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Quantum Computation
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Quantum Computation

• Quantum computation uses Qubits .

• Qubits have 2 base states ( |0〉 and |1〉 ), but can exist
in a superposition of both states simultaneously, until
measured.

• Multiple qubits can become entangled, meaning that
an n-qubit system has 2n base states, and can be in a
superposition of all these 2n states.
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Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .
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Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

• An arbitrary state ( |φ〉 ) can be described by
|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 where
α, β, γ, δ ∈ C are the complex amplitutes of each base
state.
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base states. Where the probability of it collapsing into
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Quantum Computation

• For example, a 2 qubit system has the base states |00〉 ,

|01〉 , |10〉 , and |11〉 .

• An arbitrary state ( |φ〉 ) can be described by
|φ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 where
α, β, γ, δ ∈ C are the complex amplitutes of each base
state.

• When measured the state collapses into one of the
base states. Where the probability of it collapsing into

each state is α2 , β2 , γ2 or δ2 respectively.

• Thus the condition that α2 + β2 + γ2 + δ2 = 1 always
holds.
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Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.
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• Grover’s algorithm, is a quantum algorithm for
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up over the linear search, which is provably the fastest
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Quantum Computation

• Quantum algorithms are designed to take advantage
of these entangled states.

• Shor’s algorithm, is a quantum algorithm for factoring
large numbers. It has an exponential speed up over
the fastest known classical algorithm.

• Grover’s algorithm, is a quantum algorithm for
searching an unsorted database. It has quadratic speed
up over the linear search, which is provably the fastest
classical algorithm.

• Arbitrary qubit states cannot be copied, however they
may teleported to another qubit using entangled pairs
known as Bell states.
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Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.
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Haskell

• We’d like to introduce Quantum Computation to
Functional Programmers.

• and Functional Programming to the Quantum
community!

• Haskell is a Pure functional programming language,
and thus introduces Monads to encapsulate effects.

• For example, the IO Monad.
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Monads

class Monad m where

(>>=) ∈ m a → (a → m b)→ m b

return ∈ a → m a

such that the following equations hold

return a >>= f = f a

c >>= return = c

(c >>= f ) >>= g = c >>= λa → f a >>= g
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The IO Monad

• All IO in Haskell takes place within the IO Monad.
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The IO Monad

• All IO in Haskell takes place within the IO Monad.

• For example, echoing a Character to the Screen

getChar ∈ IO Char

putChar ∈ Char → IO ()

echo ∈ IO ()

echo = getChar >>= (λc → putChar c) > >echo
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The IO Monad

• All IO in Haskell takes place within the IO Monad.

• For example, echoing a Character to the Screen

getChar ∈ IO Char

putChar ∈ Char → IO ()

echo ∈ IO ()

echo = getChar >>= (λc → putChar c) > >echo

• Haskell provides sytactic sugar for Monadic
Programming. (in the form of do notation)

echo = do c ← getChar

putChar c

echo
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The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.
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The QIO Monad

• We’d like to think of a quantum computer as a classical
computer, along with a register of qubits.

• The quantum register would execute any quantum
parts of a computation.

• However, quantum registers don’t exist (yet?)!!!

• So the QIO Monad can be used to encapsulate the
behaviour that would be given by a quantum register.
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The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations
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quantum computation.

• The second gives the state of the quantum register
after evaluating the program, e.g. a list of probabilities
of the base states that could be reached on measuring.
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The QIO Monad

• We can use the QIO Monad to construct Quantum
Computations

• The QIO Monad has two ways of evaluating a
Quantum Computation.

• The first uses a random number generator to measure
the qubits, so the outcome is equivalent to running the
quantum computation.

• The second gives the state of the quantum register
after evaluating the program, e.g. a list of probabilities
of the base states that could be reached on measuring.

• A quantum computation can be constructed in the QIO
Monad (using do notation), and then evaluated using
either of the available evaluators.
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QIO Computations

rbit ∈ QIO Bool

rbit = do x ← mkQbit

applyU (rotate x rh)

b ← meas x

return b
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QIO Computations

bell ∈ QIO (Bool ,Bool)

bell = do x ← mkQbit

applyU (rotate x rh)

y ← mkQbit

applyU (x |rotate y rx )

b ← meas x

c ← meas y

return (b, c)
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The future of the QIO monad

• Now that we have created the QIO Monad, we would
like to come up with larger examples, including
implementations of Shor’s and Grover’s algorithms.

The Quantum IO Monad – p.12/13



The future of the QIO monad

• Now that we have created the QIO Monad, we would
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• It should also be possible to use larger quantum data
structures than individual qubits, creating them in the
same way that classical data structures are defined
from classical bits.
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The future of the QIO monad

• Now that we have created the QIO Monad, we would
like to come up with larger examples, including
implementations of Shor’s and Grover’s algorithms.

• It should also be possible to use larger quantum data
structures than individual qubits, creating them in the
same way that classical data structures are defined
from classical bits.

• It should also be possible to construct QIO programs
from QML programs.
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The End

Thank you all for listening!

The Quantum IO Monad – p.13/13


	Quantum Computation
	Quantum Computation
	Quantum Computation
	Haskell
	Monads
	The IO Monad
	The QIO Monad
	The QIO Monad
	QIO Computations
	QIO Computations
	The future of the QIO monad
	The End

