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Abstract

The service network design problem (SNDP) is a core problem in freight transportation. It

involves the determination of the most cost-effective transportation network and the character-

istics of the corresponding services, subject to various constraints. The scale of the problem

in real-world applications is usually very large, especially when the network contains both the

geographical information and the temporal constraints which are necessary for modelling mul-

tiple service-classes and dynamic events. The development of time-efficient algorithms for this

problem is, therefore, crucial for successful real-world applications. Earlier research indicated

that guided local search (GLS) was a promising solution method for this problem. One of the

advantages of GLS is that it makes use of both the information collected during the search as

well as any special structures which are present in solutions. Building upon earlier research, this

paper carries out in-depth investigations into several mechanisms that could potentially speed

up the GLS algorithm for the SNDP. Specifically, the mechanisms that we have looked at in this

paper include a tabu list (as used by tabu search), short-term memory, and an aspiration crite-

rion. An efficient hybrid algorithm for the SNDP is then proposed, based upon the results of

these experiments. The algorithm combines a tabu list within a multi-start GLS approach, with

an efficient feasibility-repairing heuristic. Experimental tests on a set of 24 well-known service

network design benchmark instances have shown that the proposed algorithm is superior to a

previously proposed tabu search method, reducing the computation time by over a third. In ad-

dition, we also show that far better results can be obtained when a faster linear program solver
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is adopted for the sub-problem solution. The contribution of this paper is an efficient algorithm,

along with detailed analyses of effective mechanisms which can help to increase the speed of

the GLS algorithm for the SNDP.
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Logistics, Freight Transportation, Guided Local Search, Service Network Design, Linear

Programming

1. Introduction

The service network design problem (SNDP) involves the determination of the most cost-

effective transportation network and the services which it will provide. Solutions must satisfy

both geographical and temporal constraints, reflecting the demands of customers, network avail-

ability and capacity, and transport fleet assignments. Recent advances in service network design

are playing a significant role in the development of the next generation freight transportation

systems. These systems automate the design and operation of transportation networks, provid-

ing solutions that not only allocate expensive resources in an optimal (or near optimal) fashion

but are also able to cope with the uncertain events which happen in the real world, such as

disturbances in demands, traffic congestion, and vehicle breakdowns.

There have been only limited reports of successful real-life SNDP applications in the scien-

tific literature. These include the early work by Crainic and Rousseau [16] and later work by

Armacost et al.[5] and Jansen et al. [20]. One of the common features of the previous work has

been the static nature of the test problem instances, in the sense that all of the data which captures

the characteristics of the SNDP problem has been assumed to be unchanging over time. In ad-

dition, a significant computational time was also permitted in previous work, allowing methods

to achieve higher quality solutions. Although reasonable for an off-line solution method where

the problem only has to be solved once, these computational times are perhaps unrealistic given

the dynamic on-line nature of the real world problems. In a more realistic scenario, a planner

has to solve SNDP more frequently, needing to obtain a solution very quickly, potentially even

in real-time, to cope with changes as they happen, thus the computational times can become an

impediment for the adoption of these methods. Computational time has remained a major issue

for the last twenty years or so in the development of solution methods for large-scale service

network design, despite rapid developments in computing power.
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Figure 1 illustrates a typical SNDP solving process in an uncertain environment. At each

planning horizon, the solver takes as input the schedules which were determined in the previous

period, either as a fixed partial solution or as additional constraints for the problem. Since

the solver has to not only deal with dynamic events as they happen, but also take into account

possible future events or demands (so that the schedule generated by the SNDP solver is not

entirely myopic), estimations have to be provided for uncertain data along with the values of

known data.

The SNDP solver has to be reapplied to handle the changes whenever a dynamic event oc-

currence invalidates the previous estimation to the point where the quality of the current solution

is compromised, or the solution becomes infeasible. Unfortunately, good estimations for uncer-

tain data are not always possible, but poor estimations may lead to frequent re-application of the

SNDP solver. For this reason, it is essential that the SNDP solver has the capability to find high

quality solutions very quickly.

Armacost et al. [5] reported a successful static SNDP application for the UPS Next-Day

delivery service by exploiting special problem structures. However, it is questionable whether

it would be suitable for applications with multiple-class freight services (for example first-

class, second-class, and deferred services), where the planning has to foresee future demands.

Integrating services of multiple classes would probably require the introduction of a time-space

network, which would dramatically increase the problem sizes [3], and hence the solution

times. Problems of such large sizes are very difficult for current approaches. For example, Ped-

ersen et al.’s approach [24] required an hour of computation time on a PC with a relatively high

computing power (2.26GHz CPU), even for instances which are only small or medium sized (30

nodes, 700 arcs and 400 commodities) from an industrial point of view.

This current state of the art in service network optimisation has motivated us to develop

new algorithms and mechanisms that 1) could considerably speed up the solution methods for

problems with a dynamic nature, without deteriorating the solution quality; 2) are able to tackle

static problems of a much larger size with far lower computational times than current methods

require. The research in this paper aims to contribute towards the development of more realistic

real-world SNDP applications in the freight transportation industry. In particular, it builds upon

the initial success of a guided local search metaheuristic [7] for fast and competitive SNDP

solutions and extends the work in [6] by describing the experimentation and subsequent analysis
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Figure 1: Service network design process in uncertain environments.

which was performed in order to identify and test the elements and mechanisms which could

further improve the algorithmic performance.

The remainder of the paper is structured as follows: section 2 provides a brief introduction

of the problem and an overview of the research so far in freight service network design. Section

3 presents the well known arc-node formulation for SNDP and section 4 contains details of

the application of a basic GLS for the service network design problem. Section 5 is the main

focus of the paper, containing experimental analysis of various mechanisms that could affect

the performance of the GLS algorithm for the SNDP. Section 6 studies how a better linear

program solver contributes to the performance of the algorithm. Section 7 concludes the paper

and identifies future research directions.

2. Problem Description and Literature Review

The service network design problem (SNDP) is an important tactical/operational freight

transportation planning problem. It is of particular interest for less-than-truckload (LTL) trans-

portation and express delivery services, where consolidation of deliveries is widely adopted in

order to maximise the utilisation of freight resources [12]. The problem is usually concerned

with finding a cost-minimising transportation network configuration that satisfies the delivery

requirements for all of the commodities, each of which is defined by a source node, target node,

and quantity of demand. More specifically, the service network design problem involves the

search for optimal decisions in terms of the service characteristics (for example, the selection

of routes to utilise and the vehicle types for each route, the service frequency and the delivery

timetables), the flow distribution paths for each commodity, the consolidation policies, and the
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idle vehicle re-positioning, so that legal, social and technical requirements are met [27].

The service network design problem is similar to the capacitated multicommodity network

design (CMND) problem except that the SNDP has an extra degree of complexity due to the

required balance constraint for freight assets (for example, ensuring that vehicle routes are

contiguous and that vehicles are in the correct positions after each planning cycle), which does

not apply to the standard CMND. Both the CMND and the SNDP are known to be NP-Hard

problems [18]. The remainder of this section provides a brief overview of the previous research

into service network design. More comprehensive reviews can be found in [12, 15, 27].

Service network design is closely related to the classic network flow problems [1]. Early

work in this field includes [16, 25, 17]. Crainic et al. [14] applied a tabu search metaheuristic

to the container allocation/positioning problem and Crainic et al. [13] investigated a hybrid

approach for CMND, combining a tabu search method with pivot-like neighbourhood moves

and column generation. Ghamlouche et al. [18] continued the work and proposed a more

efficient cycle-based neighbourhood structure for CMND. Experimental tests, within a simple

tabu search framework, demonstrated the superiority of the method to the earlier pivot-like

neighbourhood moves in [13]. This approach was later enhanced by adopting a path-relinking

mechanism [19].

Barnhart and her research team [9, 21] addressed a real-life air cargo express delivery ser-

vice network design problem. The problem is characterised by its large problem sizes and the

addition of further complex constraints to those which are in existence in the general SNDP

model. A tree formulation was introduced and the problem was solved heuristically using

a method based upon column generation. Armacost et al. [4] introduced a new mathematical

model based on an innovative concept called the composite variable, which has a better

LP bound than other models. A column generation method using this new model was able to

solve the problem successfully within a reasonable computational time, taking advantage of the

specific problem details. However, it may be difficult to generalise the model to other freight

transportation applications, especially when there are several classes of services being planned

simultaneously.

Recent work by Pederson et al. [24] studied more generic service network design models

in which the asset balance constraint was present. A multi-start metaheuristic, based on tabu

search, was developed and tested on a set of benchmark instances. The tabu search method
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outperformed a commercial MIP solver when computational time was limited to one hour per

instance on a test PC with a Pentium IV 2.26GHz CPU. Andersen et al. [3] compared the node-

arc based formulation, the path-based formulation and a cycle-based formulation for SNDP

problems. Computational results on a set of small randomly generated instances indicated that

the cycle-based formulation gave significantly stronger bounds than the other two and hence

may allow for much faster solution of problems. More recent work by Bai et al. [7] attempted

to further reduce the computational time and investigated a guided local search approach. The

computational study, based on a set of popular benchmark instances, showed that the guided

local search, if configured appropriately, was able to obtain solutions of a similar quality level

to the tabu search but with only two thirds of the computational time, even when executed on

a slightly slower machine. Barcos et al. [8] investigated an ant colony optimization (ACO) ap-

proach to address a variant (simplified) freight service network design problem. The algorithm

was able to obtain solutions better than those adopted in the real-world within a reasonable com-

putational time. Andersen et al. [2] studied a branch and price method for the service network

design problem. Although the proposed algorithm was able to find solutions of higher quality

than the previous methods, the 10-hour computational time required by the algorithm poses a

great challenge for its practical applications. Chiou [11] proposed a two-level mathematical

programming model for the logistics network design. The upper level model is concerned with

optimising the network configuration while the lower level optimises the flow distribution with

flow-dependent marginal costs. However, the model does not take into account the asset balance

constraints.

The research mentioned above primarily dealt with problems of a static nature. However,

service network planning involves several uncertain aspects, such as unpredictable demands,

traffic congestion, delays, and vehicle breakdowns. Optimal solutions for a static problem may

turn out to have poor quality or even lose feasibility as a result of the unpredictable dynamic

events. Liu et al. [22] proposed a two-stage approach based on stochastic programming to

model the interdependencies between transportation assets and potential uncertainties. Bock

[10] proposed a dynamic scheduling like approach to deal with uncertainties. From an initial

plan, which was generated using estimated data, the system dynamically re-solved the current

plan in order to adapt to the evolving problem, so the SNDP had to be solved repeatedly. Due to

the lack of predictability for the data, we have adopted the latter type of approach, focusing upon
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speed of execution to allow the algorithm to be re-executed as the situation changes, however

introducing some elements of stochastic programming would be an interesting area for future

research.

The goal of this paper is to develop a much more efficient algorithm which could be utilised

in conjunction with existing technologies, such as parallel computing, to allow the solution of

much larger scale SNDP instances (of the type which often occur when using the time-space

network formulation) or of dynamic SNDP problems where the computational time is critical.

This paper contributes to the literature not only a more efficient hybrid metaheuristic approach

for the SNDP, but also, more importantly, an experimental evaluation of the behaviour and

performance of several effective components and mechanisms within a GLS framework. We

expect that these findings will also be useful for other researchers working on similar algorithms.

3. Freight Service Network Design Problem (SNDP) Model

Table 1: List of notations used in the SNDP model
Notation Meaning
N The set of nodes.
A The set of arcs in the network.
G = (N ,A ) Directed graph with nodes N and arcs A .
(i, j) ∈A The arc from node i to j.
ui j Capacity of arc (i, j).
fi j The fixed cost of arc (i, j).
K The set of commodities.
o(k) The origin for commodity k ∈K .
s(k) The sink(destination) for commodity k.
dk The flow demand of commodity k.
ck

i j The variable cost for shipping a unit of commodity k on the arc (i, j).
xk

i j The amount of flow of commodity k on the arc (i, j) in a solution.
yi j The network design variables. yi j = 1 if arc (i, j) is open in a solution

and 0 otherwise.
x The vector of all flow decision variables, i.e. x =< x0

00, ...,x
k
i j, ... >.

y The vector of all design variables, i.e. y =< y00, ...,yi j, ... >.
N +(i) The set of outward neighbouring nodes of node i.
N −(i) The set of incoming neighbouring nodes of node i.
bk

i The outward flow of commodity k. bk
i = dk if i = o(k), bk

i = −dk if
i = s(k) and 0 otherwise.

z(x,y) The objective of SNDP model, which represents the sum of the fixed
cost and the variable cost for given solution vectors x and y.

g(s), g(x,y) The objective function which is actually solved, including a penalty for
infeasibility, expressed in terms of potential solution s or the decision
variable component vectors x and y of s.
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We focus on a specific recently studied service network design formulation which was de-

scribed in [24] and which we also present here for completeness. A summary list of the notations

used in the model is provided in Table 1 and the model is discussed below.

Let G = (N ,A ) denote a directed graph with nodes N and arcs A . Let (i, j) denote the

arc from node i to node j. Let K be the set of commodities. For each commodity k ∈K , let

o(k) and s(k) denote its origin and destination nodes, respectively. Let yi j be boolean decision

variables, where yi j = 1 if arc (i, j) is used in the final design and 0 otherwise. Let xk
i j denote the

flow of commodity k on arc (i, j). Let ui j and fi j be the capacity and fixed cost, respectively, for

arc (i, j). Finally, let ck
i j denote the variable cost of moving one unit of commodity k along arc

(i, j).

The service network design problem can then be formulated as follows:

minimise

z(x,y) = ∑
(i, j)∈A

fi jyi j + ∑
k∈K

∑
(i, j)∈A

ck
i jx

k
i j (1)

subject to

∑
k∈K

xk
i j ≤ ui jyi j ∀(i, j) ∈A (2)

∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = bk
i , ∀i ∈N ,∀k ∈K (3)

∑
j∈N −(i)

y ji− ∑
j∈N +(i)

yi j = 0 ∀i ∈N (4)

where xk
i j ≥ 0 and yi j ∈ {0,1} are the decision variables. The network capacity constraint (2)

ensures that the maximum flow along each arc (i, j) is limited by the arc capacity. The flow

conservation constraint (3) ensures that the entire flow of each commodity is delivered to its

destination, where N +(i) denotes the set of outward neighbours of node i and N −(i) the set

of inward neighbours. bk
i is the outward flow of commodity k for node i, so we set bk

i = dk

if i = o(k), bk
i = −dk if i = s(k), and bk

i = 0 otherwise. Constraint (4) is the asset-balance

constraint, which is missing from the standard CMND formulation, as previously discussed,

and which ensures the balance of transportation assets (i.e. vehicles) at the end of each planning

period.
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For a given set of design variables y =< y00, ...,yi j, ... >, the problem becomes one of finding

the optimal flow distribution variables. Constraint (4) is no longer relevant and the flow must

be zero on all closed arcs, so only open arcs have to be considered in the model. Let A denote

the set of open arcs in the design vector y, then flow distribution variables (xk
i j) for all open arcs

((i, j)∈A ) can be obtained by solving the following capacitated multicommodity min-cost flow

problem (CMMCF), where xk
i j ≥ 0 ∀(i, j) ∈A , k:

minimise

z(x) = ∑
k∈K

∑
(i, j)∈A

ck
i jx

k
i j (5)

subject to

∑
k∈K

xk
i j ≤ ui j ∀(i, j) ∈A (6)

∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = bk
i , ∀i ∈N ,∀k ∈K (7)

It was shown in [7] that a multi-start guided local search (GLS) approach performed well

on this problem, producing results which were competitive with a recently proposed tabu search

method [24], but in a much lower computational time. Based upon this initial success, this

research aims to investigate, in detail, what contributed to this success and whether there are

components and mechanisms that may lead to further improvement either in terms of computa-

tional time or solution quality. In particular, we have investigated: a) how effectively the current

GLS explores the search space rather than getting stuck in a locally optimal set of solutions; b)

whether more efficient mechanisms can be found and integrated within GLS; c) other factors

which could potentially reduce the search time.

4. Guided Local Search For SNDP

4.1. Guided local search

Guided local search (GLS) is a metaheuristic which was designed for constraint satisfaction

and combinatorial optimisation problems [26]. Like tabu search, GLS makes use of information

gathered during the search to guide it and enable it to escape locally optimal regions rather than

cycling between a few locally good solutions. In addition, GLS also exploits domain knowledge

by penalising “unpopular” features in a candidate solution. The core of the guided local search
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method is the identification of a set of features and the determination of a transformed evaluation

function. For a given solution s, the transformed evaluation function will have the following

form:

E(s) = g(s)+GLS pen = g(s)+λ ×∑
r

(pr× Ir(s)) (8)

where g(s) is the original objective function. The formulations g(s) and g(x,y) are used inter-

changeably in this paper, since function g could be expressed in terms of the entire solution s or

in terms of the vectors x and y of decision variables, as in Equation (9).

The variable pr is the current penalty for the presence of a given feature r in the current

solution s, and Ir(s) is an indicator variable such that Ir(s) = 1 if the candidate solution s contains

feature r and Ir(s) = 0 otherwise. GLS pen is, therefore, the scaled (by λ ) penalty summation

which is applied by the GLS. λ is a control parameter which is often estimated by λ = α ×

g(s∗)/∑r Ir(s∗) where s∗ is the current best solution and α is a parameter that is less problem-

dependent than λ .

The penalty value, pr, for each feature, r, can be dynamically changed, if desired. The

selection of features to be penalised in the GLS is based upon a utility value utilr(s) for the

feature r, which is defined by utilr(s) = Ir(s)× hr/(1 + pr), where hr is a cost associated with

feature r. Given these definitions, the basic GLS approach can be illustrated by Figure 2.

input: an initial solution s0, an original objective function
g(s), a set of features R, the cost hr associated with each
feature r ∈ R and a scaling parameter λ .
begin

foreach r ∈ R, set pr := 0;
E(s) = g(s)+λ ×∑r prIr(s);
while stopping criterion is false

s← LocalSearch(s,E(s))
foreach r ∈ R do

utilr(s) = Ir(s)× hr
1+pr

Find r with maximum utilr, set pr ++;
end foreach

end while
return s∗← best solution found according to function g(s);

end

Figure 2: Pseudo-code for a basic guided local search procedure

It can be seen from Figure 2 that, unlike many metaheuristics, guided local search not only
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makes use of historical information from the search but also provides more flexibility for an

algorithm designer to exploit special structures of the problem in terms of solution features and

their associated costs. Therefore, if appropriate solution features can be determined and used,

GLS can converge to a high quality solution more quickly than other metaheuristics (such as

simple tabu search or simulated annealing). This may explain why GLS needed only two thirds

of the computation time of the tabu search method as shown in [7].

In order to analyse and understand how each component or mechanism contributes to the

performance of GLS, we started from a basic implementation of the GLS, from which we ex-

perimented and investigated various alternatives to improve its performance.

4.2. A basic GLS implementation for the SNDP

To apply a basic GLS to the SNDP, a number of issues had to be addressed. These are

explained in this section.

4.2.1. Evaluation Function and Constraint Handling

To compute the evaluation function (8), one needs to identify a set of features and their

associated costs. In this application, we chose all of the arcs as the GLS features and their

fixed costs as the feature costs, i.e. hr = fr for each arc r ∈ A . An alternative choice of

feature cost could take into account both the fixed cost, the variable cost and the popularity

of the arc, however, this would inevitably introduce further parameters into the algorithm so

was not considered in this paper. The network capacity constraint (2) and the flow conservation

constraint (3) are handled directly in the local search procedure, so that any moves which violate

any of these constraints will be discarded. However, the asset-balance constraint (4) is relaxed

so that violations of this constraint are permitted, but are penalised according to the following

penalty function:

g(x,y) = z(x,y)+ In f eas = z(x,y)+ τ× f × ∑
i∈N
|ψi|γ (9)

where In f eas is a measurement of the infeasibility of the solution s in terms of constraint (4), f

is a scaling factor which is designed to give greater network independence and is defined as the

average of the fixed costs of the arcs in the network, and ψi, the node asset-imbalance, denotes

the difference (or imbalance) between outgoing open arcs and incoming open arcs at node i, as
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expressed by Equation 10. Parameter τ is a weight that controls the importance of the penalty

term against the original cost function. We set τ = 0.5 for this research, as a result of some

preliminary testing. Note that the node asset-imbalance was raised to the power of γ (> 1) in

order to apply higher penalties to highly unbalanced nodes. In this paper, we set γ = 2 for ease

of computation and we note that this penalty function is slightly easier to compute than the one

used in [24].

ψi = ∑
j∈N +(i)

yi j − ∑
j∈N −(i)

y ji (10)

4.2.2. Neighbourhood Definition

The neighbourhood which was used in the guided local search is deliberately the same as

that used in [24], to allow a fair comparison to be made between the GLS and the tabu search

method which was used in [24]. The neighbourhood is defined as the set of solutions which

can be generated by either closing a currently open arc or opening a currently closed arc. Both

closing or opening an arc could potentially result in an improved evaluation function value

(Equation 9), either from a reduced fixed cost for the arc being closed or an improvement in any

existing node imbalance from opening an arc.

Closing Arcs. To close an arc (i, j) that has a positive flow, the flow must be redirected to the

remaining open arcs. The optimal flow re-distribution could be obtained by solving the model

(5)-(7), however this would be prohibitively computationally expensive for a system which is

designed to find solutions quickly. To alleviate the computational burden, as in the majority of

previous approaches, a heuristic method is applied, based on a residual network [18] and the

Dijkstra’s shortest path algorithm, as follows: Let resCaplt denote the residual capacity of arc

(l, t) ∈A if arc (l, t) is open, or ult if arc (l, t) is closed. All commodities which have a positive

flow on arc (i, j) are sorted into decreasing order of quantity and then handled in order, so that

larger commodities are redirected first. For each of these commodities k, its entire flow dk is

removed from the network and a Γk residual network G Γk
= (N ,A Γk

) is constructed with the

arcs in this residual network defined as follows:

A Γk
= {(l, t) ∈A | (l, t) 6= (i, j) ∧ resCaplt ≥ Γ

k}.
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where Γk is chosen such that Γk = dk. The “cheapest” path on this residual network is then

computed using Dijkstra shortest path algorithm and the entire flow of commodity k is redirected

to this single path. If such a path cannot be found, the move is considered infeasible and the

search goes back to the incumbent solution. The cost associated with each arc in this residual

network is defined as follows:

cΓ
lt =

 flt + clt ·dk if (l, t) ∈A Γk
is closed,

clt ·dk if (l, t) ∈A Γk
is open.

(11)

The above flow redistribution is performed in turn for each commodity that has a positive

flow on arc (i, j). If the procedure fails to redistribute the flow for any of them then the arc

closing procedure is terminated and the move is considered infeasible.

Opening Arcs. Although opening an arc will increase the objective value due to the addition

of the fixed cost for the added arc, it could potentially reduce the node imbalance penalty and

hence lead to more feasible solutions. The optimal flow distribution probably changes when a

closed arc is opened. However, re-solving the CMMCF model in order to determine the optimal

flow distribution would be computationally prohibitive. Therefore, in this research the flow

distribution is maintained when an arc is opened, with the only change being the addition of the

incurred fixed cost of this arc and the potential for increased feasibility.

4.2.3. Algorithm overview

Starting from the current incumbent solution, the algorithm considers every neighbouring

solution which can be generated using the opening and closing arc moves. The best solution

in terms of GLS evaluation function (8) from this neighbourhood is then adopted as the new

current solution, even if it is worse than the current incumbent solution. One of the problems

which has to be faced by this kind of algorithm is that it is possible to cycle within a limited

number of solutions within the search space, for instance a sequence of solutions such that each

solution in the sequence is the best solution in the neighbourhood of the previous solution and

the first and last solutions are identical. In particular, it is important to avoid two-solution cycles

where each is the best solution in the neighbourhood of the other.

Since opening or closing a path involves opening or closing several arcs and in each case the

flow is heuristically re-allocated (as in [24], which this work extends), the resulting solutions
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provide only approximations (although they are upper bounds) for the optimal cost for that

network configuration. Before preceding with the next iteration, the CMMCF model is solved
1 for the adopted solution, in order to find the optimal flows. The ways in which this algorithm

has been adapted and extended will be seen in more detail later.

5. Analysis of the GLS Extensions

In this section, we analyse and investigate various mechanisms for extending and improving

the basic GLS algorithms, in isolation, in order to understand which of these elements con-

tributes to the superior performance of the GLS against the multi-start tabu search method

utilised in [24]. The mechanisms that we consider here are the aspiration criterion, memory

length and tabu list for cycling prevention. We describe them one by one in the following sub-

sections.

To be clear, the feasibility repair procedure, which is described later in this paper, is not

applied at this stage, since the purpose of this section is primarily to study the behaviour of each

mechanism. Since there is no random element to any of these GLS extensions, each instance

only had to be executed once.

5.1. Aspiration criteria in GLS

One of the strengths of the guided local search is its ability to use a penalty function to take

advantage of domain specific information as well as information gathered during the search. The

penalty function punishes “unpopular” features present in a candidate solution. The popularity

of a feature is determined by a combination of the pre-determined associated cost (utilising

domain specific information) and the accumulated penalty values during the search, as explained

in section 4.2.1.

Although this penalty function is, in general, effective in guiding the search to escape from

locally optimal regions, conflicts between the objective function and the penalty function mean

that it could miss some high quality solutions, since a good solution with respect to the original

objective (1) is not necessarily so with respect to the evaluation function (8). We therefore

1In this implementation, CMMCF was solved by LP Solve, a free open source linear programming solver based
on the revised simplex method and written in the C programming language. LP Solve can be downloaded from
http://lpsolve.sourceforge.net/5.5/
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incorporated an aspiration criterion into the basic GLS method so that the search will adopt a

candidate solution if it improves the current best solution in terms of the evaluation function

g(x,y), even if its augmented objective (i.e. E(s)) is worse than that of other neighbouring

solutions. Figure 3 plots the values of the solutions which were adopted at each iteration for the

test instance C50 for both the basic GLS and the GLS with the aspiration criterion. It appears

that, when given a longer execution time, the GLS with the aspiration criterion was able to

perform better than the basic GLS on average at the middle and later stages of the search, while

the GLS without aspiration criteria was able to find a better overall-best-solution. However,

both versions of GLS found a best solution at an early stage in the search and failed to improve

upon it later. This suggests that the penalty assignments used in the guided local search become

ineffective after a certain number of iterations.
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Figure 3: The behaviour of the basic GLS with and without aspiration criteria (α = 0.2) for C50

Figure 4 shows a comparison of the GLS methods, with and without aspiration criteria,

when executed with different α values. Firstly, it can be observed that the algorithm performed

differently with different α values (the scaling parameter to set λ in function (8), see section

4.1). α = 0 corresponds to a simple best-descent local search method, which performed far

worse than the guided local search methods (i.e. when α > 0). In fact it even failed to generate

a feasible solution. Although we cannot draw a conclusion about which variant of GLS performs

the best in terms of the function g(x,y), it is clear that the addition of the aspiration criterion to

the GLS helped to obtain feasible solutions. The GLS with the aspiration criterion was able to

return a feasible solution for every α value tested while the basic GLS failed to obtain a feasible
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Figure 4: The GLS with and without aspiration criteria under different α values for C50.

solution on 3 occasions, when α was relatively large (α ≥ 0.7).

5.2. Short-term memory

In the basic GLS method in Figure 2, penalty values are the accumulated results from the

entire search history. These penalty values get larger and larger, leading to undesirable domi-

nance of the penalty term in the evaluation function E(s) (Equation 8). This may explain why,

in Figure 3, GLS failed to improve the best solution in the later stages of the search since the

penalty term in the evaluation function (8) dominated the real objective function and can mislead

the search away from regions with small objective values in terms of function g(s) (Equation 8).
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Figure 5: Evolution of the penalties in the basic GLS

Figure 5 depicts the evolution of two parts of the augmented evaluation function used by

GLS (i.e. g(x,y) and GLS pen in Equation (8)). It can be observed that, after about 500 iter-
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ations, the penalty term has reached a value that is similar to the original evaluation function

g(x,y) and it first exceeds it around 670 iterations. At around 1300 iterations the penalty term

has completely dominated the evaluation function, at which stage the search is basically misled

to regions that contain solution features with low feature costs hr. The original evaluation func-

tion then plays little role in guiding the search. This provides a reason why in Figure 3 the basic

version of the GLS failed to improve upon the best solution during the middle and later stage of

the search.

Mills et al. [23] observed success in handling the escalating penalty problem from utilising

a GLS with a short-term memory schema, where the penalty value for a feature decreased when

the feature had not been punished in the last ML iterations. We implemented a similar mecha-

nism within our GLS method: A first-in-first-out queue of fixed capacity is used to record the

list of features which have been penalised in the past ML iterations. When a feature is chosen to

be penalised by the GLS (i.e. its penalty is increased by 1), it is pushed into the queue. If this

would result in the queue exceeding its capacity then the oldest feature in the queue is removed

and its penalty is decreased by 1.

Figure 6 depicts the algorithmic performance of the GLS with different memory length

sizes and different scaling parameters α for four different instances of different sizes (C37,

C45, C50, C60). It can be seen that the memory length does affect the performance in most

cases, especially when α ≤ 0.5. Although the performance of the GLS was more erratic when

the memory length (ML) was between 50 and 750, in general it seems that the optimal value

for ML depends upon the scaling parameter α . With α > 0.5, the GLS performance depended

almost entirely upon the value of α rather than the ML.

In general, one may summarise that, firstly, when α is small, the optimal memory length

tends to be larger; while when α is large, the optimal memory length is small. This may be

explained from the fact that when α is large, a small memory length helps to prevent the penalty

term from dominating the evaluation function E(x,y). Similarly, when α is small, the GLS

needs a longer memory length in order to build a penalty term that is large enough to impact on

the search. Secondly, determining the most appropriate values for the ML parameter is difficult

since it appears to be problem-instance dependent.
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Figure 6: The relationship between the memory length ML and α

5.3. Recovering feasibility

Relaxing the asset-balance constraint greatly increases the freedom and flexibility for de-

signing more effective neighborhoods. The designed algorithm converges to a feasible solution

(i.e. all nodes are asset-balanced) for most instances, however, there are some instances for

which the algorithm struggles to find a high quality feasible solution. A specialised heuristic

was therefore required to repair the solution and recover feasibility. In this paper, we used the

same heuristic which was used by Pederson et al. [24]. The main idea of this heuristic is to

repeatedly reduce the asset-imbalance of the most unbalanced node (i.e. the node of the highest

|ψ|). This is achieved by closing (or opening) a path between this node and another unbalanced

node with opposite ψ sign. Since there may be many paths between these two nodes, the heuris-

tic only evaluates the four shortest paths, computed by solving the shortest path problem in each

of the following four different modified networks:

(1) Small commodity flow network. This network consists of all the open arcs of the current

solution. The associated costs for each arc is set to the total flow on it. Therefore, closing
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the shortest path in this network will require a relatively small amount of flow re-direction

and hence lead to an increased chance for a successful flow-redistribution.

(2) High fixed cost network. This network is identical to (1) except that the associated arc

costs are set to the fixed cost of the arc.

(3) Small variable cost network. This network is generated from the set of all closed arcs

with the arc costs set to be the variable cost (or the average variable cost across all com-

modities). Opening the shortest path in this network could provide a cheaper commodity

path (and hence lower variable costs) even though it will increase the fixed costs.

(4) Low fixed cost network. This network is similar to (3) except that the associated arc

costs are set to the fixed cost of the arcs. The shortest path in this network represents the

cheapest possible way (in terms of fixed costs) to open a new path between the two nodes.

5.4. Defeating the local optimal region/cycle trap

In order to analyse how efficiently the GLS escapes from locally optimal regions, we also

carried out experiments based on some of the 24 C-set benchmark problems used in [24] 2. All

solutions which were adopted (i.e. which were the best solution in the neighbourhood of the

previous solution and were chosen as the new current solution) during the search were recorded,

together with the number of times that they were visited. All algorithms were evaluated on the

same machine, with the same permitted computational time.
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Figure 7: The number of visits to each local optima by the simple GLS and M-GLS (C50)

We initially tested a simple GLS approach and the multi-start GLS (denoted by M-GLS)

proposed in [7]. The results are shown in Figures 7 (a) and (b), respectively. In each case,

2Representative results of only one instance (C50) are presented here due to space limitations. Similar perfor-
mance was also observed for other instances.
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the horizontal axis represents the list of solutions which were adopted during the search. One

can see that both approaches re-adopted the same solution many times and some solutions were

re-adopted over 80 times for the simple GLS. On average, the simple GLS adopted each of

the solutions 2.3 times. By comparison, the average number of adoptions per solution for the

M-GLS was even higher (2.9), but the high quality solutions tended to be adopted more often,

indicating an improved ability to escape from lower quality regions. This may be one of the

reasons for the improved performance over the simple GLS. However, overall, both versions

of GLS wasted a significant amount of time evaluating the same solutions multiple times. In

summary, the simple GLS seemed to converge to good local solutions very quickly but was not

so efficient at escaping from poorer regions of the solution space.

5.5. Tabu assisted GLS (T-GLS)

Since even M-GLS could not effectively prevent the re-adoption of solutions, we borrowed

the idea of a tabu list from the tabu search metaheuristic and introduced it into the simple GLS.

The tabu list contains a list of arcs in the current solution which have been directly modified

recently as a result of the ‘opening an arc’ or ‘closing an arc’ moves. Arcs which were opened

due to flow redistribution (see section 4.2.2) are not included in the tabu list as this would be

unnecessarily restrictive. The length of the tabu list is fixed to a predefined parameter, called

TabuLen and is maintained on a first-in-first-out basis. To get an idea of the ability of the

tabu list to avoid repetition of solutions, a number of different tabu lengths were considered for

two sample instances (C37 and C50). Figures 8 (a) and (b) plot the objective values and the

number of revisits by GLS with TabuLen = 2 and TabuLen = 9, respectively for C50. It can

be seen that even a tabu list of length 2 was effective in reducing much of the re-adoption of

solutions. When TabuLen was increased to 9, the majority of solutions were adopted only once.

Experimental tests on instances C37 and C50 with tabu length values from 1 to 20 indicated

that the behaviour with different tabu lengths seemed to be problem instance-dependent since

there was no obvious overall best value for TabuLen. However, TabuLen = 2 performed well

in general and was already very effective in preventing cycling and repetitions and obtained a

better average objective function value than TabuLen = 9 in T GLS over all instances (see table

2), so the final algorithm adopted TabuLen = 2. Since the multi-start mechanism in the final

algorithm provides further diversification, a longer tabu list was considered unnecessary for this
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Figure 8: The number of times each solution was adopted by the tabu assisted GLS (C50)

paper.

Table 2 provides more detailed results for the application of different GLS variants to the

24 C-set instances which are widely used in the service network design literature. Since there

is no random element in either of the GLS variants, again only one run was carried out per

instance. To compare the performance of different variants, we used three measures; the average

objective function value g(s), the number of infeasible solutions (i.e. the number of cases when

the algorithm failed to obtain a feasible solution, labelled “# of infeas”) and the average rank

over all instances.

Note that the average objective value was calculated over instances for which feasible solu-

tions were obtained by each of five GLS variants. The average rank was calculated as follows:

firstly, the five variants were sorted for each instance according to the objective values obtained

by each variant, the best variant being ranked 1 and the worst 5, with ties being assigned equal

rank values. Infeasible solutions are considered as ties regardless of their objective value.

We can make the following observations from Table 2: 1) Although no single algorithm

performed the best for every instance, the tabu assisted GLS with TabuLen = 2 outperformed

the other 4 variants on average. Not only did it obtain more feasible solutions, but it also

performed the best in terms of both the average objective values and the average ranking. The

tabu assisted GLS with TabuLen = 9 performed better than GLS but appears to be too restrictive.

In fact, additional experimental tests on instances C37 and C50 with other tabu length values

showed that the algorithm generally performed better with TabuLen = 2. 2) The introduction of

aspiration criteria to the GLS improved the performance slightly. 3) Contrary to [23], the short-

term memory mechanism does not seem to have improved the performance of the GLS, at least
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for the parameters that were tested for this paper. This may be due to the fact that the same ML

setting was used for all the instances and this parameter seems to be very sensitive to different

problem instances. 4) All five variants failed to find feasible solutions for all of the instances,

which indicated that more development was required. We address this in the next section.

Table 2: Computational details of different GLS variants for the 24 benchmark instances (C-Set). GLS stands for
the basic GLS, GLS AC is the GLS with Aspiration Criteria, SM GLS is similar to GLS except that a short-term
memory is used (ML=500), T GLS is a tabu assisted GLS where both tabu lengths of 2 and 9 are tested.

Instance Feature GLS GLS AC SM GLS T GLS T GLS
(ML=500) TabuLen=2 TabuLen=9

C37 C20,230,200,V,L 100649 100649 100649 102138.0 102259.0
C38 C20,230,200,F,L 145872.0 145872.0 145872.0 143325.0 151886.0
C39 C20,230,200,V,T 104863.0 104863.0 104863.0 104558.0 104900.0
C40 C20,230,200,F,T 146884.0 146884.0 146884.0 144725.0 146469.0
C45 C20,300,200,V,L 80356.0 80356.0 80356.0 80760.0 81004.0
C46 C20,300,200,F,L 127356.0 127356.0 127356.0 124764.0 126318.0
C47 C20,300,200,V,T 79699.5 79699.5 79699.5 78607.5 79858.3
C48 C20,300,200,F,T 131878.0 131878.0 131878.0 120178.0 118794.0
C49 C30,520,100,V,L 56166.0 56166.0 56166.0 56168.0 56127.0
C50 C30,520,100,F,L 102354.0 102354.0 102354.0 103828.0 106542.5
C51 C30,520,100,V,T inf. inf. inf. inf. 53940.0
C52 C30,520,100,F,T 108223.0 109232.0 108223.0 106943.0 108870.0
C53 C30,520,400,V,L 120827.8 120827.8 120827.8 119081.2 120269.2
C54 C30,520,400,F,L 162213.0 161199.0 162213.0 162213.0 160908.8
C55 C30,520,400,V,T inf. inf. inf. inf. inf.
C56 C30,520,400,F,T 166721.3 inf. inf. 166721.3 166721.3
C57 C30,700,100,V,L 49327.0 49327.0 49327.0 49459.0 49236.0
C58 C30,700,100,F,L 65270.0 63660.0 65270.0 64658.0 64367.0
C59 C30,700,100,V,T inf. 48365.0 inf. 48125.0 47857.0
C60 C30,700,100,F,T 58927.0 58188.0 58927.0 58603.0 58428.0
C61 C30,700,400,V,L 103317.0 104311.0 103331.5 103030.0 104190.0
C62 C30,700,400,F,L 153204.0 151731.5 153204.0 151147.0 153194.0
C63 C30,700,400,V,T inf. inf. inf. inf. inf.
C64 C30,700,400,F,T 143447.0 145358.0 144102.0 143447.0 inf.

average obj* 105410.4 105253.0 105411.2 104121.4 105201.2
# of infeas 4 4 5 3 3

average rank 3.3 2.9 3.4 2.4 3.1
inf.: indicates an infeasible solution.
*: instances for which at least one algorithm fails to solve are not averaged.

5.6. Putting Everything Together

Table 2 shows that, although adding an aspiration criterion and a tabu list to the basic GLS

improved the performance, the algorithms still failed to find a feasible solution for some prob-
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begin
Generate an initial solution s0 by rounding design
variables of the LP solution of model (1)-(6);
Set s′ := s0; s∗ = s0;
while TimeAvailable do

/* Guided Local Search Phase */
while TimeAvailable && nonImpCount < K do

Set s′ := s;
foreach arc (i, j) ∈A do {pi j := 0; hi j := fi j;}
s← BestNeighbourTabu(s,E(s));
s←CMMCF(s);
if g(s) < g(s′) set s′ := s;
Update the best feasible solution s∗ with respect
to z(X ,Y );
/* Update GLS Parameters */
foreach arc in A find the arc (i, j) that maximises

utili j = Ii j(s′) ·hi j/(1+ pi j);
Set pi j := pi j +1; Set nonImpCount := nonImpCount +1

end while
/* Feasibility Recovery Phase */
s← FeasibilityRecovery(s′)
Update the best feasible solution s∗;
s := Perturbation(s′);

end while
end
return s∗.

Figure 9: A tabu assisted multi-start guided local search algorithm for SNDP.

lem instances. GLS AC failed to return a feasible solution for 4 instances (out of 24) and T GLS

failed on three occasions. Since finding a feasible solution is probably more important in prac-

tice than improving the objective value, specific feasibility recovery procedures may be required.

In this research, we propose the adoption of the following multi-start tabu assisted guided local

search method. The algorithm is characterized by 1) a multi-start framework with each iteration

consisting of three coordinated phases: a local search phase, a feasibility recovering phase and

a perturbation procedure. 2) a short tabu list hybridised with GLS in order to prevent cycling.

The algorithm is described in detail in the next section.
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5.6.1. Tabu assisted multi-start guided local search (TA MGLS)

The proposed algorithm has three phases (see Figure 9). The first phase, the guided local

search phase, is just one of the GLS variants in Table 2 (T GLS, which provides overall best

results). The second phase is a feasibility recovery phase, which recovers the feasibility as a pri-

ority and minimises the objective value as a secondary task (see section 5.3). This is followed by

a perturbation procedure in the third phase. These phases are then put into a multi-start frame-

work. The initial solution is built by solving the relaxed LP model (i.e. the integrity constraint

of design variables is relaxed) and then rounding the values of the design variables to binary

integers. The three phases described above are then executed repeatedly until the computational

time is exhausted. The guided local search phase stops when either the computational time limit

has been reached or the number of consecutive non-improving iterations reaches a given value

L.

In the guided local search, the neighborhood is defined by closing/opening arcs as described

in section 4.2.2. Procedure BestNeighbourTabu(s,E(s)) returns the best non-tabu neighbour of

the current solution s according to the augmented objective function E(s). Since the flow distri-

bution is only estimated during neighbourhood exploration, the solution returned by BestNeighb-

ourTabu(s,E(s)) is then re-optimised by solving the corresponding CMMCF model. During the

guided local search phase, the best solution with regard to g(s) and the best feasible solution with

regard to z(x,y) are recorded. Procedure FeasibilityRecovery(s) is then applied after the guided

local search phase to recover the solution feasibility (i.e. the asset-balance) using the heuristic

described in section 5.3. If this phase finds a solution that is better than the best feasible solution,

in terms of the original objective z(x,y), then the best feasible solution is updated.

After the FeasibilityRecovery(s) finishes, the solution is perturbed using the path-opening

heuristic (see section 5.6.2) to prepare for the next round of the guided local search. The algo-

rithm stops when the computational time has been exhausted.

5.6.2. Opening a path

For two nodes i, j with opposite asset imbalances (i.e. ψi ·ψ j < 0), opening or closing a path

between i and j will reduce the asset imbalance penalty for both nodes (note that the direction

of the path will depend upon the actual signs of ψi and ψ j). If, however, there is no direct

arc between the nodes, a neighbourhood move of closing/opening a single arc will not reduce
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the node asset unbalance, so it is sometimes beneficial to open a path between two nodes. In

addition, sometimes when the local search stagnates in a locally optimal region, it is useful to

randomise the incumbent solution and restart the search to escape from these regions. Therefore,

we also introduced another neighbourhood operator, which selects a random commodity and

opens one of its top 10 shortest paths with equal probability. The corresponding CMMCF

model is then solved to obtain the optimal flow distribution. Since this operator is only called

occasionally, solving the CMMCF problem in this procedure will have a much lower impact on

the computational expense of the algorithm. The top 10 shortest paths for a given commodity

are computed independently without the consideration of other commodities and are, therefore,

only computed once, at the beginning of the search.

Table 3: A comparison of TA MGLS against Xpress MIP solver, Tabu Search (TS) and Multi-start GLS (M GLS).
Results by Xpress MIP and Tabu Search were drawn from [24]. Results by M GLS were drawn from [7].

Inst. Feature Xpress TS M GLS (10 runs) TA MGLS (10 runs)
MIP (1 run) best average best average

C37 C20,230,200,V,L 101112 102919 100771 102311 98798 100774
C38 C20,230,200,F,L 153534 150764 143017 145763 142216 144699
C39 C20,230,200,V,T 105840 103371 103428 104030 103063 104198
C40 C20,230,200,F,T 154026 149942 143446 145401 141853 143690
C45 C20,300,200,V,L 81184 82533 79020 80764 78787 79692
C46 C20,300,200,F,L 131876 128757 125290 127791 124580 125362
C47 C20,300,200,V,T 78675 78571 77839 78906 77209 78837
C48 C20,300,200,F,T 127412 116338 116712 119092 114601 117156
C49 C30,520,100,V,L 55138 55981 55437 55806 55422 55869
C50 C30,520,100,F,L n/a 104533 99821 102732 100342 102497
C51 C30,520,100,V,T 53125 54493 53644 54073 53744 54027
C52 C30,520,100,F,T 106761 105167 104753 105924 103996 105451
C53 C30,520,400,V,L n/a 119735 119344 121214 117562 118551
C54 C30,520,400,F,L n/a 162360 161731 162373 160339 162480
C55 C30,520,400,V,T n/a 120421 122877 593677* 4366710* 814149*
C56 C30,520,400,F,T n/a 161978 165894 552913* 165757 1002886*
C57 C30,700,100,V,L 48849 49429 49451 49575 49221 49269
C58 C30,700,100,F,L 65516 63889 63516 64102 62205 63143
C59 C30,700,100,V,T 47052 48202 47518 47833 47518 47859
C60 C30,700,100,F,T 57447 58204 58017 58563 57673 57938
C61 C30,700,400,V,L n/a 103932 103136 103577 103352 103621
C62 C30,700,400,F,L n/a 157043 150449 596588* 148809 150867
C63 C30,700,400,V,T n/a 103085 103581 537477* 103323 784872*
C64 C30,700,400,F,T n/a 141917 142575 144135 143717 144368
* indicates an infeasible solution
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5.6.3. Results Analysis

Table 3 provides a comparison between the hybrid tabu assisted guided local search, the tabu

search [24] and the guided local search [7]. Both Xpress MIP and TS were run on a Pentium

IV 2.26GHz PC with 3600 seconds CPU time [24]. Both M GLS and TA MGLS are single-

threaded programs and were run on a PC with a 1.8GHz Intel Core 2 CPU and a 2400-second

time limit. Both algorithms were run 10 times with different random seeds. Due to space

limitations, only the best and average results are included in Table 3. More detailed results can

be found in Table 5.

Firstly, compared to the other three algorithms, TA MGLS had the best average performance

for 9 instances (out of 24). The best results (out of 10 runs) by TA MGLS beat the other three

algorithms on 13 instances. On average, TA MGLS outperformed M GLS on 15 instances

but was inferior to M GLS on 6 instances. For 3 instances, both algorithms returned infeasible

solutions on some runs. This demonstrated the effectiveness of the added features in TA MGLS.

Secondly, it can also be seen that the cost of the features chosen in GLS plays a role in its

performance. TA MGLS seems to solve the fixed-cost dominated instances better than variable-

cost dominated instances. Out of the 9 instances on which TA MGLS performed better, 6 in-

stances were fixed-cost dominated instances. This may imply that better performance could be

achieved by choosing feature costs based upon the problem characteristics.

Nevertheless, we notice that TA MGLS sometimes failed to find feasible solutions for 3

of the instances, and consistently failed on one instance. This is problematic for real-world

applications, so more development and investigation was required. After more detailed analysis,

we found that this was caused by the poor performance of LP Solve. We now give the results

and analyses in the next section.

6. Computational Time Distribution

We monitored the time that was spent by LP Solve and GLS respectively. It turned out

that LP Solve struggled to solve some of the CMMCF problem instances (e.g. C37, C53, C54,

C55, C56, C63, and C64), spending more than 85% of the total time allowed, leaving very

little time for the GLS and the feasibility recovery heuristic to search for high quality feasible

solutions. To further confirm the conjecture that this was the problem, we replaced LP Solve

with CPLEX12 as the CMMCF solver and kept the remaining configuration the same. To ensure
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a fair comparison, the CPLEX thread count was set to 1 to prevent it using more than one CPU

core. Table 4 shows a comparison of the two variants for the benchmark instance set. It can be

seen that not only was the proposed algorithm able to find a feasible solution for every instance

in every run, but in addition, both the average and best results were considerably improved.

Table 4: A comparison of LP Solve and CPLEX as LP Solvers
Inst. TS TA MGLS with LP Solve TA MGLS with CPLEX

(1 run) best avg Lptime best avg LPtime
C37 102919 98797.8 100774 85% 98760.0 99622.2 31%
C38 150764 142216 144699 81% 142113.0 143867.0 30%
C39 103371 103063 104198 86% 102137.3 102833.1 31%
C40 149942 141853 143690 87% 141802.0 143839.5 37%
C45 82533 78787 79692 86% 79029.5 79895.4 34%
C46 128757 124580 125362 84% 121773.0 124454.3 34%
C47 78571 77209.3 78837 85% 77066.0 78302.5 30%
C48 116338 114601 117156 86% 114465.0 115836.2 31%
C49 55981 55422 55869 48% 55732.0 55985.6 9%
C50 104533 100342 102497 58% 100290.0 102016.9 12%
C51 54493 53744 54027.2 58% 54372.0 54707.7 11%
C52 105167 103996 105451 61% 104574.0 105422.8 11%
C53 119735 117561.71 118551 87% 116196.0 116915.4 47%
C54 162360 160339 162480 83% 154941.0 156008.5 37%
C55 120421 436679.8* 814149.1* 86% 118335.7 118894.1 42%
C56 161978 165757.3 1002886.0* 80% 157939.6 159426.5 47%
C57 49429 49221 49269 33% 49385.0 49456.9 6%
C58 63889 62205 63143 37% 62055.0 62773.6 7%
C59 48202 47518 47859 49% 47519.0 47727.8 7%
C60 58204 57673 57938.0 46% 57571.0 58046.0 7%
C61 103932 103352.2 103621 75% 101609.5 102215.9 21%
C62 157043 148809.3 150867 78% 142563.2 144754.7 36%
C63 103085 103323 784871.7* 90% 98656.8 99726.1 28%
C64 141917 143717 144368 78% 135777.5 136727.1 29%
* indicates an infeasible solution being returned by the algorithm.
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Table 5: More detailed results by M GLS and TA MGLS (with LP Solve and CPLEX). Results are based on 10 independent runs.
M GLS TA MGLS with LP Solve TA MGLS with CPLEX

best avg worst stdev best avg worst stdev best avg worst stdev
C37 100771.0 102311.3 105254.0 1436.7 98797.8 100773.8 102076.0 1092.6 98760.0 99622.2 101605.5 865.1
C38 143017.0 145762.7 152056.0 2546.7 142216.0 144698.9 146112.0 1186.0 142113.0 143867.0 146822.7 1592.8
C39 103428.0 104030.1 104695.0 418.4 103063.0 104198.3 104662.0 610.3 102137.3 102833.1 104424.0 659.2
C40 143446.0 145400.8 147081.3 1226.3 141853.0 143690.1 146348.0 1361.6 141802.0 143839.5 146141.0 1161.7
C45 79020.0 80764.1 81681.0 830.1 78787.0 79691.8 81052.5 653.5 79029.5 79895.4 80888.0 692.3
C46 125290.0 127790.6 130779.5 1890.6 124580.0 125361.7 126204.5 490.7 121773.0 124454.3 127607.0 1768.6
C47 77839.0 78905.7 80006.0 600.5 77209.3 78837.4 79761.0 703.3 77066.0 78302.5 80009.0 1124.9
C48 116712.0 119091.7 122125.7 1938.5 114601.0 117155.9 120070.0 1644.4 114465.0 115836.2 117046.0 883.8
C49 55437.0 55806.2 55937.0 140.8 55422.0 55869.1 56010.0 183.6 55732.0 55985.6 56260.0 180.3
C50 99820.6 102731.9 104435.0 1503.8 100342.0 102497.5 104495.0 1230.6 100290.0 102016.9 102838.0 769.1
C51 53644.0 54073.3 54491.0 225.4 53744.0 54027.2 54157.0 111.5 54372.0 54707.7 54838.0 179.3
C52 104753.0 105923.6 107276.0 861.2 103996.0 105450.9 106999.0 914.9 104574.0 105422.8 106477.0 643.6
C53 119344.0 121214.1 121965.2 1089.0 117561.7 118551.0 120502.0 1314.6 116196.0 116915.4 117888.0 566.0
C54 161730.8 162372.7 163138.5 427.6 160339.0 162479.7 166397.0 2748.4 154941.0 156008.5 157630.0 820.4
C55 122877.0 593676.6* 750987.0* 266496.5 436679.8* 814149.1* 1066683.4 289057.5 118335.7 118894.1 120445.3 648.2
C56 165894.3 552913.3* 1454985.1* 622488.8 165757.3 1002886.0* 1454313.2* 610968.3 157939.6 159426.5 161271.8 951.8
C57 49451.0 49575.4 49930.0 172.6 49221.0 49268.7 49274.0 16.8 49385.0 49456.9 49482.0 38.9
C58 63515.5 64101.7 64455.0 298.0 62205.0 63143.0 63775.0 495.1 62055.0 62773.6 63397.0 424.6
C59 47518.0 47833.2 48006.0 164.2 47518.0 47859.0 47965.0 154.6 47519.0 47727.8 47937.0 137.6
C60 58017.0 58562.5 59216.0 377.1 57673.0 57938.0 58120.0 138.7 57571.0 58046.0 58447.0 234.6
C61 103136.0 103576.8 105493.3 737.6 103352.2 103621.1 104486.0 334.6 101609.5 102215.9 103007.7 450.3
C62 150449.0 596588.2* 2387564.0* 937076.6 148809.3 150867.2 151425.0 814.1 142563.2 144754.7 147828.3 1574.0
C63 103581.0 537476.8* 723741.0* 216658.4 103323.0 784871.7* 1342439.8* 433081.3 98656.8 99726.1 100590.4 652.2
C64 142575.0 144134.6 145275.0 788.2 143717.0 144367.9 144519.7 245.6 135777.5 136727.1 138003.5 670.5
* indicates an infeasible solution being returned by the algorithm.
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7. Discussions and Future Work

In this research, we carried out experiments to look at several components and aspects that

could potentially speedup the GLS approach for service network design problems. These in-

clude a tabu list, short-term memory and aspiration criteria. In particular, we found that in both

the simple GLS and its multi-start version, time was wasted due to the repeated re-adoption of

the same solutions. We proposed a tabu assisted GLS schema within a multi-start framework to

prevent this problem. Results have demonstrated the superiority of the method.

In addition, our observations showed that LP Solve struggled on some problem instances,

for which the majority of computational time (more than 85%) was used when solving CMMCF

problems. Our tests with CPLEX12 showed that a faster LP solver was able to further improve

the performance of our proposed method.

In future, we will investigate more neighbourhood structures in the GLS approach. In partic-

ular, we will consider multiple ways for flow redirection on opening/closing an arc. In addition,

if certain criteria are met, more accurate neighbourhood evaluations may be used by apply-

ing CPLEX to solve the CMMCF problem. Another potential research direction is adopting

stochastic programming to address some of uncertainties in SNDP.
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