning process.
lengths each time. To test the sensitivity of the initial value !N future, we believe it would be worth studying other
ap, both ag = 0.1 and ap = 0.5 were tried. For simplicity, dynamic memory length ap_proaghes that can co_mblne short-
these two versions of the algorithm are denoted by D0.1 afffm and long-term memories simultaneously with a hyper-
DO0.5 respectively. heunsug framework. It.would also .be_ mteresyng to st.udy the

Figs. 4 and 5 present comparisons between these ipteractions between different heuristic selection functions and
mgmory adaption approaches.

Penalty Cost

110.0 +

Fig. 5. The overall performance of the dynamic memory length approac
across all the 20 instances

approaches and the approaches with fixed learning rates
six randomly selected individual instances and for all the 20

instances respectively. From both figures, it can be seen that REFERENCES
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