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Abstract Airports are already facing several challenges and can expect to face more

in the future. Despite the requirements to handle ever increasing numbers of aircraft,

they also have to meet environmental targets and regulations. Although physical ex-

pansion of the airport could sometimes help, this is rarely possible in practice. The

complexity increases the closer an airport has to work to their maximal possible capac-

ity. The complexity of the problem means that advanced decision support systems are

needed to guarantee efficient airside airport operations and to mitigate the environ-

mental impact. This research considers the important problem of getting aircraft from

source to destination locations (usually either runways or gates/stands) in as efficient

a manner as possible, in terms of time or fuel burn. A new sequential graph-based

algorithm is introduced for this important part of the airside operations at an airport

- usually named the ground movement problem. This algorithm, embedded in a wider

operational system, has several advantages over previous approaches for increasing the

realism of the modelling and it utilises a recently developed approach to more ac-

curately estimate taxi speeds. Importantly, the taxi time prediction and the ground

movement model use the same directed graph representation of the airport. For the

experiments in this paper, the algorithm has been configured to absorb as much of the

waiting time as possible for departures at the gate/stand, to reduce the fuel burn and

the environmental impact. Analysis with data from a European hub airport shows very

promising results and gives an indication of both the performance of the system (in

comparison to a lower bound on the taxi time) and the limits to the amount of waiting

time which could possibly be absorbed as stand hold (without the engines running).

1 Introduction

European airports face several challenges in the 21st century, including the capacity

challenge (with demands for air travel still increasing year on year) and the envi-

ronmental challenge [1]. To avoid forming huge bottlenecks in the air transportation
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system, airports have either to be enlarged, or (since enlargement is not possible in

most cases), to utilise the existing resources as efficiently as possible. In addition, the

increasing focus upon environmental issues is likely to further grow over time.

As airports work closer to their maximum capacity, airside airport operations be-

come much harder to deal with. As a result, decision support systems have to be

increasingly advanced and need to both integrate different airside airport operations

with each other and also model each process increasingly realistically.

From an optimisation point of view, ground movement of aircraft can be considered

to be one of the most important airside operations at an airport [6], since it links several

other problems together, such as the runway sequencing problems for arrivals and/or

departures [4], the stand holding problem [2,3] and the gate assignment problem [11].

For a comprehensive literature review of ground movement research and the integration

with other operations, we point the interested reader to a recently published review [6].

This paper presents a decision support framework for environmentally friendly

ground movement and promising experimental results which utilise more realistic taxi

time predictions for a European hub airport. A framework is described for integrating

a graph-based sequential movement algorithm into a larger decision support system

which can also consider the runway sequencing problem and the stand holding prob-

lem. A statistical approach has been used to more accurately estimate taxi times for

aircraft than a standard lookup table may allow. This utilises the same graph which

is used for the ground movement model. This integrated approach allows the effects of

ground plan changes to be modelled more accurately, changing both taxi speed pre-

dictions and routing information. In addition, several concepts have been included in

the model which allow airport layouts to be modelled in a more realistic manner, such

as restricting certain taxiways to be used only by certain aircraft and coping with the

required separations between aircraft. Finally, the absorption of delay at the stand,

prior to starting the engines, has been considered. This reduces the waiting times at

the runway and is further extending previous stand holding ideas [2,3,8]. The maximal

potential benefits of such a system have been quantified.

Section 2 provides a description of the airport ground movement problem and

how it can be embedded into the larger combined sequencing/routing/stand holding

framework. The test dataset from the airport is then presented in Section 3 together

with the statistical estimation of taxi times. Following this, the sequential ground

movement algorithm which has been developed, and was utilised for these experiments,

is detailed in Section 4. The results of the application of the algorithm to the test

dataset are then shown in Section 5; before the paper ends with some conclusions in

Section 6.

2 Problem description

The links between the ground movement problem and runway sequencing are consid-

ered first in this section, before the ground movement problem itself is discussed in

more detail. The section ends with a consideration of the stand holding benefits which

can result from the appropriate solution of the ground movement problem.



2.1 The links with runway sequencing

Atkin et al. [6] highlighted the importance of integrating the ground movement problem

with other airside airport operations, such as the problems of finding good departure

and arrival sequences. Supporting controllers in these tasks is a challenge, especially

when departures and arrivals have common restrictions and interactions due to the

airport layout. For this paper, we assume that the runway sequencing and ground

movement problems are solved as two distinct stages. The integrated (departures and

arrivals) runway sequencing problem is solved in a first stage, then the consequent

landing and take-off times are used in the second stage within the consideration of the

ground movement problem. Thus, the wheels-on time at the runway (for arrivals) and

the wheel-off time at the runway (for departures) are both assumed to be fixed within

the ground movement problem. Later research will analyse the benefits of providing a

feedback loop from the ground movement problem to the integrated runway sequencing

problem and of closer integration between the two problems.

2.2 Problem description of the ground movement problem

This paper considers ground movement at an airport. The ground movement problem is

a combined routing and scheduling problem. It involves guiding aircraft on the surface

of an airport to their destinations in a timely manner, where the goal is to reduce the

overall travel time and to enable the target take-off times at the runway to be met.

It is important, for reasons of safety that two aircraft never conflict with each other

throughout the ground movement process.

In the model which is considered in this paper, the route of the aircraft is not

pre-determined, allowing greater flexibility for solutions; however, the utilised solution

method provides the possibility to restrict certain aircraft to specific taxiways and/or

to avoid routes which involve tight turns. The airport layout is represented as a di-

rected graph, where the edges represent the taxiways and the vertices represent the

junctions or intermediate points. Aircraft are considered to occupy edges, and conflicts

are avoided by preventing any two aircraft from using the same edge simultaneously.

As we will discuss in the next section, the aircraft movement speed depends upon

various factors and, in order to provide a more realistic ground movement decision

support system, it is important to take this variation into account. The times at the

runway are assumed to be fixed for departures as well as for arrivals. The sequential

approach to ground movement will then minimise the taxi time for each individual

aircraft given the movement of the aircraft which have already been routed. Hence,

the approach will attempt to absorb as much of the waiting time as possible at the

gate/stand. Consequently, the aircraft can start its engines as late as possible, reducing

fuel burn and environmental impact. Thus, the solution method can be considered to

be not only reducing the ground movement time, but also solving the stand holding

problem [2,3, 8].

3 Analysed case: Zurich Airport

This analysis utilised data from Zurich Airport (ZRH), which is the largest airport in

Switzerland and a hub airport for Swiss International Air Lines. The airport has three



runways, named 10/28, 14/32 and 16/34, according to their direction of operation,

with two runways intersecting each other (see Figure 1). The considered data included

information about the airport layout, the positions of stand and runway entrance and

exit points and the layouts of all of the taxiways as well as the real timings for the

various aircraft. This information was used to develop a taxi time prediction function,

as discussed below, to improve the accuracy of the taxi time predictions which are

used in ground movement. We had access to data for an entire day’s operations for

the 19th of October 2007. No extraordinary occurrences took place and there were 679

movements in total (337 arrivals and 342 departures).

Fig. 1 Sketch of Zurich Airport (ZRH)

Ground movement models need taxi time prediction, but sufficiently accurate values

are rarely available. In previous research, average taxi speeds have been assumed to

be influenced only by the aircraft type. However, other research has shown that the

aircraft type is not the most influencing factor upon taxi speeds [5,13,17]. Comparisons

between ground movement tool results and the status quo at airports have previously

been hard to analyse, due to the need for accurate taxi speed data, since historic data

usually includes the effects of any delays or re-routing due to routing/timing conflicts

between aircraft. Thus, the effects of taxi time variability and the benefits from the

ground movement decision support system were often intermingled.

An approach to more accurately predict taxi times for aircraft or, equivalently,

their average speeds, was proposed in Atkin et al. [5]. Multiple regression was used to

estimate a function which could more accurately predict the taxi speed and identify

the factors which were most related to taxi speeds, such as total distance travelled,

total turning angle and the number of other aircraft of different types which were on

the airport’s surface. The aim was to then eliminate the effects of factors which repre-

sented the actual amount of traffic at the airport, with the goal being to predict the

taxi times for unimpeded aircraft. These could be used in a more advanced ground

movement decision support system, such as the one described in this paper, providing

the opportunity to compare results with the way in which an airport was actually oper-

ating. Such a system will itself model the effects of the interaction between aircraft (so



these should not be included in its taxi speed data). The resulting taxi time prediction

functions were utilised to predict the taxi times which were employed in this paper.

Depending upon the terminal and the operating mode (which runways are in use),

runway crossings may be necessary during the taxi process. We plan to integrate these

effects into the combined ground movement and sequencing model later, but for the

moment they are included in the statistical model for taxi speeds.

4 Ground movement decision support system

In the routing approach described in this paper, the aircraft are routed sequentially.

When an aircraft is ready, it has to be routed respecting previous reservations by

other aircraft using the taxiways. The routes which have been previously calculated

for other aircraft do not change as new aircraft are taken into consideration. Thus

to acknowledge the difficulty and time costs associated with communicating changes

to pilots and reducing the quantity of communication needed between the surface

controllers and the pilots. The objective for each of the sequential routings is to find

the routing with minimal taxi time among all remaining conflict-free routings.

The approach described here is based on research by Gawrilow et al. [12] and the

PhD thesis of Stenzel [21]. Ravizza modified the approach for his Master’s dissertation

[18] to label the vertices instead of the edges to simplify their interpretations. The

original aim of this approach was to control automated guided vehicles in container

terminals in harbours or in storage areas but is here applied instead to routing aircraft.

The approach has then been further modified for this work, for instance by allowing the

approach to work backwards to meet a specified end time rather than starting time.

The resulting algorithm is described in this section.

A directed graph model of the airport is used by the algorithm. The so called

Quickest Path Problem with Time Windows (QPPTW) algorithm is a generalized

vertex-based label-setting algorithm based on Dijkstra’s algorithm and can sequentially

route aircraft on the airport surface. In contrast to many other ground movement

support systems which use time discretisation [7, 15, 16, 19], no such discretisation is

used in this approach. It has similarities to the recently published work by Lesire [14],

which used a sequential A* algorithm, but it provides a better coverage of the solution

space, potentially allowing it to find better solutions within comparable execution times

- these being short enough for it to be appropriate for real-time decision making.

The algorithm which is used in this paper also provides the possibility to define

which edges in the graph are in conflict with each other and cannot be used simulta-

neously. In addition, for each edge incident to a vertex, the set of valid outgoing edges

can be manually defined if desired, or can depend upon information about the air-

craft. This enables the decision support system to forbid aircraft from making narrow

turns or prevent aircraft from using taxiways for which they are too large. Together,

these features enable the approach to more realistically model the airport surface while

leaving the routing task itself to the algorithm.

The preprocessing of the algorithm is explained in Section 4.1, before introducing

the QPPTW algorithm. The section ends with the discussion about buffer times and

the sequencing of the routed aircraft.



4.1 Ground plan preprocessing

It is important to maintain separations between aircraft on the ground. The concept of

conflicting edges is introduced here for this reason, so that no two conflicting edges can

be occupied simultaneously. The conflicting edges are determined in a preprocessing

stage. For this research, we used an approach which assumes straight connecting lines

between vertices since this requires less time in the preprocessing stage and is adequate

for the directed graph model which has been used in this research, where aircraft drive

in an almost straight line between vertices. In this approach, two edges conflict with

each other if they are located closer together than a given threshold distance. Edges in

the graph, together with their embedding in the airport plan, are here named segments.

To find the minimal Euclidian distance between two segments, the algorithm performs

two processing steps. Firstly, it verifies whether the edges are intersecting, then, if they

are disjoint, the distance between each end point of one segment and the closest point

on the other segment is calculated. The minimum over these four distances corresponds

to the minimal distance between the two segments.

4.2 Variable definitions

Definitions of the variables and data structures which are used in the model are given

in Table 1.

Table 1 Table of definitions

Variable Explanation

confl(e) The set of edges which conflicts with edge e ∈ E

Fe = [ae, be] A time-window on edge e ∈ E

F(e) The sorted set of all the time-windows on edge e ∈ E

G = (V,E) The directed graph representing the airport layout, with

vertices v ∈ V and edges e ∈ E

H The Fibonacci heap storing the added labels

IL = [aL, bL] The time interval used in a label L

L = (vL, IL, predL) A label on vertex vL ∈ V with time interval IL and

predecessor label predL

L(v) The set of all of the labels at vertex v ∈ V

R A conflict-free route that is being generated

T = (s, t, time) A taxi request to route, from source s ∈ V at time time

to target t ∈ V

we The weight (necessary taxi time) of edge e ∈ E

4.3 Key concepts

The QPPTW algorithm with its expansion steps works in a similar way to Dijkstra’s

algorithm [9,10]. However, in the QPPTW algorithm, a label can be expanded several

times due to the different time-windows and a concept of dominance is needed in order



to guarantee a polynomial solution time. It is necessary to define some of the concepts

upon which the approach is based. Firstly, the algorithm needs information about the

times that each part of the taxiway (edge) is free and this is provided in the form of a

sorted set of free time-windows for each edge:

Definition: Set of sorted time-windows

The set F(e) contains the sorted set of time intervals F j
e = [aje, b

j
e] which specify the

times when the edge e can be used for a new route. This will exclude the times when

e, or an edge which conflicts with e, are in use by previously routed aircraft. These are

inputs to the routing algorithm for each aircraft.

The use of labels is the essential concept of the QPPTW algorithm.

Definition: Label

A label L = (vL, IL, predL) specifies the time period IL = [aL, bL] within which the

current aircraft could reach vertex vL. It includes a reference to the previous label on

the route, predL, and thus implicitly represents a route (with edge traversal timings)

from a source vertex to the specified vertex vL. These labels are generated as the routing

algorithm progresses, together specifying the (undominated) time periods (from time aL
to time bL) when the current aircraft could reach vertex vL.

An ordering relation is defined over the intervals of the labels to allow the definitions

of dominance.

Definition: Dominance

A label L dominates a label L′ on vertex vL = vL′ if and only if IL′ ⊆ IL (and there

are identical route restrictions on the outgoing edges), which implies aL ≤ aL′ and

bL ≥ bL′ .

Once the routing has been performed by the QPPTW algorithm, the time-windows

are readjusted (as discussed in Section 4.6) before the QPPTW algorithm is reapplied

to route the next aircraft.

4.4 QPPTW algorithm

The input of the QPPTW algorithm contains the graph G = (V,E) with its weight

function we, which corresponds to the taxi times for each edge, estimated using the taxi

time estimation method which was described in Section 3. The sorted set of available

time-windows F(e) also has to be provided for each edge e, specifying when the edge

is available. A taxi request Ti = (si, ti, timei) for aircraft i is then a conflict-free route

R from the vertices si to ti with minimal taxi time (w.r.t. we) that respects the given

time-windows.

The pseudocode of the QPPTW algorithm is shown in Algorithm 1 and is a close

variant of the QPPTW algorithm described by Stenzel in [21]. The main difference is

that we allocate the labels to vertices, which helps both to model the process more

realistically and to more easily understand the algorithm, since it distinguishes between

the use of the labels at the vertices and the input time-windows at the edges.

Lines 1 and 2 of Algorithm 1 involve the initialization of the Fibonacci heap and the

references to the Fibonacci heap which are stored at each vertex. The use of Fibonacci



Algorithm 1: Quickest Path Problem with Time Windows (QPPTW)

Input: Graph G = (V,E) with weights we for all e ∈ E, the set of sorted time-windows
F(e) for all e ∈ E, a taxi request Ti = (si, ti, timei) with the source vertex
si ∈ V , the target vertex ti ∈ V and the start time timei.

Output: Conflict-free route R from si to ti with minimal taxi time that starts at the
earliest at time timei, respects the given time-windows F(e) or returns the
message that no such route exists.

1 Let H = ∅
2 Let L(v) = ∅ ∀v ∈ V

3 Create new label L such that L = (si, [timei,∞) , nil)
4 Insert L into heap H with key timei
5 Insert L into set L(si)
6 while H ̸= ∅ do
7 Let L = H.getMin(), where L = (vL, IL, predL) and IL = [aL, bL]

8 if vL = ti then
9 Reconstruct the route R from si to ti by working backwards from L

10 return the route R

11 forall the outgoing edges eL of vL do

12 foreach F j
eL ∈ F(eL), where F j

eL = [ajeL , bjeL ], in increasing order of ajeL do

13 /* Expand labels for edges where time intervals overlap */

14 if ajeL > bL then
15 goto 11 /* consider the next outgoing edge */

16 if bjeL < aL then
17 goto 12 /* consider the next time-window */

18 Let timein = max(aL, a
j
eL ) /* ajeL > aL ⇒ waiting */

19 Let timeout = timein + weL

20 if timeout ≤ bjeL then

21 Let u = head(eL)

22 Let L′ = (u,
[
timeout, b

j
eL

]
, L)

23 /* dominance check*/

24 foreach L̂ ∈ L(u) do

25 if L̂ dominates L′ then
26 goto 12 /* next time-window */

27 if L′ dominates L̂ then

28 Remove L̂ from H

29 Remove L̂ from L(u)

30 Insert L′ into heap H with key aL′

31 Insert L′ into set L(u)

32 Output: there is no si-ti route

heaps for this algorithm has the same beneficial effect upon the execution time as it

does for Dijkstra’s algorithm. The starting label is generated for the source si in line 3

and is then inserted into the Fibonacci heap, which is sorted with respect to the earliest

possible arrival time (key). A reference is maintained to this label using the L(si) set

for each vertex. These references are used as a look-up by the dominance check in



lines 23-29, where the algorithm needs fast access to all of the labels associated with a

particular vertex.

In each while-loop, the algorithm checks whether the Fibonacci heap still contains

elements. If this is not the case, there is no route which can be enlarged and, therefore,

no route from si to ti, starting at timei, exists (line 32). If the Fibonacci heap still

contains elements, the algorithm takes a minimal element with respect to the key (line

7), checks whether this label already represents a route to the target ti (line 8-10) or,

otherwise, tries to expand the associated route.

The route can usually continue along a number of different outgoing edges from any

vertex and can potentially use different time-windows on each edge (line 11 and 12). In

order to use an edge there must be a time-window available with an overlapping time

interval, as expressed by the conditions in line 14 and 16. The earliest possible point

in time that edge eL can be left is identified (line 18 and 19) and the expansion step is

executed. When the condition stated in line 20 is true, a new label will be generated

(line 21 and 22). Different cases are possible at this stage. Firstly, the new label may

dominate another label (line 27), in which case the dominated label will be erased (line

28 and 29). Secondly, the new label may be dominated by an older one (line 25), in

which case it is not necessary to take this label into account (line 26). The while-loop is

executed as long as there is a route which can be expanded. If a route R to the target

ti has been found, the route can be generated by working backwards through the set

of labels (line 9) using the references, predL, to the previous labels.

The generalized vertex-based Dijkstra’s algorithm which has been presented here

is a close variant of that given by Stenzle in [21] and solves the problem in polynomial

time (polynomial in the number of time-windows). The proof can be found in [21],

where it is presented for the edge-based algorithm.

4.5 Modifications to the QPPTW algorithm for airport ground movement

Algorithm 1 is used for arriving aircraft as described above, since their goal is to clear

the runway and reach the gate/stand as quickly as possible. In our model, departing

aircraft aim to reach the runway at a given time and leave the gate/stand as late as

possible in order to do so. This allows for more of the waiting time to be absorbed at

the gate/stand when the engines are not running. The same algorithm is used for this

purpose, computing the route backwards with the end time fixed instead of the start

time, with only minor changes to reverse the time-related steps. Since the algorithm

logic remains unchanged, this modified algorithm has not been presented here.

To attempt to speed up the execution time of the algorithm, we applied goal-

oriented search [20] to the QPPTW algorithm. Two heuristic measures were used to

estimate a lower bound for the rest of the partial route: the Euclidean distance was used

to measure the linear distance to the target, and the time was estimated using Dijkstra’s

algorithm to compute the time which would be needed ignoring any interference from

other aircraft. Unfortunately, neither approach resulted in a valuable speed-up when

applied to this problem. This can possibly be explained by the fact that the graph

representing the airport layout is sparse (having on average only a few outgoing edges

for each vertex) and routes often start on the border of the graph (see Figure 1), so the

number of expansions exploring non-promising areas of the airport is relatively small.



4.6 Readjustment of the time-windows

When an aircraft has been routed, the time-windows have to be readjusted according

to the edge utilisation of the adopted route R, and the edges which conflict with these.

We note that it is necessary to consider edge conflicts only during this stage and not

during the routing process (Algorithm 1).

Algorithm 2 presents the pseudocode for the readjustment of the time-windows.

The input consists of the weighted graph G = (V,E), the set of conflicting edges

confl(e) for all e ∈ E, the set of sorted time-windows F(e) for all e ∈ E, and the route

R which was found for the most recent aircraft to be routed. The output is the new

sorted set of time-windows F(e), including the reservations of the new route R.

Algorithm 2: Readjustment of the time-windows

Input: Graph G = (V,E) with weights we for all e ∈ E, the route R with reservations[
timeinf , timeoutf

]
for all f ∈ R, the set of sorted time-windows F(e) for all

e ∈ E and the set of conflicting edges confl(e) for all e ∈ E.
Output: Sorted set of time-windows F(e) including the reservations of the route R

1 foreach f ∈ R do
2 foreach e ∈ confl(f) do

3 foreach F j
e = [aje, b

j
e] ∈ F(e) do

4 if timeoutf ≤ aje then

5 goto 2 /* time-window is too late*/

6 if timeinf < bje then

7 /* otherwise time-window is too early */

8 if timeinf < aje + we then

9 if bje − we < timeoutf then

10 Remove F j
e from F(e)

11 else
12 /* shorten start of time-window */

13 F j
e = [timeoutf , bje]

14 else

15 if bje − we < timeoutf then

16 /* shorten end of time-window */

17 F j
e = [aje, timeinf ]

18 else
19 /* split time-window */

20 F j
e = [aje, timeinf ]

21 Insert [timeoutf , bje] into set F(e)

Basically, the algorithm determines which other edges are blocked for each edge of

the route R (lines 1 and 2). All affected time-windows on these edges are adjusted (line

3-7) and four different cases then have to be considered, depending upon the relative



positions of the time-windows. The remaining time-window may be removed (line 9-10)

if it becomes too short to allow an aircraft to taxi; be shortened at the start (line 11-13)

or shortened at the end (line 15-17); or it could be split in two smaller windows (line

18-21).

Once a route has been allocated to an aircraft, some additional waiting times may

be required on edges, beyond the time required to traverse the edge as specified by the

time intervals on the labels by Algorithm 1. Time intervals on adjacent edges often

overlap sufficiently that there is a choice of which edge the wait can be assigned to.

In our implementation, the waiting times are forced to be as late in the correspond-

ing part of the route as possible (apart from the initial waiting time for departures,

which is maximised to maximise the stand hold). Alternative approaches could use this

flexibility to select better and smoother speed profiles for the aircraft. Using a similar

approach to that used in [14], the aim could be to spread the necessary waiting times

for an aircraft in such a way that the speed profiles are as “engine friendly” as possible.

Although the effects of such postprocessing are not studied within this paper, they are

an area which we intend to investigate.

4.7 Buffer times

The solutions of the approach are conflict-free routings, but it is possible for small

delays to affect the entire plan. Buffer times would allow small deviations from the

taxi times to be absorbed. To achieve such buffer times the label intervals in the

algorithm are lengthened in the desired direction (before or after) by a certain amount.

To reflect growing uncertainties along the route, the amount of time can be made

distance-dependent. Buffer times could also depend upon the expected congestion at

the time, being increased when delays were expected to be more likely, although at these

times the introduction of a buffer time would be more likely to reduce throughput. This

is an interesting area for future study.

4.8 Initial sequencing of taxiing aircraft

Burgain et al. [8] presented the concept of using collaborative virtual queues, extending

previous gate holding concepts. The idea was to limit the number of aircraft which were

taxiing on the surface and add all which want to start taxiing to a virtual queue, forcing

them to wait until the count allows other aircraft to pushback. One benefit of this

approach for the airlines is that they can swap their own aircraft in the virtual queue

according to their priority level. Based upon this concept, the aircraft are initially

ordered for the sequential routing algorithm by either the expected wheel-on time

on the runway or the expected pushback time at the gate/stand. However, there are

potentially better sequences which could be used to sequentially route the aircraft and

we intend to analyse this potential.

5 Results and discussions

This section starts with a table collating the results to ease comparison. The expla-

nation of the results will follow. The results of the taxi time estimation which was



presented in Section 3 are then discussed. An analysis of the results from the ground

movement decision support system, which was described in Section 4, is then provided

and this section ends with a summary of the potential benefits of such a system.

Table 2 Summary of the results

Total taxi time Average taxi time

[s] per aircraft [s]

Actual total taxi time 271851.6 400.4

Statistical approach

Total taxi time estimation 266990.5 393.2

Total taxi time estimation (unimpeded) 203331.8 299.5

QPPTW algorithm

Using unimpeded taxi time estimates 207722.5 305.9

Using impeded taxi time estimates 276927.9 407.8

The relevant results are summarised in Table 2. The first row of results shows the

actual total and average taxi times for the supplied dataset, including queuing time

at the runway. The taxi speed function which was developed was then applied to each

aircraft, to estimate the taxi times and the results are shown in the next two rows.

In the first case, the function was applied assuming the actual traffic level and we

note that the difference between the predicted and actual times is less than 2%. In the

second case, the traffic related components of the function were zeroed, to estimate

the taxi times if there had been no delays due to other aircraft, and the difference

illustrates the amount of the taxi time which was a result of such delays. The two sets

of taxi times (excluding and including delays for other aircraft) were then used within

the QPPTW algorithm and the total and mean resulting taxi times are shown in the

table for each case. These results are analysed and explained further in the following

two sections.

5.1 Analysis of taxi time estimation

The taxi speed analysis by Atkin et al. [5] was used for taxi time prediction within this

research. The goal of the multiple regression model was to find the most important

factors explaining the variability of the data in the real dataset. Extensive analysis

was performed, seeking a function which was as practical as possible (requiring less

information), easy to interpret, and maintained a high level of accuracy.

The estimation approach has two important uses. Firstly, the overall taxi time

(including runway queue time) can be estimated, taking into account the other traffic

at the airport. Secondly, the approach could be used to estimate the taxi time for

an unimpeded aircraft. The coefficients which were found for each factor are specified

in the paper by Atkin et al. [5], and the shortest route for each aircraft between the

runway and gate/stand was used for the taxi distance/speed calculation. Unimpeded

taxi times for aircraft can be used in our approach since the decision support tool

takes the effects of the other aircraft into consideration itself, performing the necessary

re-routing or delaying of aircraft.



The results from the statistical model can be seen in Table 2. The model implies

that 23.8% of the taxi time was related to delays due to other aircraft, including delays

in queues behind other aircraft at the runway. There would be an average saving of 93.7s

per aircraft if these interactions could be eliminated. The influence of the interactions

between the aircraft which lead to the waiting times is analysed in the next section.

5.2 Experimental details using the QPPTW algorithm

The framework was programmed in Java as a single-threaded application and executed

on a personal computer (Intel Core 2 Duo, 3GHz, 2GB RAM). In these experiments,

all aircraft were allowed to use all of the taxiways and only intersecting and adjacent

edges were considered to be in conflict and were, therefore, not allowed to be used by

two aircraft simultaneously. The buffer time (Section 4.7) was set to zero. Analysis of

different buffer times showed that the taxi time would have been enlarged only by a

linear factor of the buffer time. Similar results were also found in [18].

Extensive analysis was performed using the QPPTW algorithm to solve the ground

movement problem for the layout and data from Zurich Airport. The aircraft were

routed sequentially using the taxi time estimations from the statistical analysis of taxi

times which was discussed in Section 3. The resulting total taxi times can be found

in Table 2, where the taxi times used were those which were estimated for unimpeded

aircraft (ignoring the influence of factors related to other aircraft on the surface), the

average taxi time (including re-routing and waiting delays) was 305.9s per aircraft. In

contrast, the average taxi time per aircraft for the impeded taxi time estimations was

407.8s, indicating that 25.0% (or 101.9s per aircraft) of the observed taxi time was due

to runway holds and re-routing or queuing due to other aircraft.

The estimations of the taxi times from the statistical approach provide a lower

bound for the taxi times, since they assume no re-routing delays or queuing behind

other aircraft. The QPPTW algorithm is designed to predict the delays which are

actually necessary due to the interactions between aircraft for the specific routings and

timings which the algorithm assigns to aircraft. Comparison of the resulting taxi times

from the QPPTW algorithm against the lower bound reveals an increase in the taxi

time from 203331.8 to 207722.5 seconds, showing that the additional taxi times for the

re-routing and waiting summed to 4390.7s over the entire day, an increase of around

2.2% in the total taxi time. The 2.2% increase over the lower bound (rather than

optimal) times indicates that its use as a ground movement decision support system

seems very promising for this problem.

It is also interesting to compare the approach described here against the actual per-

formance of the airport on this particular day of operation. Data from Zurich Airport

reports a total taxi time of 271851.6s. Comparison with the results for the QPPTW

algorithm with unimpeded taxi time estimation highlights savings of about 23.6% or

an average of 94.5s per aircraft. Obviously, this only indicates an upper bound for the

potential savings, since the real times will include some slack time for the departures

at the runway to ensure a high runway throughput.

The solution time to solve the entire day of operation with 679 aircraft was 11609ms.

This correlates to an average solution time of 17ms per aircraft, which supports the

potential use of the algorithm in an online decision support system. No infeasible

solution occurred within any of the executions of the simulation.



6 Conclusion

This paper described a more realistic and potentially environmentally friendly ground

movement decision support system, compared to previous approaches. The framework

is designed to combine the runway sequencing problem and ground movement prob-

lem, aiming for better global solutions, although only the ground movement element

was considered in this paper. This work extends the basic ground movement problem

of minimising the travel times to include the concept of absorbing possible waiting

times for departures at the gate/stand, to reduce the fuel burn and environmental im-

pact. The sequential QPPTW algorithm which was described here is based on graph

theoretical concepts and can include restrictions such as limitations of which taxiways

aircraft can use, which taxiways block which and when, and turn limitations at taxiway

junctions. In addition, the algorithm provides the opportunity to add buffer times for

blocking the reserved taxiways for longer than expected, to absorb small delays and

schedule disturbances.

Data was used from an entire day of operations at Zurich Airport, the largest hub

airport in Switzerland. This data was used to generate more accurate taxi time estima-

tions for each aircraft, using a taxi speed prediction function which was generated from

an extensive statistical analysis of the same dataset. These taxi time estimations were

then utilised within the QPPTW algorithm to route and schedule the ground move-

ment. The results are very promising and show potential maximum savings in total taxi

time of about 23.6% from using the decision support system described here, together

with the statistical taxi time prediction system, compared to the actual performance at

the airport. Obviously, further research is necessary to determine the amount of buffer

time and runway delay which should be utilised to account for any remaining taxi time

uncertainty to avoid starving the runways.

The experimental results of the developed decision support approach show average

solution times of only a few milliseconds per aircraft, and are, therefore, adequate for

the implementation of such a system for real time use at airports.

We intend to investigate various extensions of this work in future, in addition to the

combination of the ground movement problem with the runway sequencing problem.

Firstly, the QPPTW algorithm enables the possible waiting times to be spread in

different ways. In this paper, they were allocated so as to maximise the stand hold

time and to better adapt to schedule disturbances, but an alternative approach would

be to develop smoother speed profiles for aircraft, using the engine in a more efficient

and environmentally friendly way. Secondly, there are potential benefits to be gained

from improving the sequence of consideration of aircraft for the sequential routing

algorithm. Finally, we would like to perform a similar analysis for different airport

layouts, to better understand the effects of the layout upon the best solution approach,

but it will be necessary to obtain more data and support from other airports in order

to do so.
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