
CHOICE FUNCTION AND RANDOM HYPERHEURISTICS

Graham Kendall, Eric Soubeiga∗

School of Computer Science & IT
University of Nottingham, Nottingham
NG8 1BB, UK; gxk/exs@cs.nott.ac.uk

Peter Cowling

Department of Computing, University of Bradford
Bradford BD7 1DP, UK;

Peter.Cowling@scm.brad.ac.uk

ABSTRACT

A hyperheuristicis a high-level heuristic which adaptively
controls the combination of several low-level knowledge-
poor heuristics so that while using only cheap and easy-
to-implement low-level heuristics, we may achieve solu-
tion quality approaching that of an expensive knowledge-
rich approach. Hyperheuristics have been successfully ap-
plied by the authors to three real-world problems of per-
sonnel scheduling. In this paper, the low-level behaviour
of the choice-function based hyperheuristic is investigated
and compared with a range of other heuristics and hyper-
heuristics. We show that the choice-function hyperheuris-
tic makes an effective and realistic combination of the low-
level heuristics at hand. Furthermore the combination of
the low-level heuristics is intelligently adapted to both the
problem being solved and the region of the search space
currently being explored.

Key words: hyperheuristic, hybrid heuristic, choice func-
tion, personnel scheduling.

1. INTRODUCTION

Personnel scheduling involves allocating timeslots and pos-
sibly locations and other resources to people. This subject
has been the topic of much research since the 1970’s [2, 12,
3]. Like other combinatorial optimisation problems, the re-
sulting NP-hard problem is usually solved using heuristics
which often requires the use of sophisticated metaheuristic
methods and problem-specific information to obtain a good
solution. For example Dowsland [8] used tabu search com-
bined with strategic oscillation to schedule nurses. Using
a variety of sophisticated local search moves, the search is
allowed to cross the infeasible regions in the hope of find-
ing a good solution beyond. The result was a robust and
effective method capable of producing solutions of similar
quality to those of a human expert. The same problem was
successfully solved in [1] using a co-evolutionary strategy
based on co-operating subpopulations built using knowl-
edge of the problem structure. While domain-knowledge

∗Coresponding author

can help boost the search as in [8, 1] it makes the result-
ing tailor-made metaheuristic less re-usable for other prob-
lems. Heuristic and metaheuristic approaches tend to be
knowledge-rich, requiring substantial expertise in both the
problem domain and appropriate heuristic methods. It is
in this context that we proposed ahyperheuristicapproach
in [4] as a heuristic that operates at a higher level of ab-
straction than current metaheuristic approaches. The hy-
perheuristic adaptively controls the combination of several
low-level knowledge-poor heuristics (e.g. add, delete, swap
moves). At each decision point the hyperheuristic must
choose which low-level heuristic to apply, without recourse
to domain-knowledge. Hence hyperheuristics may be used
in cases where little domain-knowledge is available (e.g.
when dealing with a new, poorly understood or unusual prob-
lem) or when a solution must be produced quickly (e.g. pro-
totyping). A hyperheuristic is a generic and fast-to-implement
method (compared to a bespoke metaheuristic), which should
produce solutions of acceptable quality, based on a set of
easy-to-implement low-level heuristics. In order to apply a
hyperheuristic to a given problem, all we need is a set of
low-level heuristics and a formal means of evaluating solu-
tion quality. Similar approaches of managing several low-
level heuristics are proposed in [11] in which to each low-
level heuristic is associated a utility function and a prefer-
ence weight. Different weight-adaptation schemes are em-
pirically compared using two problems (Orc Quest and Lo-
gistic Domains). In this paper we focus on a class of hyper-
heuristics, the choice-function based hyperheuristics, which
has been successfully applied to three real-world schedul-
ing problems [4, 5, 6, 7]. We investigate the low-level be-
haviour of the choice-function based hyperheuristic (which
is presented in section 2). Our problem application is that
of scheduling project presentations (section 3) [6]. We shall
demonstrate that the choice-function based hyperheuristic
makes an effective and realistic combination of the low-
level heuristics (section 4).

2. HYPERHEURISTIC TECHNIQUES

We use two types of hyperheuristic. The first one is a ran-
dom hyperheuristic,RD, which repeatedly chooses one low-
level heuristic uniformly at random and applies it until some
stopping criterion is met. The chosen low-level heuristic is
applied in a descent fashion (i.e until no further improve-
ment is possible). Note thatRD is similar to Variable Neigh-
bourhood Search (VNS) [9]. The second type of hyper-
heuristic,HH , is based on aChoice-Functionwhich adap-
tively ranks the low-level heuristics. In its original version
presented in [4], the choice function reflects recent improve-
ments of each low-level heuristic (f1), recent improvements
for consecutive pairs of low-level heuristics (f2), and the
number of CPU seconds elapsed since the heuristic was last
called (f3). Thus we havef1(hj) =

∑
n αn−1(In(hj)

Tn(hj)
) and

f2(hk, hj) =
∑

n βn−1(In(hk,hj)
Tn(hk,hj)

) whereIn(hj)/In(hk, hj)
(respectivelyTn(hj)/Tn(hk, hj)) is the change in the eval-
uation function (respectively the number of CPU seconds
used) thenth last time heuristichj was called/ immediately
after heuristichk. Both α andβ are parameters in interval
[0, 1], which reflects the greater importance attached to re-
cent performance.f1 andf2 are there for the purpose of
intensification1. f3 provides an element of diversification,
by favouring those low-level heuristics that have not been
called recently. Then we havef3(hj) = τ(hj) whereτ(hj)
is the number of CPU seconds elapsed sincehj was last
called. If the low-level heuristic just called ishk then for
any low-level heuristichj , the choice functionf of hj is
defined asf(hj) = αf1(hj) + βf2(hk, hj) + δf3(hj). Pa-
rameter values forα, β andδ are changed adaptively using a
procedure described in [5], similar to the idea of reinforce-
ment learning [10]. Given a problemP to be solved, an
evaluation functionE for solution quality and a setH =
{h1, h2, ..., hn} of low-level heuristics, the choice-function
hyperheuristic works as follows:

Do
- Select the low-level heuristic that maximises choice-

functionf and apply it.
- Update choice functionf ’s parameters using the

adaptive procedure
Until Stopping condition is met.

We next present our case study problem.

3. SCHEDULING OF PROJECT PRESENTATIONS

The problem occurs every year at the School of Computer
Science and Information Technology of the University of
Nottingham which has to schedule final year undergradu-
ate students’ project presentations during a period of up

1The idea behindf1 andf2 is analogous to exponential smoothing [13].

csit0 csit1 csit2

ch -908.5 -2557.6 -946.6
RDam -1274.55* -2884.49 -1668.76
RDoi -1303.38* -2892.81 -1675.48
HHam -1444.99* -2960.3 -1650.67
HHoi -1316.56* -2963.37 -1720.23
RD1am -1406.64* -2892.02 -1724.15
RD1oi -1398.74* -2887.90 -1720.29

ml -90.1 - -
HHam(ml) -644.43 - -
s1 71.1 4304.5 6051.5
HHam(s1) -1326.37 -323.23 717.96
s2 516.8 98.9 986.4
HHam(s2) -991.96 -1342.3 -114.5

Table 1: Initial solution is ch. csit0 results marked with * are
taken from [6] which used a 1Ghz PC with 128Mb RAM.

to 4 weeks. As part of their degree requirements, the stu-
dents must give a 15-minute presentation of their project.
A project is defined by its topic, the student who works
on it, and the lecturer who supervises the student’s work.
Each project must be presented by the corresponding stu-
dent to a jury composed of a Chair or First Marker, a Sec-
ond Marker and an Observer. Ideally, the project’s supervi-
sor should be a member of the jury (as Chair or Observer)
but this is often not the case in practice. Individual presen-
tations are grouped into hourly sessions2 to which a room
is allocated. The problem is to determine all (student, 1st
marker, 2nd marker, observer, room, timeslot) tuples. Let
I,S,Q andR be the sets of students, staff members, ses-
sions and rooms respectively. Our main decision variables
are denoted byxijklqr (i ∈ I, j, k, l ∈ S, j �= k, j �= l, k �=
l, q ∈ Q, r ∈ R), wherexijklqr is 1 if presentation of stu-
denti is assigned to 1st markerj, 2nd markerk, observer
l and allocated to sessionq in roomr; otherwisexijklqr is
0. The problem constraints are (1) each presentation must
be scheduled once; (2) at most four presentations for each
session and room; (3) no lecturer can be scheduled to 2 dif-
ferent rooms within the same session. The problem formu-
lation is given in [6] as a minimisation problem withE, the
overall objective function made up of 4 weighted goals3.
We use the same low-level heuristics as in [6]. They are all
simple and based around moving, replacing or swapping an
object. (h1): Replace a random lecturerj1, with another

2A session contains up to four 15-minute presentations.
3(A) Fair distribution of the total number of presentations per staff

member; (B) Fair distribution of the total number of sessions per staff
member; (C) Fair distribution of the number of ‘early’ (before 10:00am)
and ‘late’ (after 4:00pm) sessions per staff member; (D) matching of staff
research interest to project topic, and where possible involvement of super-
visors in corresponding presentations

random onej2 in a random sessionq during whichj1 is
scheduled for presentations; (h2):Same ash1 but j1 has the
largest number of scheduled sessions; (h3):Same ash2 but
q is the one wherej1 has the smallest number of presenta-
tions; (h4):Move a random presentationi from its current
session-room into another random session-roomq-r; (h5):
Same ash4 but presentationi is that for which the sum of
presentations involving all three lecturers (1st marker, 2nd
marker, observer) is smallest of all sessions; (h6): Same as
h5 but sessionq is one where at least one of the lecturers
(1st marker, 2nd marker, observer) is already scheduled for
presentations; (h7): Swap 2nd marker of one presentation
with observer of another; (h8): Swap 1st marker of one pre-
sentation with 2nd marker of another4.

4. EXPERIMENTS

The first set of experiments5 aimed at making a direct com-
parison between the random hyperheuristic (RD), and the
choice-function based hyperheuristic (HH). For both al-
gorithms we distinguished the case where all moves (am)
are accepted and the case where only improving moves (oi)
are accepted. Results (averaged over 10 runs) are given in
the upper part of Table 1 for three instancescsit0, csit1
andcsit2. The first instance is taken from [6] and has the
following problem characteristics|I| = 151, |Q| = 80,
|R| = 2, and |S| = 26. Instancecsit1 have|I| = 240,
|Q| = 36, |R| = 2, and |S| = 24. csit2 is the same
as csit1 except in|S| = 22. Thuscsit2 is more difficult
(tighter constraints) thancsit1. Note thatcsit0 is much eas-
ier (slack constraints) than bothcsit1 andcsit2 as from the
from the former to the latter instances there is a58% in-
crease in|I| and a45% decrease in|Q|, hence many more
projects to schedule in fewer timeslots. In increasing order
of difficulty we havecsit0, csit1, csit2. Note that all in-
stances have thousands of constraints and several millions
of variables in our integer programming model. BothRD
andHH start with a solution produced by a constructive
heuristic,ch, used in [6]. The stopping condition was 600
seconds CPU. The results (averaged over 10 runs) corre-
spond to the best value ofE found during the search of
each algorithm. We see that both algorithms produced re-
sults much better thanch. AlsoHH gave better results than
RD. We note that the gap in terms ofE betweenHH and
RD is greatest withcsit0 and smallest withcsit2. It seems
thatHH outperformsRD though the difference appears to
decrease as the difficulty of the instances to solve increases.
Furthermore it was observed in [6] that finding a better so-
lution becomes very challenging as the search goes on. This

4In bothh7 andh8 supervisors may not be removed.
5Unless otherwise stated, all algorithms reported in this paper were

coded in Micosoft Visual C++ version 6 and all experiments were run on
a PC Pentium III 1500MHz with 228MB RAM running under Microsoft
Windows 2000 version 5.

suggests that there is an advantage in usingHH overRD.
In [6] HH also achieved results superior to those ofRD
when both methods started from a very poor-quality solu-
tion constructed manually forcsit0 (calledml in Table 1).
The hyperheuristic results were however inferior to those of
ch. We decided to runHH from two initial solutions of
very poor quality. Both initial solutions (s1 ands2) are ob-
tained randomly. In the lower part of Table 1 the objective
is given forHH after 2 hours of CPU time in order to see if
HH will get any closer toch. The results (averaged over 3
runs) suggest that the area of the search space the initial so-
lutions are at are so poor that it is difficult to quickly move
to a good area. It should be noted however thatHH made
a huge improvement on the initial solutions and is able to
catch up and even overtakech on instance csit0. Therefore
it is still possible forHH to reach good areas even if they
are far away from the part of the space currently under ex-
ploration.

The second set of experiments aimed at investigating
the low-level behaviour of the choice-function based hy-
perheuristic. In Table 2 we give the proportion of call, by
HHam, of each low-level heuristic during the first 100 heuris-
tic calls and during the last 100 heuristic calls to the best
solution. We also rank the low-level heuristics according
to their overall proportion of call so that the top (bottom)
heuristic is the one that has been called most (least) often.
Results are obtained after 30 minutes CPU of run in order
to allow for a realistic sampling. From the proportion of
calls during the 1st 100 calls it is clear that in the early
stage of the search calls are spread fairly evenly over the
low-level heuristics, as the hyperheuristic has not ‘learned’
which ones are best. BecauseHHam seems to be continu-
ally improving on the search, the last 100 heuristic calls to
the best solution correspond to the last 100 heuristic calls
of the search. It is interesting to note that not all low-level
heuristics need be called at this later stage. Thus only low-
level heuristicsh2, h3, h5 andh6 are needed for instances
csit1 andcsit2 whereash3 alone suffices for problem in-
stancecsit0. Interestingly enough this difference in the
choice of the low-level heuristics reflects the difference be-
tweencsit1 and csit2 on the one hand andcsit0 on the
other. It seems that the choice-function based hyperheuris-
tic shows different behaviours for different problems. This
suggests that the hyperheuristic is capable of learning about
the interplay existing between the low-level heuristics de-
pendent on both the problem being solved and the part of
the search space currently being explored. From the over-
all proportion of calls we see that overall (across the 3 in-
stances), heuristicsh2, h3 andh6 figure among the top 3
heuristics whereas heuristich1 is at the bottom. This can be
regarded as a feature common to the 3 problem instances.
As noted in [6] it seems thath3 andh6 which are the most
sophisticated version of their category (‘replace’ typeh1,

h2, h3 and ‘move’ typeh4, h5, h6) deserve to be called more
often than the others. There was no plateau landscape dur-
ing the hyperheuristic search on instances csit1 and csit2.
For csit0 however a plateau of solutions evaluated at -1390.6
was identified. The 100 heuristic calls covering the plateau
landscape were distributed as 0, 28, 35, 0, 5, 18, 2, 12 for
heuristicsh1, h2, ..,h7 andh8 respectively. Comparing this
to csit0 results in Table 2 we see a totally different low-level
behaviour, which helped the hyperheuristic escape from the
plateau by first accepting worse solutions (up to -1292.6) in
order to reach out for good ones, ending up at -1414.6 (at
the100th heuristic call).

Using the results in Table 2 we implemented an ‘intelli-
gent’ random hyperheuristic,RD1, based onRD. Instead
of selecting each low-level heuristic uniformly at random
(i.e. equal probability of choice)RD1 chooses each low-
level heuristic with a certain probability which corresponds
to its overall proportion of call by the choice function hy-
perheuristicHH6. The aim of the experiment was to see if
the choice-function based hyperheuristic power is in choos-
ing only the best proportion of calls, or whether the choice
function gives additional power by providing a better-than-
random ordering.RD1 10-run average results can be found
in the upper part of Table 1. BothRD andRD1 give similar
results on instancecsit1. On instancescsit2 andcsit0 how-
ever,RD1, which uses the choice function’s combination
of the low-level heuristics outperformsRD, which simply
chooses the low-level heuristics with equal probability. It
appears that the choice function hyperheuristic makes an ef-
fective and realistic combination of the low-level heuristics
at hand and as such is better than a simple random heuristic
combination. WhileHH and RD1 gave comparable re-
sults on instancecsit2, HH outperformedRD1 on csit1
and csit0. It seems that an approach which maintains an
adaptive combination of the low-level heuristics (HH) may
appear to be more robust than one which keeps the same
combination of the low-level heuristics (RD1), due to the
ability of the former to adapt to changes in the search land-
scape (valleys, plateaux, ...). Therefore the similarity of re-
sults betweenHH andRD1 on instancecsit2 suggests that
the area of the landscape we are at is somewhat smooth and
so the current heuristic combination used inRD1 is good
enough to cope with that. To further confirm this, and to
see if HH is nothing more than just a good random hy-
perheuristic (likeRD1) we ran bothRD1 andHH using
initial solutionss1 ands2. This has the effect of starting the
search from a rather different area (different to that ofch).
RD1 still uses the same probabilities, which were obtained
by HH with ch as initial solution. Results (averaged over
10 runs) are given in Table 3. When starting froms1, HH

6For example when applyingRD1 to instancecsit1, heuristicsh1, h2,
h3, h4, h5, h6, h7 andh8 are chosen with probability 0.009, 0.118, 0.552,
0.013, 0.078, 0.126, 0.046 and 0.058 respectively.

csit0 csit1 csit2

h1 2/0, 7/0.006 4/0, 8/0.009 2/0, 8/0.005
h2 25/0, 2/0.134 16/4, 3/0.118 31/6, 2/0.129
h3 43/100, 1/0.691 16/76, 1/0.552 32/88, 1/0.672
h4 5/0, 6/0.001 5/0, 7/0.013 10/0, 5/0.016
h5 8/0, 5/0.041 7/2, 4/0.078 6/1, 4/0.038
h6 10/0, 3/0.077 9/18, 2/0.126 10/5, 3/0.121
h7 3/0, 6/0.001 28/0, 6/0.046 3/0, 7/0.009
h8 4/0, 4/0.049 15/0, 5/0.058 6/0, 6/0.010

E -1462.6 -2946.6 -1730

Table 2: heuristic calls byHHam. Format: # calls dur-
ing 1st 100 calls/last 100 calls to best solution, overall
rank/overall proportion of call

beatsRD1 by 150 (in difference) on csit1 and by 934.12
on csit2. Both algorithms have comparable results on csit0
(small difference of only 18.51). When starting froms2,
RD1 andHH have similar results (small difference of only
12.86) on csit1.RD1 beatsHH by 66.94 on csit2 and by
116.82 on csit0. This suggests that adaptively changing the
probability of choice of the low-level heuristic during the
search allows us to deal robustly with different problem in-
stances and starting solutions. In other words in some cases,
just having a ‘magic’ combination of the low-level heuristic
is not enough (RD1). We must maintain an adaptive con-
trol on the way we combine the low-level heuristics in order
to carry out an effective search. The choice function hy-
perheuristic appears capable of achieving this intelligently.
This also means that the way the hyperheuristic works is
quite different from a random search, however effective that
random search is. It is interesting to note that the superiority
of HH overRD1 is greater on initial solutions1 which is
worse thans2. This suggests a certain strong robustness of
HH which is capable of finding good solutions much more
quickly thanRD1. We would like to emphasize the fact
that the choice-function hyperheuristicHH presented here
is a ‘standard’ approach which worked well for two other
real-world problem of scheduling [4, 5, 7]. Indeed given a
problemP to be solved, all that is needed is a solution eval-
uation functionE and a setH of low-level heuristics to be
plugged into the hyperheuristic black box. The way the hy-
perheuristic works is independent of the nature of the low-
level heuristics and hence of the problem to be solved. The
objective function value and CPU time are the only things
passed from the low-level heuristics to the hyperheuristic.
The sort of solutions produced byHH appeared to be prac-
tical. As a result, the choice-function hyperheuristic solu-
tion has been implemented by the school for this academic
year 2001-2002. The school’s timetabling officer described
the results as ‘excellent’.

csit0 csit1 csit2

RD1am(s1) -500.93 1665.77 4164.21
RD1oi(s1) -481.84 1545.55 4273.03
HHam(s1) -394.77 1450.55 3230.09
HHoi(s1) -482.42 1395.91 3350.64

RD1am(s2) -463.01 -1059.73 27.7
RD1oi(s2) -427.38 -1028.04 -3.27
HHam(s2) -346.19 -976.95 63.67
HHoi(s2) -345.60 -1040.09 76.06

Table 3: Comparison betweenHH andRD1 with different
initial solutions

5. CONCLUSIONS

We have investigated the low-level behaviour of a choice-
function hyperheuristic using an ‘intelligent’ tailor-made ran-
dom hyperheuristic. It appears that the choice-function hy-
perheuristic not only makes an effective and realistic combi-
nation of the low-level heuristics at hand but is also capable
of intelligently adapting this heuristic combination to both
the problem being solved and the region of the search space
currently under exploration. While much of the power of
the hyperheuristic appears to come from selecting appropri-
ate probabilities for calling low-level heuristics, the power
of the method is that these probabilities are adaptively tai-
lored to the solution space and low-level heuristics.

The choice-function hyperheuristic had been success-
fully applied to two other real-world problems of schedul-
ing [4, 5, 7]. The way it chooses the low-level heuristic is
problem-independent. This results in a method which is eas-
ily reusable for other problems. Hence substantial savings
in solution development time are made possible as in [6]. In
this paper we have added evidence that hyperheuristics are
capable of learning about the dynamics existing between
the low-level heuristics and the solution space and conse-
quently can make the best use of these low-level heuristics.
This makes hyperheuristics a useful and effective class of
methods, especially when very little domain-knowledge is
available. Hyperheuristics appear to be worthy of further
investigation.

6. ACKNOWLEDGEMENTS

We would like to thank Dr Helen Ashman for providing us
with the data.

7. REFERENCES

[1] U. Aickelin and K. A. Dowsland. Exploiting problem
structure in a genetic algorithm approach to a nurse

rostering problem.Journal of Scheduling, 3:139–153,
2000.

[2] K. Baker. Workforce allocation in cyclical scheduling
problems: A survey.Operational Research Quarterly,
27(1):155–167, 1976.

[3] D. J. Bradley and J. B. Martin. Continuous personnel
scheduling algorithms: a literature review.Journal Of
The Society For Health Systems, 2(2):8–23, 1990.

[4] P. Cowling, G. Kendall, and E. Soubeiga. A hy-
perheuristic approach to scheduling a sales summit.
Proceedings of the 3rd International Conference on
the Practice And Theory of Automated Timetabling,
PATAT 2000, Springer Lecture Notes in Computer
Science, 176-190, 2001.

[5] P. Cowling, G. Kendall, and E. Soubeiga. A
parameter-free hyperheuristic for scheduling a sales
summit. Proceedings of the 4th Metaheuristic Inter-
national Conference, MIC 2001, 127-131.

[6] P. Cowling, G. Kendall, and E. Soubeiga. Hyper-
heuristics: A Tool for Rapid Prototyping in Schedul-
ing and Optimisation. Proceedings of the 2nd Eu-
ropean Conference on EVOlutionary computation for
Combinatorial OPtimisation, EvoCop 2002, Springer
Lecture Notes in Computer Science, 1-10, 2002.

[7] P. Cowling, G. Kendall, and E. Soubeiga. Hyper-
heuristics: a robust optimisation method for nurse
scheduling. 7th Intl Conf on Parallel Problem Solv-
ing from Nature, 2002. To appear in Springer LNCS.

[8] K. A. Dowsland. Nurse scheduling with tabu search
and strategic oscillation.European Journal of Opera-
tional Research, 106:393–407, 1998.

[9] P. Hansen and N. Mladenovi´c. Variable Neighbour-
hood Search: Principles and applications.European
Journal of Operational Research, 130:449–467, 2001.

[10] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Re-
inforcement Learning: A Survey.Journal of Artificial
Intelligence Research, 4:237–285, 1996.

[11] A. Nareyek. An empirical analysis of weight-
adaptation strategies for neighbourhoods of heuris-
tics. Proceedings of the 4th Metaheuristic Interna-
tional Conference, MIC 2001, 211-215.

[12] J. M. Tien and A. Kamiyama. On manpower schedul-
ing algorithms. SIAM Review, 24(3):275–287, July
1982.

[13] S. C. Wheelwright and S. Makridakis.Forecasting
methods for management. John Wiley & Sons Inc,
1973.

