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ABSTRACT  
In this paper, we apply particle swarm optimisation to the 
construction of optimal risky portfolios for financial 
investments. Constructing an optimal risky portfolio is a 
high-dimensional constrained optimisation problem where 
financial investors look for an optimal combination of 
their investments among different financial assets with the 
aim of achieving a maximum reward-to-variability ratio. 
A particle swarm solver is developed and tested on 
various restricted and unrestricted risky investment 
portfolios. The particle swarm solver demonstrates high 
computational efficiency in constructing optimal risky 
portfolios of less than fifteen assets. The effectiveness of 
a weighting function in the particle swarm optimisation 
algorithm is also studied.  
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1.  Introduction 
 
Swarm intelligence originates from the study of natural 
creatures that behave as a swarm in which individuals of 
the swarm follow simple rules, whereas the swarm 
exhibits complex, intelligent behaviour. Swarm 
intelligence research argues against the view that 
individuals are isolated information-processing entities 
and stresses the fact that intelligence arises among the 
interaction of intelligent entities [1]. 

The study of swarm intelligence has introduced a 
number of new optimisation techniques into the field of 
artificial intelligence. Dorigo et al. [2] developed ant 
colony optimisation (ACO) techniques that mimic ants’ 
finding the shortest path to a food source by depositing 
pheromone on trails. Eberhart and Kennedy [3] 
introduced particle swarm optimisation (PSO), which is 
based on the analogy of birds flocking and fish schooling. 
PSO has been shown to be powerful, easy to implement, 
and computationally efficient [1]. In this paper, we apply 
particle swarm optimisation to a high-dimensional 
constrained optimisation problem – construction of 

optimal risky portfolios for financial investments (the 
ORP problem). A PSO solver is developed and tested on 
various restricted and unrestricted portfolios. Through 
experiments, the PSO solver demonstrates high 
computational efficiency in constructing optimal risky 
portfolios of less than fifteen assets.   
 
2.  Background 
 
The fundamental concept behind particle swarm 
optimisation algorithms is that individuals in a swarm 
exchange previous experiences whilst the randomness of 
moving in the searching space is maintained. To some 
extent, particle swarm optimisation algorithms are similar 
to other evolutionary algorithms, such as genetic 
algorithms, in that all these optimisation algorithms 
maintain a population of potential solutions. Genetic 
algorithms, which evolve potential solutions through 
selection and reproduction, differ to PSO where potential 
solutions, called particles, are flown through the problem 
hyperspace. The flying of particles in the problem space is 
controlled by velocities. At each iteration, each particle’s 
velocity is stochastically accelerated towards its previous 
best position and towards a global best position [1]. 

Initially designed for continuous optimisation 
problems, PSO was first applied to evolving artificial 
neural networks (ANNs), and achieved remarkable 
performance in terms of computational efficiency [4]. 
Based on the study of PSO and ANNs, PSO has been 
applied to a wide range of optimisation problems, such as 
human tremor analysis [5] and end milling of metal 
removal operation in manufacturing environments [6]. 
The PSO technique has been shown to be fast and 
accurate. There are different variations of PSO that aim to 
widen its applicability. Kennedy and Eberhart [7] describe 
a discrete binary version of the PSO algorithm. Yoshida et 
al. [8] describe a modified version of the continuous PSO 
algorithm, which is able to handle both discrete and 
continuous variables, for reactive power and voltage 
control problems. Eberhart and Shi [9] present a review 
on the developments and applications of particle swarm 
optimisation technique.      
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3.  Optimal Risky Portfolios 
 
A fundamental principle of financial investments is 
diversification where investors diversify their investments 
into different types of assets. Portfolio diversification 
minimises investors’ exposure to risks, and maximises 
returns on portfolios. The Markowitz Mean-and-Variance 
model [10] for security selection of risky portfolio 
construction is described as below. Using a portfolio (Ep) 
with two risky assets, E1 and E2, as an example, assume 
the expected returns of the two risky assets are )(1 rE  and 

)(2 rE . The standard deviations of the two risky assets are 

1σ  and 2σ . The covariance between E1 and E2 is Cov(r1, 

r2). The expected return of the risky portfolio Ep, )( prE , 
is calculated using (1) below: 
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Where 1w  is the weight of E1 in the risky portfolio, 2w  is 

the weight of E2 in the risky portfolio. The variance ( 2
pσ ) 

of the risky portfolio is calculated as shown in (2): 
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By varying the weights of E1 and E2, i.e., 1w  and 2w , we 
will have a series values of )( prE  (risky portfolio’ 

expected return) and pσ  (risky portfolio’ standard 
deviation). A reward-to-variability ratio ( S ) will be 
calculated for each possible combination of 1w  and 2w  
by using (3): 
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where Fr  is the expected return of the risk-free asset if 
there is any risk-free assets in the complete portfolio.  

The simple two-asset risky portfolio described above 
can be extended to risky portfolios with any number of 
risky assets. The calculation of expected return ( )( prE ) 
of a multiple-asset risky portfolio is similar to (1). The 
calculation of standard deviation ( pσ ) of a multiple-asset 
risky portfolio uses a border-multiplied covariance matrix 
(please refer to [11] for more details). There are two types 
of risky portfolios. Unrestricted risky portfolios do not 
have constraints on the short selling of stocks, i.e., 
investors can choose to sell a stock that the investor does 
not own, on the condition that the investor must buy it 
back after a time of period, hopefully at a lower price. In 
other words, for unrestricted risky portfolios, assets could 
have negative weights. Restricted risky portfolios place 
constraints on the short selling of portfolios’ underlying 
equities, and require that all underlying assets must have 
positive weights. Both unrestricted optimal risky 
portfolios and restricted optimal risky portfolios must also 
satisfy another constraint, i.e., the total weights of all 

assets must sum to 1. To construct an optimal risky 
portfolio is to find the optimal combination of all assets in 
order to achieve the maximum reward-to-variability ratio. 
Mathematically, the restricted ORP problem for a risky 
portfolio with N assets is defined as (4): 
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The unrestricted ORP problem is defined as (5): 
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As the number of assets in the risky portfolio increases, 
construction of an optimal risky portfolio becomes an 
increasingly high-dimensional optimisation problem with 
a variety of constraints.  
 
4.  The Particle Swarm Solver 
 
The major feature of PSO algorithms is their simplicity in 
implementation and high computational efficiency in 
solving optimisation problems. We implement a PSO 
solver for constructing optimal risky portfolios using the 
basic form of the PSO algorithm as described in [1]. 
Initially, a population of particles is generated satisfying 
all the constraints. A particle here essentially represents a 
possible portfolio combination. At each iteration, a 
particle moves to a new position in the problem space as 
shown below: 
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where 1
,
+k
jiv  is particle i’s velocity on the jth dimension at 

iteration k+1. k
jiv ,  is particle i’s velocity on the jth 

dimension at iteration k. w is a weighting function. C1 and 
C2 are weighting factors of values of 2.0 [12]. k

jis ,  is 
particle i’s position on the jth dimension at iteration k. 
pbest is the historical individual best position of particle i. 
gbest is the historical global best position of the swarm. 
Weighting function (w) is calculated using (7): 
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where maxw is an initial weight of value 0.9, and minw is 

the final weight of value 0.4 [12]. maxiter is the maximum 
number of iterations. iter is the current iteration number. 
Finally, the new position of particle i, 1+k

is , is calculated 
as shown in (8): 
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Fig. 1 Restricted Optimal Risky Portfolio (Stock Indexes of Seven Countries) – PSO Solver vs. Excel Solver  
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Table I. Restricted Optimal Risky Portfolio of Stock Indexes of Seven Countries (PSO Solver)  
Assets US Germany UK Japan Australia Canada France 

E(r) (%) 15.7 21.7 18.3 17.3 14.8 10.5 17.2 
SD (%) 21.1 25.0 23.5 26.6 27.6 23.4 26.6 

Weights (Optimal) 0.2916 0.3391 0.1595 0.1726 0.037 0.0002 0.0000 
E(r) (%) SD (%) Ratio E(r) (%) SD (%) Ratio  

PSO Solver 18.4 17.69 1.04014 
 

Excel Solver 18.5 17.79 1.03991 
 

Fig. 2 Unrestricted Optimal Risky Portfolio (5 stocks) – PSO Solver vs. Excel Solver 
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Table II. Unrestricted Optimal Risky Portfolio of 5 stocks (PSO Solver) 
Assets 0004.HK 0005.HK 0006.HK 0330.HK 0011.HK 

E(r) (%) 1.86 0.43 0.41 4.42 1.13 
SD (%) 14.47 11.78 4.41 11.63 7.27 

Weights (Optimal) -0.1250 0.0377 0.4769 0.4900 0.1204 
E(r) (%) SD (%) Ratio E(r) (%) SD (%) Ratio PSO 

Solver 2.3 5.38 0.4089 
Excel 
Solver 2.28 5.37 0.406 

 
For restricted risky portfolios, the pbest and gbest are 
evaluated using (4). For unrestricted risky portfolios, the 
pbest and gbest are evaluated using (5). Whenever a 
particle flies to a new position in the problem space, all 
the constraints on the portfolio are satisfied to ensure a 
valid move. 
 
5.  Experiments and Discussion 
 
The PSO solver is tested on one restricted risky portfolio 
with no risk-free assets, and three unrestricted risky 
portfolios with one risk-free asset. Table I shows the 
restricted risky portfolio of seven countries’ stock 
indexes, together with each individual index’s yearly 
expected returns (E(r)) and standard deviations (SD). 

Restricted portfolios requires no short sellings on the 
portfolio’s underlying assets. In other words, the weights 
of individual assets in the restricted portfolio must be in 
the range of [0, 1], which conform to the optimal weights 
items in table I that shows the composition of the optimal 
risky portfolio of seven countries’ stock indexes 
developed by the PSO solver. Figure 1 visually compares 
the optimal risky portfolio evolved by the PSO solver, and 
the optimal risky portfolio solved by using the traditional 
excel solver [13]. We used 50 particles with 500 iterations 
for the seven countries’ stock indexes restricted portfolio. 
The program used 2.091 minutes. Clearly, the PSO solver 
is efficient in finding the restricted optimal risky portfolio 
and record a better reward-to-variability ratio as shown in 
table I. 
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Fig. 3 Unrestricted Optimal Risky Portfolio (12 stocks) – PSO Solver vs. Excel Solver 
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Table III. Unrestricted Optimal Risky Portfolio of 12 stocks (PSO Solver)  
Assets 0001.HK 0002.HK 0003.HK 0004.HK 0005.HK 0006.HK E(r)(%) 2.71 
E(r)(%) 0.93 -0.05 0.22 1.86 0.43 0.41 SD(%) 5.3 
SD(%) 10.42 5.06 6.09 14.47 11.78 4.41 

Weights (Optimal) -0.2063 -0.3775 -0.1518 -0.0376 0.0369 0.9333 

 
PSO 

Solver  
Ratio 

 
0.49245 

Assets 0330.HK 0011.HK 0012.HK 0013.HK 0016.HK 0019.HK E(r)(%) 2.87 
E(r)(%) 4.42 1.13 0.66 0.75 1.17 0.92 SD(%) 5.63 
SD(%) 11.63 7.27 12.89 9.55 11.50 9.36 

Weights (Optimal) 0.4586 0.1201 -0.4103 0.2041 0.5003 -0.0698 

 
Excel 
Solver  

Ratio 
 

0.492 
 

Fig. 4 Unrestricted Optimal Risky Portfolio (20 stocks) – PSO Solver vs. Excel Solver 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Table II, III, and IV demonstrate three unrestricted 

portfolios of 5 stocks, 12 stocks, and 20 stocks 
respectively. All stocks are randomly selected from the 
Hang Seng Index in the Hong Kong Stock Exchange. 
Individual stock’s expected returns and standard 
deviations given in table II, III, and IV are based on each 
individual stock’s historical monthly returns from 5 
October 1998 to 2 October 2003. Unrestricted portfolios 
do not have constraints on short selling. In other words, 
the proportion of an asset in the portfolio could be 
negative, or greater than 1. As an example, in table IV, 
asset 0002.HK has a negative expected return. The 
optimal risk portfolio developed by the PSO solver 
chooses to short sell the stock 0002.HK with a weighting 

of –55.89% in the risky portfolio. The capital gained by 
short selling on unpromising stocks is used to invest more 
in promising stocks, such as asset 0006.HK in table IV 
with a weighting of 113.26% in the risky portfolio. Note, 
that even though the asset 0006.HK does not have a very 
strong expected return; but it has the smallest standard 
deviation among the 20 stocks, in other words, the safest 
asset in the risky portfolio. We also include a risk-free 
asset in the complete portfolio, i.e., a complete portfolio 
with both risk-free and risky assets. We are only 
investigating the construction of optimal risky portfolios 
problem. The study of constructing optimal complete 
portfolios is the subject of our future work. The risk-free 
asset used in unrestricted portfolios is the U.S.  Treasury
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 Table IV. Unrestricted Optimal Risky Portfolio (20 stocks) – PSO Solver vs. Excel Solver 
Assets 0001.HK 0002.HK 0003.HK 0004.HK 0005.HK 0006.HK 0330.HK 0011.HK 0012.HK 0013.HK 
E(r)(%) 0.93 -0.05 0.22 1.86 0.43 0.41 4.42 1.13 0.66 0.75 
SD(%) 10.42 5.06 6.09 14.47 11.78 4.41 11.63 7.27 12.89 9.55 

Weights (Optimal) -0.1987 -0.5589 -0.2865 0.0742 0.0641 1.1326 0.5865 -0.0307 -0.2496 0.3153 
Assets 0016.HK 0019.HK 0020.HK 0023.HK 0097.HK 0101.HK 0179.HK 0267.HK 0291.HK 0293.HK 
E(r)(%) 1.17 0.92 1.42 1.65 1.75 1.58 1.11 0.81 0.72 1.66 
SD(%) 11.50 9.36 13.22 10.86 13.90 10.42 15.89 12.31 12.72 10.86 

Weights (Optimal) 0.3832 -0.3069 -0.2639 0.1735 0.1231 0.2025 -0.1375 -0.049 -0.2444 0.2711 
E(r) (%) SD (%) Ratio E(r) (%) SD (%) Ratio  

PSO Solver 3.77 6.20 0.5919 
 

Excel Solver 3.53 5.8 0.5914 
 

Fig. 5 Particle Swarm Optimisation of 20-stock Risky Portfolio (2-dimension) 
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Bill with a monthly yield to maturity of 0.1%.    

Optimal weights items in table II, III, IV give the 
compositions of the optimal risky portfolios developed by 
our PSO solver for the 5-stock portfolio, 12-stock 
portfolio, and 20-stock portfolio respectively. Figures 2, 
3, and 4 compare the optimal risky portfolios evolved by 
the PSO solver, and the optimal risky portfolios solved by 

the excel solver. For the 5-stock portfolio, we used 30 
particles with 300 iterations. PSO solver used 0.201 
minutes to find the optimal risky portfolio. For the 12-
stock portfolio, we used 300 particles with 800 iterations 
of evolution. The program took 4.561 minutes. For the 
20-stock portfolio, we used 800 particles and 5000 
iterations. It took the PSO solver 1.66 hours to find the 

(a) Iteration 0 (b) Iteration 1000 

(c) Iteration 3000 (d) Iteration 4830 
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optimal risky portfolio. Through the experiments on 
unrestricted portfolios, the PSO solver demonstrated clear 
efficiency in finding optimal risky portfolios for 
portfolios with less than fifteen assets, but the search time 
increases rapidly for larger portfolios.  

In summary, the traditional excel solver is unable to 
solve multiple-asset portfolios with large negative 
correlations, and is limited in the number of assets it can 
handle [11, 13]. Our PSO solver does not have constraints 
on the inputs to the evolutionary system and has no 
limitations on the number of assets included in the target 
portfolio. Our experiments on various restricted and 
unrestricted portfolios clearly demonstrate the efficiency 
of particle swarm optimisation technique in solving high-
dimensional constrained optimisation problems. The 
downside, with large portfolios, for the PSO solver is the 
time needed for the evolutionary process. This is a 
common problem with most of the evolutionary 
approaches for optimisation problems.   

In order to examine the particle swarm optimisation 
algorithm more closely, we choose the experiments on 
20-asset portfolio as an example. We choose two 
dimensions from the 20-dimension problem space: 
weighting on asset 0002.HK and weighting on asset 
0006.HK, and plot the behaviour of a swarm of 100 
particles (particle 200 to particle 299) in Figure 5(a) to 
5(d). Figure 5(a) shows the initial status of the swarm 
where particles are randomly scattered in the search 
space. The small cross (X) in Figure 5(a) to 5(d) shows 
the final optimal weights of asset 0002.HK and 0006.HK 
found by the PSO solver. After 1000 iterations, the swarm 
of particles presents a certain pattern of movement, as 
shown in Figure 5(b), which, interestingly, resembles bird 
flocking in the nature. Figure 5(c) shows the status of the 
swarm at iteration 3000 where we see most of the 
particles have successfully moved close to the target. This 
mimics the landing of birds on the ground when food is 
found. At iteration 4830, the first particle landed on the 
target as shown in Figure 5(d).  

By closely examining Figure 5(c) and 5(d), we see the 
shape of the swarm has changed showing a tendency to 
move onto the target. However, there seems to be a 
threshold around –0.5 (x-axis) that most of the particles 
hardly overcame. We argue that the reason behind this is 
the weighting function used in the PSO algorithm. As 
shown in (7) in Sect. 4, the value of w decreases rapidly 
while the current iteration number increases. In other 
words, at the latter stages of evolution, the weighting 
function has little impact in (6). As discussed in [1], the 
weighting function is responsible for the randomness of 
particles’ movement, while the other two items of the 
right-hand side of (6) are responsible for the convergence 
to pbest and gbest. For a small search space, with less 
dimensions for optimisation, a decreasing weighting 
function may be just what the evolution needs, i.e., 
converge to the optimal solution. However, for a large 
search space with a large number of optimisation 
dimensions, a rapid decreasing weighting function may 
result in premature convergence due to the lack of 

randomness in the latter stages of the evolutionary 
process. This is one possible aspect where the efficiency 
of the PSO solver could be improved for large portfolios 
with multiple assets.      

For our future work, we intend to investigate the 
relationship between the weighting function and 
premature convergence of particle swarm optimisation 
algorithms, and methods for improving the efficiency of 
the PSO solver for large portfolios. The problem of 
constructing optimal risky portfolios also serves as a good 
platform for the study of the efficiency of different 
evolutionary algorithms, such as genetic algorithms and 
memetic algorithms. We also intend to use the PSO solver 
as a basis, and employ other evolutionary techniques, for 
the study of intelligent portfolio management for financial 
investments.  
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