
Background Transactional Memory STM Model Bisimulation Conclusion

Compiler Correctness for
Software Transactional Memory

Liyang HU

Foundations of Programming Group
School of Computer Science and IT

University of Nottingham

FoP Away Day, January 17th, 2007

Background Transactional Memory STM Model Bisimulation Conclusion

Why Concurrency?

Limits of Technology

Speed: 4GHz; plateaued over 2 years ago

Power: 130W(!) from a die less than 15mm by 15mm

Size: 65nm in 2006 – about 300 atoms across

Recent Trends

Dual, even quad cores on a single package

Multiprocessing has arrived for the mass market

Concurrent Programming (Is Hard!)

Market leader: mutual exclusion

Difficult to reason with

Background Transactional Memory STM Model Bisimulation Conclusion

Example

Race Conditions

deposit :: Account→ Integer→ IO ()
deposit account amount = do

balance ← read account
write account (balance + amount)

Thread account Balance
A balanceA← read account initial
B balanceB ← read account initial
B write account (balanceB + amountB) initial + amountB
A write account (balanceA + amountA) initial + amountA

Background Transactional Memory STM Model Bisimulation Conclusion

Example

Lack of Compositionality

deposit :: Account→ Integer→ IO ()
deposit account amount = do

lock account
balance ← read account
write account (balance + amount)
release account

transfer :: Account→ Account→ Integer→ IO ()
transfer from to amount = do

withdraw from amount
deposit to amount

Background Transactional Memory STM Model Bisimulation Conclusion

Example

Lack of Compositionality (Solution?)

deposit :: Account→ Integer→ IO ()
deposit account amount = do

balance ← read account
write account (balance + amount)

transfer :: Account→ Account→ Integer→ IO ()
transfer from to amount = do

lock from; lock to
withdraw from amount
deposit to amount
release from; release to

Background Transactional Memory STM Model Bisimulation Conclusion

Example

Deadlock

Thread A: transfer x y 100
Thread B: transfer y x 200

Thread Account x Account y Action
A lock x free free acquites lock on x
B lock y held by A free acquires lock on y
B lock x held by A held by B waits for x . . .
A lock y held by A held by B waits for y . . .

Background Transactional Memory STM Model Bisimulation Conclusion

Mutual Exclusion

Pitfalls

Race conditions

Priority inversion

Deadlock

Locking is often advisory

Drawbacks

Correct code does not compose

Overly conservative

Granularity versus scalability

Background Transactional Memory STM Model Bisimulation Conclusion

Transactional Model

What are Transactions?

Arbitrary command sequence as an indivisible unit

Declarative rather than descriptive

Optimistic execution

Transactional Solution

work = do
begin
transfer a b 100
commit

Background Transactional Memory STM Model Bisimulation Conclusion

Advantages of Transactions

ACID Properties

Atomicity: all or nothing

Fewer interleavings to consider

Consistency: ensure invariants

System-enforced

Isolation: no observable intermediate state

Guaranteed non-interference

Durability: persistence through system failure

Simplifies error-handling
Not applicable for transactional memory

Background Transactional Memory STM Model Bisimulation Conclusion

Optimistic Execution

Transactional Deposit

deposit :: Account→ Integer→ IO ()
deposit account amount = do

begin
balance ← read account

-- another transaction commits, modifying account
write account (balance + amount)
commit -- fails

Failure and Retry

DBMS tracks transaction dependencies

External writes to account after initial read unacceptable

Application can retry if aborted (not traditionally automatic)

Background Transactional Memory STM Model Bisimulation Conclusion

Hardware Assistance

Atomic Instructions

E.g. fetch-and-add, test-and-set

Used to efficiently implement mutual exclusion

Avoiding Explicit Synchronisation

Compare-and-Swap

CAS (a), b, c – if (a) ≡ b then swap (a) with c

Load-Linked / Store Conditional

Load-linked places watch on memory bus; begins ‘transaction’
Access to watched location invalidates transaction
Store-conditional returns error code on failure

Still not quite fully-fledged transactions

Background Transactional Memory STM Model Bisimulation Conclusion

More Versatility?

Proposed Extensions

Multi-word CAS

Hardware Transactional Memory (Herlihy and Moss, 1993)

Not available on a processor near you. . .

Software Transactional Memory

Why wait for hardware? (Shavit and Touitou, 1995)

Typical STM libraries difficult to use

Language extension in Java (Harris and Fraser, 2003)

Background Transactional Memory STM Model Bisimulation Conclusion

STM in Haskell

Composable Memory Transactions (Harris et al., 2005)

Implemented in Glasgow Haskell Compiler

Library and runtime system only; no language change

STM Haskell Primitives

instance Monad STM where { . . . }
newTVar :: STM (TVar α)
readTVar :: TVar α→ STM α
writeTVar :: TVar α→ α→ STM ()
retry :: STM α
orElse :: STM α→ STM α→ STM α
atomic :: STM α→ IO α

Background Transactional Memory STM Model Bisimulation Conclusion

Restricting Side-Effects

IO Actions

launchMissiles :: IO ()

atomic $do
launchMissiles -- compile-time error: type mismatch
. . . retry . . .

STM Monad

Irreversible side-effects prohibited – the IO monad

Can only read/write TVars

But any pure code is allowed

Background Transactional Memory STM Model Bisimulation Conclusion

Alternative Blocking

Try Again

STM Haskell introduces the retry keyword

Used where programs would block, or signal recoverable error

Composition

orElse combines two transactions: a ‘orElse‘ b

Leftist: tries a first, returns if a returns

If a calls retry , attempt b; one or the other succeeds

Background Transactional Memory STM Model Bisimulation Conclusion

Code Flexibility

Blocking or Non-Blocking?

popBlocking :: TVar [Integer]→ STM Integer
popBlocking ts = do

s ← readTVar ts
case s of [] → retry

(x : xs)→ do writeTVar xs; return x

popNonblocking :: TVar [Integer]→ STM (Maybe Integer)
popNonblocking ts = liftM Just (popBlocking ts)

‘orElse‘ return Nothing

Similarly turn non-blocking into blocking

Background Transactional Memory STM Model Bisimulation Conclusion

Formal Semantics

Transition Rule for atomic

m //∗ n

atomic m // n

The Need for a Low-Level Semantics

Mixed big and small step semantics

No concurrent/optimistic execution of transactions
Doesn’t use logs, as mentioned in the implementation

Informal description of implementation

No attempt to relate to formal semantics

How do we show any implementation correct?

Background Transactional Memory STM Model Bisimulation Conclusion

Simplification of STM Haskell

Syntax

E ::= Z | E + E | rd Name | wr Name E | atomic E

Comparison with STM Haskell

STM Haskell Model

(>>=) :: STM α→ (α→ STM β)→ STM β e + f
return :: α→ STM α m ∈ Z
retry :: STM α
orElse :: STM α→ STM α→ STM α
readTVar :: TVar α→ STM α rd v
writeTVar :: TVar α→ α→ STM () wr v e
newTVar :: STM (TVar α)
atomic :: STM α→ IO α atomic e

Background Transactional Memory STM Model Bisimulation Conclusion

Small-Step Semantics

〈e, σ〉 // 〈e ′, σ′〉
〈e + f , σ〉 // 〈e ′ + f , σ′〉

(AddL)

〈f , σ〉 // 〈f ′, σ′〉
〈n + f , σ〉 // 〈n + f ′, σ′〉

(AddR)

〈n + m, σ〉 // 〈n + m, σ〉
(AddZ)

〈rd v , σ〉 // 〈σ(v), σ〉
(Read)

〈e, σ〉 // 〈e ′, σ′〉
〈wr v e, σ〉 // 〈wr v e ′, σ′〉

(WriteE)

〈e, σ〉 //∗ 〈n, σ′〉
〈atomic e, σ〉 // 〈n, σ′〉

(Atomic)

〈wr v n, σ〉 // 〈σ(v), σ[v 7→ n]〉
(WriteZ)

Background Transactional Memory STM Model Bisimulation Conclusion

Concurrent Evaluation

Expression Soup

P ::= E | P 8P

〈e, σ〉 // 〈e ′, σ′〉
〈e, σ〉 // // 〈e, σ′〉

(Seq)

〈p, σ〉 // // 〈p′, σ′〉
〈p 8 q, σ〉 // // 〈p′ 8 q, σ′〉

(ParL)

〈q, σ〉 // // 〈q′, σ′〉
〈p 8 q, σ〉 // // 〈p 8 q′, σ′〉

(ParR)

Example

rd "x" + rd "x" 8wr "x" 1 — yields 0, 1 or 2

atomic (rd "x" + rd "x") 8wr "x" 1 — yields only 0 or 2

Background Transactional Memory STM Model Bisimulation Conclusion

Virtual Machine

Instruction Set

Instruction ::= PUSH Z | ADD -- stack machine
| LOAD Name | SWAP Name -- shared store
| BEGIN | COMMIT -- transactions

Typical stack machine with a shared store

LOAD and SWAP are transaction-local if one is active

BEGIN marks the start of a transaction

COMMIT marks the end; retries on failure

Implementation?

Easiest: stop-the-world; no interleaving of transactions

Background Transactional Memory STM Model Bisimulation Conclusion

Logs and Transaction Frames

Goals

1 Isolate changes to global state

2 Re-run transaction on abort

Transaction Frame

We need to record:
1 for each variable accessed,

its original value – to check for conflicting commits; and
value of writes to it – subsequent reads return this value

2 the transaction’s starting address – to re-run if commit fails

3 and strictly speaking, the stack too. . .

Each frame is a pair
〈ip, rw〉 ∈ TransactionFrame ≡ Instruction∗ × (Name→ Z × Z)

Background Transactional Memory STM Model Bisimulation Conclusion

Concurrent Execution

Threads

〈ip, sp, tp〉 ∈ Thread ≡ Instruction∗ × Z∗ × TransactionFrame∗

Thread Soup

Program ::= Thread
| Program 8Program

Rules (Seq), (ParL) and (ParR) will suffice

Threads execute paired with a shared store

Background Transactional Memory STM Model Bisimulation Conclusion

Compiler

E to Instruction∗

compE ∈ E→ Instruction∗ → Instruction∗

compE n c = PUSH n : c
compE (e + f) c = compE e (compE f (ADD : c))
compE (rd v) c = LOAD v : c
compE (wr v e) c = compE e (SWAP v : c)
compE (atomic e) c = BEGIN : compE e (COMMIT : c)

P to Program

compP ∈ P→ Program
compP e = 〈|compEe[]|, |[]|, |[]|〉
compP (p 8 q) = compP p 8 compP q

Background Transactional Memory STM Model Bisimulation Conclusion

Correctness

Sequential

∀e ∈ E, σ ∈ Name→ Z, n ∈ Z.

〈e, σ〉 //∗ 〈n, σ′〉
iff

〈〈compE e [], [], []〉 , σ〉 //∗ 〈〈[], [n], []〉 , σ′〉

Concurrent

∀p ∈ P, σ ∈ Name→ Z, ns ∈ P.

〈p, σ〉 // //∗ 〈ns, σ′〉
iff

〈compP p, σ〉 // //∗ 〈rs, σ′〉

ns ∈ P contains only integer expressions of the form n

rs ∈ Program structurally identical to ns but with n 7→ 〈[], [n], []〉

Background Transactional Memory STM Model Bisimulation Conclusion

Model Verification

Implementation

Small-step semantics, compiler and VM in Haskell

Can express compiler correctness as following function:

propCC :: P→ Bool
propCC p = (result ◦ run) (p, σ0) ≡ (result ◦ run) (compP p, σ0)

QuickCheck

Generates random input, attempts to falsify proposition:

> quickCheck propCC
OK, passed 100 tests.
>

Inspires confidence that a formal proof is possible. . .

Background Transactional Memory STM Model Bisimulation Conclusion

Interference and Serialisability

Questions

What kind of interference can we allow?

How do we serialise transactions? When do they ‘happen’?

Interfering Transactions

Thread TVars
A B C D x y

rd x 7→ 0 0 0
wr x 1 1 0

wr y (rd x 7→ 1) 1 1
rd y 7→ 1 1 1

wr x 0 0 1
. . . 0 1
commit?

Background Transactional Memory STM Model Bisimulation Conclusion

Optimistic Speculation

Answers

Permitted interference?

On initial access, bet on variable’s final pre-commit value
Allow any changes, provided original value restored
If so, the transaction commits successfully

At what point does a transaction take place?

Certainly not when the transaction begins
Pre-commit, x and y matches what thread A initially read
Hence, can collapse down to the successful commit point

Read / Write Reordering

Reads happen immediately

Writes buffered until commit time

Commit behaves almost like MCAS

Background Transactional Memory STM Model Bisimulation Conclusion

On Equality

Equality Strengths

Value, or structural

Fast for primitive values, bad for lazy thunks

Pointer

Efficient for unevaluated thunks and primitive values
Can’t replace value by a copy of the same

Version

Considers writes without regard to actual values involved
By pairing values with an incrementing version number
Or by a watch on the memory location, c.f. LL/SC

State

All changes to shared state undesirable

World

All interleaving undesirable

Background Transactional Memory STM Model Bisimulation Conclusion

Existing Methodology

Compiler Correctness for Parallel Languages (Wand, 1995)

Source
compile //

s[[·]]

""EEEEEEEEEE Target

t[[·]]

||zz
zz

zz
zz

zz
^^

HOCC gg
operational
/evaluational
semantics

Compiler correct if s[[p]] bisimilar to t[[compile p]]

Target operational semantics adequate relative to HOCC

Background Transactional Memory STM Model Bisimulation Conclusion

Something Simpler?

Aim and Overview

Avoid so many layers of translation; too much room for error

Give source/target languages small-step/operational semantics

Augment semantics with labelled transition system

Direct bisimulation between the two semantics

Background Transactional Memory STM Model Bisimulation Conclusion

Expressions and Evaluation

Expressions

E ::= Z | E + E

Addition supplemented with a (Zap) rule

Simple form of non-determinacy

Left-biased evaluation

Labelled Transition System

Action ::= Z + Z | Z Z
Label ::= Action | τ

· // ⊆ E× Label× E

Background Transactional Memory STM Model Bisimulation Conclusion

Evaluation

Reduction Rules

n + m
n+m // n + m

(Add)
n + m

n m // 0

(Zap)

e
α // e ′

e + f
α // e ′ + f

(AddL)
f

α // f ′

n + f
α // n + f ′

(AddR)

Choice of Action

Differentiate base case reductions in source language

Two symbols are enough but. . .

Conceivably, a broken compiler could keep structure intact

Include operands to ensure the same values are computed

Background Transactional Memory STM Model Bisimulation Conclusion

Compiler

Virtual Machine

I ::= PUSH Z | ADD

M = I? × Z?

· // ⊆ M× Label×M

Compiler

compile :: E→ I? → I?

compile n ιs = PUSH n : ιs
compile (x + y) ιs = compile x ιs ′

where ιs ′ = compile y (ADD : ιs)

Background Transactional Memory STM Model Bisimulation Conclusion

Execution

Virtual Machine Transitions

〈PUSH n : ιs, σ〉 τ // 〈ιs, n : σ〉 (PUSH)

〈ADD : ιs, m : n : σ〉 n+m // 〈ιs, n + m : σ〉 (ADD)

〈ADD : ιs, m : n : σ〉 n m // 〈ιs, 0 : σ〉 (ZAP)

Similar non-deterministic semantics, c.f. (Add) and (Zap)

Background Transactional Memory STM Model Bisimulation Conclusion

Mixed Bisimulation

Motivation

Can express correctness as 〈compile x [], []〉 ≈ x

At every reduction step, anything LHS can do, RHS can follow

Proof for something like this: structural induction on e?

Need to generalise on stack, instruction continuation. . .

Introduce expression contexts, c[[·]]?
Can certainly relate stack and continuation to context

But proof turns very messy; this is a simple language!

Combined Machine – Existing Technology!

C ≡ (E + 1)×M

· // ⊆ C× Label× C

Background Transactional Memory STM Model Bisimulation Conclusion

Combined Semantics

Transition Rules

x
α // x ′

〈x , ιs, σ〉 α // 〈x ′, ιs, σ〉
(Eval)

〈n, ιs, σ〉 τ // 〈•, ιs, n : σ〉
(Switch)

〈ιs, σ〉 α // 〈ιs ′, σ′〉
〈•, ιs, σ〉 α // 〈•, ιs ′, σ′〉

(Exec)

Background Transactional Memory STM Model Bisimulation Conclusion

Weak Simulation

Definition

A non-empty relation R ⊆ C× C is a weak simulation iff for all
c R d ,

c
α // c ′ implies ∃d ′. d

α +3 d ′ ∧ c ′ R d ′

There exists a maximal R: we name it <

c < d and c 4 d iff c ≈ d

Lemma (Eliding τ)

If c
τ // c ′ is the only possible transition by c , then:

c
τ // c ′

c 4 c ′ and
c

τ // c ′

c < c ′ , or
c

τ // c ′

c ≈ c ′

Background Transactional Memory STM Model Bisimulation Conclusion

Compiler Correctness

Theorem 1 (Soundness)

〈x , ιs, σ〉 < 〈•, compile x ιs, σ〉

Everything program does permitted by expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [], []〉 ≈ 〈•, compile x [], []〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation

Background Transactional Memory STM Model Bisimulation Conclusion

Compiler Correctness

Theorem 2 (Completeness)

〈x , ιs, σ〉 4 〈•, compile x ιs, σ〉

Program does everything permitted by expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [], []〉 ≈ 〈•, compile x [], []〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation

Background Transactional Memory STM Model Bisimulation Conclusion

Compiler Correctness

Theorem 3 (Bisimulation)

〈x , ιs, σ〉 ≈ 〈•, compile x ιs, σ〉

Program is a bisimulation of expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [], []〉 ≈ 〈•, compile x [], []〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation

Background Transactional Memory STM Model Bisimulation Conclusion

Theorem 3: 〈x , ιs, σ〉 ≈ 〈•, compile x ιs, σ〉

Inductive Case: x ≡ y + z

Have induction hypothesis for y :

∀ιs ′, σ′.
〈
y , ιs ′, σ′〉 ≈ 〈

•, compile y ιs ′, σ′〉
and also for z . Then:

〈•, compile (y + z) ιs, σ〉
≡ { definition of compile }
〈•, compile y (compile z (ADD : ιs)), σ〉

≈ { induction hypothesis for y }
〈y , compile z (ADD : ιs), σ〉

≈ { by lemma 4, given induction hypothesis for z }
〈y + z , ιs, σ〉

Background Transactional Memory STM Model Bisimulation Conclusion

Additional Lemmas

Lemma 4 (Evaluate Left)

Given 〈•, compile z ιs ′, σ′〉 ≈ 〈z , ιs ′, σ′〉,
〈y , compile z (ADD : ιs), σ〉 ≈ 〈y + z , ιs, σ〉

Proof – case y 6≡ m

LHS: y
α // y ′

〈y , compile z (ADD ιs), σ〉
α // 〈y ′, compile z (ADD : ιs), σ〉

(Eval)

RHS: y
α // y ′

y + z
α // y ′ + z

(AddL)

〈y + z , ιs, σ〉 α // 〈y ′ + z , ιs, σ〉
(Eval)

Background Transactional Memory STM Model Bisimulation Conclusion

Additional Lemmas

Lemma 5 (Evaluate Right)

〈z , ADD : ιs, m : σ〉 ≈ 〈m + z , ιs, σ〉

The z 6≡ n case proceeds as lemma 4

Proof Method

Uses simple equational reasoning and logic

No need to consider sets of machine states / expressions

Where there is non-determinism, we can chase diagrams

Weak bisimulation: traces ατ and τα are equivalent

Background Transactional Memory STM Model Bisimulation Conclusion

Chasing Diagrams

Proof of lemma 5 – case z ≡ n

〈m + n, ιs, σ〉

L
e
m

m
a

5

m+n

(A
dd

)/
(E

va
l)

m n

(Z
ap

)/(E
val

)

��

≈

〈n, ADD : ιs, m : σ〉

τ

(S
w

it
c
h

)
��

〈m + n, ιs, σ〉

τ

(S
w

it
c
h

)

��

〈0, ιs, σ〉

τ

(S
w

it
c
h

)

��

〈•, ADD : ιs, n : m : σ〉

m+n

(ADD)
xxrrrrrrrrrrrrrr

m n

(ZAP)
$$JJJJJJJJJJJJ

〈•, ιs, m + n : σ〉 〈•, ιs, 0 : σ〉

Background Transactional Memory STM Model Bisimulation Conclusion

Conclusion

Future Work

Extension of language with parallelism

Exceptions and interrupts

Proof of STM model

Richer transactional memory constructs?

Forking within transactions
Compensating transactions
Data invariants

	Background
	Concurrent Programming
	Transactional Model

	Transactional Memory
	Hardware Transactional Memory
	STM in Haskell

	A Simple Model of STM
	Expressions
	Virtual Machine
	Compiler, Correctness and Quickcheck
	Commit Conditions and Equality

	Compiler Correctness by Bisimulation
	Existing Methodology
	Expressions
	Compiler and Virtual Machine
	Mixed Bisimulation
	Compiler Correctness

	Conclusion

