
The Quantum IO Monad
QIO

Alexander S. Green

asg@cs.nott.ac.uk

Foundations of Programming Group,

School of Computer Science & IT,

University of Nottingham

The Quantum IO Monad – p.1/13

Quantum Computation

• Quantum computation uses Qubits .

The Quantum IO Monad – p.2/13

Quantum Computation

• Quantum computation uses Qubits .

• Qubits have 2 base states (|0〉 and |1〉), but can exist
in a superposition of both states simultaneously, until
measured.

The Quantum IO Monad – p.2/13

Quantum Computation

• Quantum computation uses Qubits .

• Qubits have 2 base states (|0〉 and |1〉), but can exist
in a superposition of both states simultaneously, until
measured.

• Multiple qubits can become entangled, meaning that
an n-qubit system has 2n base states, and can be in a
superposition of all these 2n states.

The Quantum IO Monad – p.2/13

Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

The Quantum IO Monad – p.3/13

Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

• An arbitrary state (|φ〉) can be described by
|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 where
α, β, γ, δ ∈ C are the complex amplitutes of each base
state.

The Quantum IO Monad – p.3/13

Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

• An arbitrary state (|φ〉) can be described by
|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 where
α, β, γ, δ ∈ C are the complex amplitutes of each base
state.

• When measured the state collapses into one of the
base states. Where the probability of it collapsing into

each state is α2 , β2 , γ2 or δ2 respectively.

The Quantum IO Monad – p.3/13

Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

• An arbitrary state (|φ〉) can be described by
|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 where
α, β, γ, δ ∈ C are the complex amplitutes of each base
state.

• When measured the state collapses into one of the
base states. Where the probability of it collapsing into

each state is α2 , β2 , γ2 or δ2 respectively.

• Thus the condition that α2 + β2 + γ2 + δ2 = 1 always
holds.

The Quantum IO Monad – p.3/13

Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.

The Quantum IO Monad – p.4/13

Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.

• Shor’s algorithm, is a quantum algorithm for factoring
large numbers. It has an exponential speed up over
the fastest known classical algorithm.

The Quantum IO Monad – p.4/13

Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.

• Shor’s algorithm, is a quantum algorithm for factoring
large numbers. It has an exponential speed up over
the fastest known classical algorithm.

• Grover’s algorithm, is a quantum algorithm for
searching an unsorted database. It has quadratic speed
up over the linear search, which is provably the fastest
classical algorithm.

The Quantum IO Monad – p.4/13

Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.

• Shor’s algorithm, is a quantum algorithm for factoring
large numbers. It has an exponential speed up over
the fastest known classical algorithm.

• Grover’s algorithm, is a quantum algorithm for
searching an unsorted database. It has quadratic speed
up over the linear search, which is provably the fastest
classical algorithm.

• Arbitrary qubit states cannot be copied, however they
may teleported to another qubit using entangled pairs
known as Bell states.

The Quantum IO Monad – p.4/13

Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.

The Quantum IO Monad – p.5/13

Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.

• and Functional Programming to the Quantum
community!

The Quantum IO Monad – p.5/13

Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.

• and Functional Programming to the Quantum
community!

• Haskell is a Pure functional programming language,
and thus introduces Monads to encapsulate effects.

The Quantum IO Monad – p.5/13

Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.

• and Functional Programming to the Quantum
community!

• Haskell is a Pure functional programming language,
and thus introduces Monads to encapsulate effects.

• For example, the IO Monad.

The Quantum IO Monad – p.5/13

Monads

class Monad m where

(>>=) ∈ m a → (a → m b)→ m b

return ∈ a → m a

such that the following equations hold

return a >>= f = f a

c >>= return = c

(c >>= f) >>= g = c >>= λa → f a >>= g

The Quantum IO Monad – p.6/13

The IO Monad

• All IO in Haskell takes place within the IO Monad.

The Quantum IO Monad – p.7/13

The IO Monad

• All IO in Haskell takes place within the IO Monad.

• For example, echoing a Character to the Screen

getChar ∈ IO Char

putChar ∈ Char → IO ()

echo ∈ IO ()

echo = getChar >>= (λc → putChar c) > >echo

The Quantum IO Monad – p.7/13

The IO Monad

• All IO in Haskell takes place within the IO Monad.

• For example, echoing a Character to the Screen

getChar ∈ IO Char

putChar ∈ Char → IO ()

echo ∈ IO ()

echo = getChar >>= (λc → putChar c) > >echo

• Haskell provides sytactic sugar for Monadic
Programming. (in the form of do notation)

echo = do c ← getChar

putChar c

echo

The Quantum IO Monad – p.7/13

The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.

The Quantum IO Monad – p.8/13

The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.

• The quantum register would execute any quantum
parts of a computation.

The Quantum IO Monad – p.8/13

The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.

• The quantum register would execute any quantum
parts of a computation.

• However, quantum registers don’t exist (yet?)!!!

The Quantum IO Monad – p.8/13

The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.

• The quantum register would execute any quantum
parts of a computation.

• However, quantum registers don’t exist (yet?)!!!

• So the QIO Monad can be used to encapsulate the
behaviour that would be given by a quantum register.

The Quantum IO Monad – p.8/13

The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

The Quantum IO Monad – p.9/13

The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

• The QIO Monad has two ways of evaluating a
Quantum Computation.

The Quantum IO Monad – p.9/13

The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

• The QIO Monad has two ways of evaluating a
Quantum Computation.

• The first uses a random number generator to measure
the qubits, so the outcome is equivalent to running the
quantum computation.

The Quantum IO Monad – p.9/13

The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

• The QIO Monad has two ways of evaluating a
Quantum Computation.

• The first uses a random number generator to measure
the qubits, so the outcome is equivalent to running the
quantum computation.

• The second gives the state of the quantum register
after evaluating the program, e.g. a list of probabilities
of the base states that could be reached on measuring.

The Quantum IO Monad – p.9/13

The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

• The QIO Monad has two ways of evaluating a
Quantum Computation.

• The first uses a random number generator to measure
the qubits, so the outcome is equivalent to running the
quantum computation.

• The second gives the state of the quantum register
after evaluating the program, e.g. a list of probabilities
of the base states that could be reached on measuring.

• A quantum computation can be constructed in the QIO
Monad (using do notation), and then evaluated using
either of the available evaluators.

The Quantum IO Monad – p.9/13

QIO Computations

rbit ∈ QIO Bool

rbit = do x ← mkQbit

applyU (rotate x rh)

b ← meas x

return b

The Quantum IO Monad – p.10/13

QIO Computations

bell ∈ QIO (Bool ,Bool)

bell = do x ← mkQbit

applyU (rotate x rh)

y ← mkQbit

applyU (x |rotate y rx)

b ← meas x

c ← meas y

return (b, c)

The Quantum IO Monad – p.11/13

The future of the QIO monad

• Now that we have created the QIO Monad, we would
like to come up with larger examples, including
implementations of Shor’s and Grover’s algorithms.

The Quantum IO Monad – p.12/13

The future of the QIO monad

• Now that we have created the QIO Monad, we would
like to come up with larger examples, including
implementations of Shor’s and Grover’s algorithms.

• It should also be possible to use larger quantum data
structures than individual qubits, creating them in the
same way that classical data structures are defined
from classical bits.

The Quantum IO Monad – p.12/13

The future of the QIO monad

• Now that we have created the QIO Monad, we would
like to come up with larger examples, including
implementations of Shor’s and Grover’s algorithms.

• It should also be possible to use larger quantum data
structures than individual qubits, creating them in the
same way that classical data structures are defined
from classical bits.

• It should also be possible to construct QIO programs
from QML programs.

The Quantum IO Monad – p.12/13

The End

Thank you all for listening!

The Quantum IO Monad – p.13/13

	Quantum Computation
	Quantum Computation
	Quantum Computation
	Haskell
	Monads
	The IO Monad
	The QIO Monad
	The QIO Monad
	QIO Computations
	QIO Computations
	The future of the QIO monad
	The End

