Compiler Correctness for Software Transactional Memory

Liyang HU

Foundations of Programming Group
School of Computer Science and IT
University of Nottingham

FoP Away Day, January $17^{\text {th }}, 2007$

Why Concurrency?

Limits of Technology

- Speed: 4GHz; plateaued over 2 years ago
- Power: $130 \mathrm{~W}(!)$ from a die less than 15 mm by 15 mm
- Size: 65 nm in 2006 - about 300 atoms across

Recent Trends

- Dual, even quad cores on a single package
- Multiprocessing has arrived for the mass market

Concurrent Programming (Is Hard!)

- Market leader: mutual exclusion
- Difficult to reason with

Example

Race Conditions

$$
\begin{aligned}
& \text { deposit }:: \text { Account } \rightarrow \text { Integer } \rightarrow \text { IO () } \\
& \text { deposit account amount }=\text { do } \\
& \text { balance } \leftarrow \text { read account } \\
& \text { write account (balance + amount) }
\end{aligned}
$$

Thread		account Balance
A	balance $A \leftarrow$ read account	initial
B	balance $B \leftarrow$ read account	initial
B	write account $($ balance $B+$ amount $B)$	initial + amountB
A	write account $($ balance $A+$ amount $A)$	initial + amountA

Example

Lack of Compositionality

deposit :: Account \rightarrow Integer \rightarrow IO ()
deposit account amount $=$ do
lock account
balance \leftarrow read account
write account (balance + amount)
release account
transfer : : Account \rightarrow Account \rightarrow Integer \rightarrow IO ()
transfer from to amount $=$ do
withdraw from amount
deposit to amount

Example

Lack of Compositionality (Solution?)

```
deposit :: Account }->\mathrm{ Integer }->\mathrm{ IO ()
deposit account amount = do
balance \leftarrow read account
write account (balance + amount)
transfer :: Account }->\mathrm{ Account }->\mathrm{ Integer }->\mathrm{ IO ()
transfer from to amount = do
    lock from; lock to
    withdraw from amount
    deposit to amount
    release from; release to
```


Example

Deadlock

- Thread A: transfer x y 100
- Thread B: transfer y x 200

Thread		Account x	Account y	Action
A	lock x	free	free	acquites lock on x
B	lock y	held by A	free	acquires lock on y
B	lock x	held by A	held by B	waits for $x \ldots$
A	lock y	held by A	held by B	waits for $y \ldots$

Mutual Exclusion

Pitfalls

- Race conditions
- Priority inversion
- Deadlock
- Locking is often advisory

Drawbacks

- Correct code does not compose
- Overly conservative
- Granularity versus scalability

Transactional Model

What are Transactions?

- Arbitrary command sequence as an indivisible unit
- Declarative rather than descriptive
- Optimistic execution

Transactional Solution

$$
\begin{aligned}
& \text { work }=\text { do } \\
& \text { begin } \\
& \text { transfer a b } 100 \\
& \text { commit }
\end{aligned}
$$

Advantages of Transactions

ACID Properties

- Atomicity: all or nothing
- Fewer interleavings to consider
- Consistency: ensure invariants
- System-enforced
- Isolation: no observable intermediate state
- Guaranteed non-interference
- Durability: persistence through system failure
- Simplifies error-handling
- Not applicable for transactional memory

Optimistic Execution

Transactional Deposit

```
deposit :: Account }->\mathrm{ Integer }->\mathrm{ IO ()
deposit account amount = do
    begin
    balance }\leftarrow read accoun
    -- another transaction commits, modifying account
    write account (balance + amount)
    commit -- fails
```


Failure and Retry

- DBMS tracks transaction dependencies
- External writes to account after initial read unacceptable
- Application can retry if aborted (not traditionally automatic)

Hardware Assistance

Atomic Instructions

- E.g. fetch-and-add, test-and-set
- Used to efficiently implement mutual exclusion

Avoiding Explicit Synchronisation

- Compare-and-Swap
- CAS (a), b, c-if $(a) \equiv b$ then swap (a) with c
- Load-Linked / Store Conditional
- Load-linked places watch on memory bus; begins 'transaction'
- Access to watched location invalidates transaction
- Store-conditional returns error code on failure
- Still not quite fully-fledged transactions

More Versatility?

Proposed Extensions

- Multi-word CAS
- Hardware Transactional Memory (Herlihy and Moss, 1993)
- Not available on a processor near you...

Software Transactional Memory

- Why wait for hardware? (Shavit and Touitou, 1995)
- Typical STM libraries difficult to use
- Language extension in Java (Harris and Fraser, 2003)

STM in Haskell

Composable Memory Transactions (Harris et al., 2005)

- Implemented in Glasgow Haskell Compiler
- Library and runtime system only; no language change

STM Haskell Primitives

instance Monad STM where $\{\ldots\}$
newTVar :: STM (TVar α)
readTVar :: TVar $\alpha \rightarrow$ STM α
writeTVar :: TVar $\alpha \rightarrow \alpha \rightarrow$ STM ()
retry :: STM α
orElse $\quad::$ STM $\alpha \rightarrow$ STM $\alpha \rightarrow$ STM α
atomic $\quad::$ STM $\alpha \rightarrow$ IO α

Restricting Side-Effects

IO Actions

```
launchMissiles :: IO ()
atomic $ do
    launchMissiles -- compile-time error: type mismatch
    ... retry ...
```


STM Monad

- Irreversible side-effects prohibited - the IO monad
- Can only read/write TVars
- But any pure code is allowed

Alternative Blocking

Try Again

- STM Haskell introduces the retry keyword
- Used where programs would block, or signal recoverable error

Composition

- orElse combines two transactions: a'orElse' b
- Leftist: tries a first, returns if a returns
- If a calls retry, attempt b; one or the other succeeds

Code Flexibility

Blocking or Non-Blocking?

popBlocking $\quad::$ TVar [Integer] \rightarrow STM Integer
popBlocking ts $=$ do
$s \leftarrow$ readTVar ts
case s of [] \rightarrow retry $(x: x s) \rightarrow$ do writeTVar xs; return x
popNonblocking :: TVar [Integer] \rightarrow STM (Maybe Integer)
popNonblocking ts $=$ liftM Just (popBlocking ts) 'orElse' return Nothing

- Similarly turn non-blocking into blocking

Formal Semantics

Transition Rule for atomic

$$
m \rightarrow>^{*} \bar{n}
$$

$$
\text { atomic } m \rightarrow \bar{n}
$$

The Need for a Low-Level Semantics

- Mixed big and small step semantics
- No concurrent/optimistic execution of transactions
- Doesn't use logs, as mentioned in the implementation
- Informal description of implementation
- No attempt to relate to formal semantics
- How do we show any implementation correct?

Simplification of STM Haskell

Syntax

$$
E::=\mathbb{Z}|E+E| \text { rd Name } \mid \text { wr Name } E \mid \text { atomic } E
$$

Comparison with STM Haskell

STM Haskell	Model
(\gg)	$::$ STM $\alpha \rightarrow(\alpha \rightarrow$ STM $\beta) \rightarrow$ STM β
return $\quad:: \alpha \rightarrow$ STM α	$e+f$
retry $\quad::$ STM α	$m \in \mathbb{Z}$
orElse $\quad::$ STM $\alpha \rightarrow$ STM $\alpha \rightarrow$ STM α	
readTVar $::$ TVar $\alpha \rightarrow$ STM α	rd v
writeTVar $::$ TVar $\alpha \rightarrow \alpha \rightarrow$ STM ()	wr $v e$
newTVar $::$ STM $(\operatorname{TVar} \alpha)$	
atomic $\quad::$ STM $\alpha \rightarrow \mathrm{IO} \alpha$	atomic e

Small-Step Semantics

$$
\frac{\langle f, \sigma\rangle \longrightarrow\left\langle f^{\prime}, \sigma^{\prime}\right\rangle}{\langle n+f, \sigma\rangle \longrightarrow\left\langle n+f^{\prime}, \sigma^{\prime}\right\rangle}
$$

$$
\overline{\mathbf{w r}} v \bar{n}, \sigma\rangle \longrightarrow\langle\sigma(v), \sigma[v \mapsto n]\rangle
$$

(WriteZ)

$$
\begin{aligned}
& \overline{\langle\mathbf{r d} v, \sigma\rangle \longrightarrow\langle\sigma(v), \sigma\rangle} \\
& \text { (Read) } \\
& \frac{\langle e, \sigma\rangle \longrightarrow^{*}\left\langle n, \sigma^{\prime}\right\rangle}{\langle\text { atomic } e, \sigma\rangle \longrightarrow\left\langle n, \sigma^{\prime}\right\rangle} \\
& \text { (Atоміс) }
\end{aligned}
$$

$$
\begin{align*}
& \frac{\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle}{\langle e+f, \sigma\rangle \longrightarrow\left\langle e^{\prime}+f, \sigma^{\prime}\right\rangle} \\
& \text { (ADDL) } \tag{ADDR}\\
& \overline{\langle n+m, \sigma\rangle \longrightarrow\langle\overline{n+m}, \sigma\rangle} \\
& \text { (AdmZ) } \\
& \frac{\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle}{\langle\mathbf{w r} v e, \sigma\rangle \longrightarrow\left\langle\mathbf{w r} v e^{\prime}, \sigma^{\prime}\right\rangle} \\
& \text { (WriteE) }
\end{align*}
$$

Concurrent Evaluation

Expression Soup

$$
\begin{aligned}
& P::=E \mid P \| P \\
& \begin{aligned}
\langle p, \sigma\rangle & \longrightarrow\left\langle p^{\prime}, \sigma^{\prime}\right\rangle \\
\langle p \rrbracket q, \sigma\rangle & \longrightarrow\left\langle p^{\prime} \rrbracket q, \sigma^{\prime}\right\rangle
\end{aligned} \\
& \text { (ParL) } \\
& \frac{\langle e, \sigma\rangle \longrightarrow\left\langle e^{\prime}, \sigma^{\prime}\right\rangle}{\langle e, \sigma\rangle \longrightarrow\left\langle e, \sigma^{\prime}\right\rangle} \\
& \text { (SEQ) } \\
& \begin{aligned}
\langle q, \sigma\rangle & \longrightarrow\left\langle q^{\prime}, \sigma^{\prime}\right\rangle \\
\langle p \rrbracket q, \sigma\rangle & \longrightarrow\left\langle p \rrbracket q^{\prime}, \sigma^{\prime}\right\rangle
\end{aligned} \\
& \text { (PARR) }
\end{aligned}
$$

Example

- rd "x" + rd "x" \| wr "x" 1 - yields 0,1 or 2
- atomic (rd "x" + rd "x") \rrbracket wr " x " 1 - yields only 0 or 2

Virtual Machine

Instruction Set

$$
\begin{array}{rlll}
\text { Instruction }::= & \text { PUSH } \mathbb{Z} \quad \mid \text { ADD } & -- \text { stack machir } \\
& \text { LOAD Name } \mid \text { SWAP Name } & \text {-- shared store } \\
\mid \text { BEGIN } & \mid \text { COMMIT } & -- \text { transactions }
\end{array}
$$

- Typical stack machine with a shared store
- LOAD and SWAP are transaction-local if one is active
- BEGIN marks the start of a transaction
- COMMIT marks the end; retries on failure

Implementation?

- Easiest: stop-the-world; no interleaving of transactions

Logs and Transaction Frames

Goals

(1) Isolate changes to global state
(2) Re-run transaction on abort

Transaction Frame

We need to record:
(1) for each variable accessed,

- its original value - to check for conflicting commits; and
- value of writes to it - subsequent reads return this value
(2) the transaction's starting address - to re-run if commit fails

Each frame is a pair
$\langle i p, r w\rangle \in$ TransactionFrame \equiv Instruction ${ }^{*} \times($ Name $\rightarrow \mathbb{Z} \times \mathbb{Z})$

Concurrent Execution

Threads

$\langle i p, s p, t p\rangle \in$ Thread \equiv Instruction* $\times \mathbb{Z}^{*} \times$ TransactionFrame*

Thread Soup

Program ::= Thread
| Program \| Program

- Rules (Seq), (ParL) and (ParR) will suffice
- Threads execute paired with a shared store

Compiler

E to Instruction*

$\operatorname{compE} \in \mathrm{E} \rightarrow$ Instruction* \rightarrow Instruction*
compE $\bar{n} \quad c=$ PUSH $n: c$
compE $(e+f) \quad c=\mathrm{compE} e(\operatorname{compE} f($ ADD : c) $)$
compE ($\mathbf{r d} v$) $\quad c=$ LOAD $v: c$
compE (wr ve) c= compE e (SWAP v:c)
compE (atomic e) $c=$ BEGIN : compE e (COMMIT : c)

P to Program

$$
\begin{aligned}
\operatorname{compP} \in P \rightarrow & \text { Program } \\
\operatorname{compPe} & =\langle | \operatorname{compEe[]|,|[]|,|[]|\rangle } \\
\operatorname{compP}(p \rrbracket q) & =\operatorname{compP} p] \operatorname{compPq}
\end{aligned}
$$

Correctness

Sequential

$\forall e \in \mathrm{E}, \sigma \in \mathrm{Name} \rightarrow \mathbb{Z}, n \in \mathbb{Z}$.

$$
\begin{array}{cc}
\langle e, \sigma\rangle & \longrightarrow_{\mathrm{iff}}^{*}
\end{array} \begin{aligned}
& \left\langle\bar{n}, \sigma^{\prime}\right\rangle \\
& \langle\langle\mathrm{compE} \text { e [], [], [] }\rangle, \sigma\rangle \\
& \longrightarrow^{*}
\end{aligned}\left\langle\langle[],[n],[]\rangle, \sigma^{\prime}\right\rangle
$$

Concurrent

$\forall p \in \mathrm{P}, \sigma \in \mathrm{Name} \rightarrow \mathbb{Z}, n s \in \mathrm{P}$.
$\langle p, \sigma\rangle \quad \longrightarrow_{\text {iff }}{ }^{*}\left\langle n s, \sigma^{\prime}\right\rangle$

$$
\langle c o m p P p, \sigma\rangle \longrightarrow{ }^{*} \quad\left\langle r s, \sigma^{\prime}\right\rangle
$$

- $n s \in \mathrm{P}$ contains only integer expressions of the form \bar{n}
- $r s \in$ Program structurally identical to $n s$ but with $\bar{n} \mapsto\langle[],[n],[]\rangle$

Model Verification

Implementation

- Small-step semantics, compiler and VM in Haskell
- Can express compiler correctness as following function: propCC :: P \rightarrow Bool
propCC $p=($ result $\circ r u n)\left(p, \sigma_{0}\right) \equiv($ result $\circ r u n)\left(\right.$ compP $\left.p, \sigma_{0}\right)$

QuickCheck

- Generates random input, attempts to falsify proposition:
> quickCheck propCC
OK, passed 100 tests.
$>$
- Inspires confidence that a formal proof is possible...

Interference and Serialisability

Questions

- What kind of interference can we allow?
- How do we serialise transactions? When do they 'happen'?

Interfering Transactions

Optimistic Speculation

Answers

- Permitted interference?
- On initial access, bet on variable's final pre-commit value
- Allow any changes, provided original value restored
- If so, the transaction commits successfully
- At what point does a transaction take place?
- Certainly not when the transaction begins
- Pre-commit, x and y matches what thread A initially read
- Hence, can collapse down to the successful commit point

Read / Write Reordering

- Reads happen immediately
- Writes buffered until commit time
- Commit behaves almost like MCAS

On Equality

Equality Strengths

- Value, or structural
- Fast for primitive values, bad for lazy thunks
- Pointer
- Efficient for unevaluated thunks and primitive values
- Can't replace value by a copy of the same
- Version
- Considers writes without regard to actual values involved
- By pairing values with an incrementing version number
- Or by a watch on the memory location, c.f. LL/SC
- State
- All changes to shared state undesirable
- World
- All interleaving undesirable

Existing Methodology

Compiler Correctness for Parallel Languages (Wand, 1995)

- Compiler correct if $s \llbracket p \rrbracket$ bisimilar to $t \llbracket$ compile $p \rrbracket$
- Target operational semantics adequate relative to HOCC

Something Simpler?

Aim and Overview

- Avoid so many layers of translation; too much room for error
- Give source/target languages small-step/operational semantics
- Augment semantics with labelled transition system
- Direct bisimulation between the two semantics

Expressions and Evaluation

Expressions

$$
\mathrm{E}::=\mathbb{Z} \mid \mathrm{E}+\mathrm{E}
$$

- Addition supplemented with a (ZAP) rule
- Simple form of non-determinacy
- Left-biased evaluation

Labelled Transition System

$$
\begin{aligned}
& \text { Action }::=\mathbb{Z}+\mathbb{Z} \mid \mathbb{Z} \notin \mathbb{Z} \\
& \text { Label }::=\text { Action } \mid \tau \\
& \quad \quad \rightarrow \mathbb{E} \times \text { Label } \times \mathrm{E}
\end{aligned}
$$

Evaluation

Reduction Rules

$$
\begin{aligned}
& \overline{n+m} \text { (ADD) } \\
& \bar{n}+\bar{m} \xrightarrow{n \& m} 0 \\
& \underset{e+f \xrightarrow{\alpha} e^{\prime}+f}{e+\mathrm{ADDL})} \quad \stackrel{f \xrightarrow{\alpha} f^{\prime}}{\bar{n}+f \xrightarrow{\alpha} \bar{n}+f^{\prime}}
\end{aligned}
$$

Choice of Action

- Differentiate base case reductions in source language
- Two symbols are enough but...
- Conceivably, a broken compiler could keep structure intact
- Include operands to ensure the same values are computed

Compiler

Virtual Machine

$$
\begin{aligned}
& \mathrm{I}::=\mathrm{PUSH} \mathbb{Z} \mid \text { ADD } \\
& \mathrm{M}=\mathrm{I}^{\star} \times \mathbb{Z}^{\star} \\
& \rightarrow \subseteq \mathrm{M} \times \text { Label } \times \mathrm{M}
\end{aligned}
$$

Compiler

$$
\begin{aligned}
& \text { compile }:\left.\mathrm{E} \rightarrow I^{\star} \rightarrow\right|^{\star} \\
& \text { compile } \bar{n} \quad \iota=\mathrm{PUSH} n: \iota s \\
& \text { compile }(x+y) s=\text { compile } x i s^{\prime} \\
& \left.\quad \text { where } s s^{\prime}=\text { compile y (ADD : } s\right)
\end{aligned}
$$

Execution

Virtual Machine Transitions

$$
\begin{gathered}
\langle\text { PUSH } n: \mid s, \sigma\rangle \xrightarrow{\tau}\langle s, n: \sigma\rangle \\
\langle\mathrm{ADD}: \mid s, m: n: \sigma\rangle \xrightarrow{n+m}\langle s, n+m: \sigma\rangle \\
\langle\mathrm{ADD}: \mid s, m: n: \sigma\rangle \xrightarrow{n \& m}\langle s, 0: \sigma\rangle
\end{gathered}
$$

- Similar non-deterministic semantics, c.f. (ADD) and (ZAP)

Mixed Bisimulation

Motivation

- Can express correctness as \langle compile $x[],[]\rangle \approx x$
- At every reduction step, anything LHS can do, RHS can follow
- Proof for something like this: structural induction on e ?
- Need to generalise on stack, instruction continuation...
- Introduce expression contexts, $c \llbracket \cdot \rrbracket$?
- Can certainly relate stack and continuation to context
- But proof turns very messy; this is a simple language!

Combined Machine - Existing Technology!

$$
\begin{aligned}
C & \equiv(\mathrm{E}+1) \times \mathrm{M} \\
\rightarrow & \subseteq \mathrm{C} \times \text { Label } \times \mathrm{C}
\end{aligned}
$$

Combined Semantics

Transition Rules

$$
\begin{aligned}
& \frac{x \xrightarrow{\alpha} x^{\prime}}{\langle x, \iota s, \sigma\rangle \xrightarrow{\alpha}\left\langle x^{\prime}, \quad \iota, \sigma\right\rangle} \\
& \langle\bar{n}, \stackrel{\iota}{ }, \sigma\rangle \xrightarrow{\tau}\langle\bullet, \text { ıs, } n: \sigma\rangle \\
& \frac{\langle ı s, \sigma\rangle \xrightarrow{\alpha}\left\langle\left\langle s^{\prime}, \sigma^{\prime}\right\rangle\right.}{\langle\bullet, ı s, \sigma\rangle \xrightarrow{\alpha}\left\langle\bullet, \quad s^{\prime}, \sigma^{\prime}\right\rangle}
\end{aligned}
$$

Weak Simulation

Definition

A non-empty relation $\mathfrak{R} \subseteq \mathrm{C} \times \mathrm{C}$ is a weak simulation iff for all $c \Re d$,

$$
c \xrightarrow{\alpha} c^{\prime} \text { implies } \exists d^{\prime} . d \xrightarrow{\alpha} d^{\prime} \wedge c^{\prime} \Re d^{\prime}
$$

- There exists a maximal \mathfrak{R} : we name it \succcurlyeq
- $c \succcurlyeq d$ and $c \preccurlyeq d$ iff $c \approx d$

Lemma (Eliding τ)

If $c \xrightarrow{\tau} c^{\prime}$ is the only possible transition by c, then:

$$
\frac{c \stackrel{\tau}{\longrightarrow} c^{\prime}}{c \preccurlyeq c^{\prime}} \quad \text { and } \quad \frac{c \stackrel{\tau}{\longrightarrow} c^{\prime}}{c \succcurlyeq c^{\prime}}, \quad \text { or } \quad \frac{c \stackrel{\tau}{\longrightarrow} c^{\prime}}{c \approx c^{\prime}}
$$

Compiler Correctness

Theorem 1 (Soundness)

$$
\langle x, ı s, \sigma\rangle \succcurlyeq\langle\bullet \text {, compile } x ı s, \sigma\rangle
$$

Everything program does permitted by expression semantics
\qquad
\qquad
\qquad compile $x[],[]\rangle$

Compiler Correctness

Theorem 2 (Completeness)

$$
\langle x, ı s, \sigma\rangle \preccurlyeq\langle\bullet \text {, compile } x ı s, \sigma\rangle
$$

Program does everything permitted by expression semantics

Compiler Correctness

Theorem 3 (Bisimulation)

$$
\langle x, ı s, \sigma\rangle \approx\langle\bullet \text {, compile } \times ı s, \sigma\rangle
$$

Program is a bisimulation of expression semantics

Proof Overview

- In this case, soundness and completeness proofs ares identical
- Recover separate proofs by replacing \approx with \preccurlyeq or \succcurlyeq
- Completeness may not always be possible or even required
- Corollary (Correctness): $\langle x,[],[]\rangle \approx\langle\bullet$, compile $x[]$, [] \rangle
- Selected highlights follow. . .
- For full details, see my first year transfer dissertation

Theorem 3: $\langle x, s s, \sigma\rangle \approx\langle\bullet$, compile x is, $\sigma\rangle$

Inductive Case: $x \equiv y+z$

Have induction hypothesis for y :

$$
\forall i s^{\prime}, \sigma^{\prime} .\left\langle y, ı s^{\prime}, \sigma^{\prime}\right\rangle \approx\left\langle\bullet, \text { compile y } s^{\prime}, \sigma^{\prime}\right\rangle
$$

and also for z. Then:
$\langle\bullet$, compile $(y+z) ı s, \sigma\rangle$
$\equiv \quad\{$ definition of compile $\}$
$\langle\bullet$, compile y (compile z (ADD : ss)), $\sigma\rangle$
$\approx \quad\{$ induction hypothesis for y \}
$\langle y$, compile z (ADD : ss), $\sigma\rangle$
$\approx \quad\{$ by lemma 4, given induction hypothesis for $z\}$

$$
\langle y+z, ı s, \sigma\rangle
$$

Additional Lemmas

Lemma 4 (Evaluate Left)

Given $\left\langle\bullet\right.$, compile $\left.z ı s^{\prime}, \sigma^{\prime}\right\rangle \approx\left\langle z, ı s^{\prime}, \sigma^{\prime}\right\rangle$,

$$
\langle y, \text { compile } z(\mathrm{ADD}: ı s), \sigma\rangle \approx\langle y+z, ı s, \sigma\rangle
$$

Proof - case $y \not \equiv \bar{m}$
LHS:

$$
\begin{aligned}
& \frac{y \stackrel{\alpha}{\longrightarrow} y^{\prime}}{\langle y, \text { compile } z(\mathrm{ADD} \stackrel{s}{ }), \sigma\rangle} \\
& \xrightarrow{\alpha}\left\langle y^{\prime}, \text { compile } z(\mathrm{ADD}: ı s), \sigma\right\rangle
\end{aligned}
$$

RHS:

$$
\frac{\frac{y \stackrel{\alpha}{\longrightarrow} y^{\prime}}{y+z \xrightarrow{\alpha} y^{\prime}+z}(\mathrm{ADDL})}{\langle y+z, \stackrel{s}{ }, \sigma\rangle \xrightarrow{\alpha}\left\langle y^{\prime}+z, \stackrel{s}{ }, \sigma\right\rangle}(\mathrm{EVAL})
$$

Additional Lemmas

Lemma 5 (Evaluate Right)

$$
\langle z, \mathrm{ADD}: ı s, \bar{m}: \sigma\rangle \approx\langle\bar{m}+z, ı s, \sigma\rangle
$$

- The $z \not \equiv \bar{n}$ case proceeds as lemma 4

Proof Method

- Uses simple equational reasoning and logic
- No need to consider sets of machine states / expressions
- Where there is non-determinism, we can chase diagrams
- Weak bisimulation: traces $\alpha \tau$ and $\tau \alpha$ are equivalent

Chasing Diagrams

Proof of lemma 5 - case $z \equiv \bar{n}$

Conclusion

Future Work

- Extension of language with parallelism
- Exceptions and interrupts
- Proof of STM model
- Richer transactional memory constructs?
- Forking within transactions
- Compensating transactions
- Data invariants

