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Why Concurrency?

Limits of Technology

Speed: 4GHz; plateaued over 2 years ago

Power: 130W(!) from a die less than 15mm by 15mm

Size: 65nm in 2006 – about 300 atoms across

Recent Trends

Dual, even quad cores on a single package

Multiprocessing has arrived for the mass market

Concurrent Programming (Is Hard!)

Market leader: mutual exclusion

Difficult to reason with
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Example

Race Conditions

deposit :: Account→ Integer→ IO ()
deposit account amount = do

balance ← read account
write account (balance + amount)

Thread account Balance
A balanceA← read account initial
B balanceB ← read account initial
B write account (balanceB + amountB) initial + amountB
A write account (balanceA + amountA) initial + amountA
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Example

Lack of Compositionality

deposit :: Account→ Integer→ IO ()
deposit account amount = do

lock account
balance ← read account
write account (balance + amount)
release account

transfer :: Account→ Account→ Integer→ IO ()
transfer from to amount = do

withdraw from amount
deposit to amount
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Example

Lack of Compositionality (Solution?)

deposit :: Account→ Integer→ IO ()
deposit account amount = do

balance ← read account
write account (balance + amount)

transfer :: Account→ Account→ Integer→ IO ()
transfer from to amount = do

lock from; lock to
withdraw from amount
deposit to amount
release from; release to
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Example

Deadlock

Thread A: transfer x y 100
Thread B: transfer y x 200

Thread Account x Account y Action
A lock x free free acquites lock on x
B lock y held by A free acquires lock on y
B lock x held by A held by B waits for x . . .
A lock y held by A held by B waits for y . . .
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Mutual Exclusion

Pitfalls

Race conditions

Priority inversion

Deadlock

Locking is often advisory

Drawbacks

Correct code does not compose

Overly conservative

Granularity versus scalability
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Transactional Model

What are Transactions?

Arbitrary command sequence as an indivisible unit

Declarative rather than descriptive

Optimistic execution

Transactional Solution

work = do
begin
transfer a b 100
commit
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Advantages of Transactions

ACID Properties

Atomicity: all or nothing

Fewer interleavings to consider

Consistency: ensure invariants

System-enforced

Isolation: no observable intermediate state

Guaranteed non-interference

Durability: persistence through system failure

Simplifies error-handling
Not applicable for transactional memory
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Optimistic Execution

Transactional Deposit

deposit :: Account→ Integer→ IO ()
deposit account amount = do

begin
balance ← read account

-- another transaction commits, modifying account
write account (balance + amount)
commit -- fails

Failure and Retry

DBMS tracks transaction dependencies

External writes to account after initial read unacceptable

Application can retry if aborted (not traditionally automatic)
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Hardware Assistance

Atomic Instructions

E.g. fetch-and-add, test-and-set

Used to efficiently implement mutual exclusion

Avoiding Explicit Synchronisation

Compare-and-Swap

CAS (a), b, c – if (a) ≡ b then swap (a) with c

Load-Linked / Store Conditional

Load-linked places watch on memory bus; begins ‘transaction’
Access to watched location invalidates transaction
Store-conditional returns error code on failure

Still not quite fully-fledged transactions
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More Versatility?

Proposed Extensions

Multi-word CAS

Hardware Transactional Memory (Herlihy and Moss, 1993)

Not available on a processor near you. . .

Software Transactional Memory

Why wait for hardware? (Shavit and Touitou, 1995)

Typical STM libraries difficult to use

Language extension in Java (Harris and Fraser, 2003)
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STM in Haskell

Composable Memory Transactions (Harris et al., 2005)

Implemented in Glasgow Haskell Compiler

Library and runtime system only; no language change

STM Haskell Primitives

instance Monad STM where { . . . }
newTVar :: STM (TVar α)
readTVar :: TVar α→ STM α
writeTVar :: TVar α→ α→ STM ()
retry :: STM α
orElse :: STM α→ STM α→ STM α
atomic :: STM α→ IO α
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Restricting Side-Effects

IO Actions

launchMissiles :: IO ()

atomic $do
launchMissiles -- compile-time error: type mismatch
. . . retry . . .

STM Monad

Irreversible side-effects prohibited – the IO monad

Can only read/write TVars

But any pure code is allowed
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Alternative Blocking

Try Again

STM Haskell introduces the retry keyword

Used where programs would block, or signal recoverable error

Composition

orElse combines two transactions: a ‘orElse‘ b

Leftist: tries a first, returns if a returns

If a calls retry , attempt b; one or the other succeeds
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Code Flexibility

Blocking or Non-Blocking?

popBlocking :: TVar [Integer]→ STM Integer
popBlocking ts = do

s ← readTVar ts
case s of [ ] → retry

(x : xs)→ do writeTVar xs; return x

popNonblocking :: TVar [Integer]→ STM (Maybe Integer)
popNonblocking ts = liftM Just (popBlocking ts)

‘orElse‘ return Nothing

Similarly turn non-blocking into blocking
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Formal Semantics

Transition Rule for atomic

m //∗ n

atomic m // n

The Need for a Low-Level Semantics

Mixed big and small step semantics

No concurrent/optimistic execution of transactions
Doesn’t use logs, as mentioned in the implementation

Informal description of implementation

No attempt to relate to formal semantics

How do we show any implementation correct?
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Simplification of STM Haskell

Syntax

E ::= Z | E + E | rd Name | wr Name E | atomic E

Comparison with STM Haskell

STM Haskell Model

(>>=) :: STM α→ (α→ STM β)→ STM β e + f
return :: α→ STM α m ∈ Z
retry :: STM α
orElse :: STM α→ STM α→ STM α
readTVar :: TVar α→ STM α rd v
writeTVar :: TVar α→ α→ STM () wr v e
newTVar :: STM (TVar α)
atomic :: STM α→ IO α atomic e
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Small-Step Semantics

〈e, σ〉 // 〈e ′, σ′〉
〈e + f , σ〉 // 〈e ′ + f , σ′〉

(AddL)

〈f , σ〉 // 〈f ′, σ′〉
〈n + f , σ〉 // 〈n + f ′, σ′〉

(AddR)

〈n + m, σ〉 // 〈n + m, σ〉
(AddZ)

〈rd v , σ〉 // 〈σ(v), σ〉
(Read)

〈e, σ〉 // 〈e ′, σ′〉
〈wr v e, σ〉 // 〈wr v e ′, σ′〉

(WriteE)

〈e, σ〉 //∗ 〈n, σ′〉
〈atomic e, σ〉 // 〈n, σ′〉

(Atomic)

〈wr v n, σ〉 // 〈σ(v), σ[v 7→ n]〉
(WriteZ)
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Concurrent Evaluation

Expression Soup

P ::= E | P 8P

〈e, σ〉 // 〈e ′, σ′〉
〈e, σ〉 // // 〈e, σ′〉

(Seq)

〈p, σ〉 // // 〈p′, σ′〉
〈p 8 q, σ〉 // // 〈p′ 8 q, σ′〉

(ParL)

〈q, σ〉 // // 〈q′, σ′〉
〈p 8 q, σ〉 // // 〈p 8 q′, σ′〉

(ParR)

Example

rd "x" + rd "x" 8wr "x" 1 — yields 0, 1 or 2

atomic (rd "x" + rd "x") 8wr "x" 1 — yields only 0 or 2



Background Transactional Memory STM Model Bisimulation Conclusion

Virtual Machine

Instruction Set

Instruction ::= PUSH Z | ADD -- stack machine
| LOAD Name | SWAP Name -- shared store
| BEGIN | COMMIT -- transactions

Typical stack machine with a shared store

LOAD and SWAP are transaction-local if one is active

BEGIN marks the start of a transaction

COMMIT marks the end; retries on failure

Implementation?

Easiest: stop-the-world; no interleaving of transactions
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Logs and Transaction Frames

Goals

1 Isolate changes to global state

2 Re-run transaction on abort

Transaction Frame

We need to record:
1 for each variable accessed,

its original value – to check for conflicting commits; and
value of writes to it – subsequent reads return this value

2 the transaction’s starting address – to re-run if commit fails

3 and strictly speaking, the stack too. . .

Each frame is a pair
〈ip, rw〉 ∈ TransactionFrame ≡ Instruction∗ × (Name→ Z × Z)
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Concurrent Execution

Threads

〈ip, sp, tp〉 ∈ Thread ≡ Instruction∗ × Z∗ × TransactionFrame∗

Thread Soup

Program ::= Thread
| Program 8Program

Rules (Seq), (ParL) and (ParR) will suffice

Threads execute paired with a shared store
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Compiler

E to Instruction∗

compE ∈ E→ Instruction∗ → Instruction∗

compE n c = PUSH n : c
compE (e + f ) c = compE e (compE f (ADD : c))
compE (rd v) c = LOAD v : c
compE (wr v e) c = compE e (SWAP v : c)
compE (atomic e) c = BEGIN : compE e (COMMIT : c)

P to Program

compP ∈ P→ Program
compP e = 〈|compEe[]|, |[]|, |[]|〉
compP (p 8 q) = compP p 8 compP q
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Correctness

Sequential

∀e ∈ E, σ ∈ Name→ Z, n ∈ Z.

〈e, σ〉 //∗ 〈n, σ′〉
iff

〈〈compE e [ ], [ ], [ ]〉 , σ〉 //∗ 〈〈[ ], [n ], [ ]〉 , σ′〉

Concurrent

∀p ∈ P, σ ∈ Name→ Z, ns ∈ P.

〈p, σ〉 // //∗ 〈ns, σ′〉
iff

〈compP p, σ〉 // //∗ 〈rs, σ′〉

ns ∈ P contains only integer expressions of the form n

rs ∈ Program structurally identical to ns but with n 7→ 〈[], [n], []〉
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Model Verification

Implementation

Small-step semantics, compiler and VM in Haskell

Can express compiler correctness as following function:

propCC :: P→ Bool
propCC p = (result ◦ run) (p, σ0) ≡ (result ◦ run) (compP p, σ0)

QuickCheck

Generates random input, attempts to falsify proposition:

> quickCheck propCC
OK, passed 100 tests.
>

Inspires confidence that a formal proof is possible. . .
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Interference and Serialisability

Questions

What kind of interference can we allow?

How do we serialise transactions? When do they ‘happen’?

Interfering Transactions

Thread TVars
A B C D x y

rd x 7→ 0 0 0
wr x 1 1 0

wr y (rd x 7→ 1) 1 1
rd y 7→ 1 1 1

wr x 0 0 1
. . . 0 1
commit?
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Optimistic Speculation

Answers

Permitted interference?

On initial access, bet on variable’s final pre-commit value
Allow any changes, provided original value restored
If so, the transaction commits successfully

At what point does a transaction take place?

Certainly not when the transaction begins
Pre-commit, x and y matches what thread A initially read
Hence, can collapse down to the successful commit point

Read / Write Reordering

Reads happen immediately

Writes buffered until commit time

Commit behaves almost like MCAS
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On Equality

Equality Strengths

Value, or structural

Fast for primitive values, bad for lazy thunks

Pointer

Efficient for unevaluated thunks and primitive values
Can’t replace value by a copy of the same

Version

Considers writes without regard to actual values involved
By pairing values with an incrementing version number
Or by a watch on the memory location, c.f. LL/SC

State

All changes to shared state undesirable

World

All interleaving undesirable
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Existing Methodology

Compiler Correctness for Parallel Languages (Wand, 1995)

Source
compile //

s[[·]]

""EEEEEEEEEE Target

t[[·]]

||zz
zz

zz
zz

zz
^^

HOCC gg
operational
/evaluational
semantics

Compiler correct if s[[p]] bisimilar to t[[compile p]]

Target operational semantics adequate relative to HOCC
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Something Simpler?

Aim and Overview

Avoid so many layers of translation; too much room for error

Give source/target languages small-step/operational semantics

Augment semantics with labelled transition system

Direct bisimulation between the two semantics
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Expressions and Evaluation

Expressions

E ::= Z | E + E

Addition supplemented with a (Zap) rule

Simple form of non-determinacy

Left-biased evaluation

Labelled Transition System

Action ::= Z + Z | Z  Z
Label ::= Action | τ

· // ⊆ E× Label× E
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Evaluation

Reduction Rules

n + m
n+m // n + m

(Add)
n + m

n m // 0

(Zap)

e
α // e ′

e + f
α // e ′ + f

(AddL)
f

α // f ′

n + f
α // n + f ′

(AddR)

Choice of Action

Differentiate base case reductions in source language

Two symbols are enough but. . .

Conceivably, a broken compiler could keep structure intact

Include operands to ensure the same values are computed
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Compiler

Virtual Machine

I ::= PUSH Z | ADD

M = I? × Z?

· // ⊆ M× Label×M

Compiler

compile :: E→ I? → I?

compile n ιs = PUSH n : ιs
compile (x + y) ιs = compile x ιs ′

where ιs ′ = compile y (ADD : ιs)
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Execution

Virtual Machine Transitions

〈PUSH n : ιs, σ〉 τ // 〈ιs, n : σ〉 (PUSH)

〈ADD : ιs, m : n : σ〉 n+m // 〈ιs, n + m : σ〉 (ADD)

〈ADD : ιs, m : n : σ〉 n m // 〈ιs, 0 : σ〉 (ZAP)

Similar non-deterministic semantics, c.f. (Add) and (Zap)
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Mixed Bisimulation

Motivation

Can express correctness as 〈compile x [ ], [ ]〉 ≈ x

At every reduction step, anything LHS can do, RHS can follow

Proof for something like this: structural induction on e?

Need to generalise on stack, instruction continuation. . .

Introduce expression contexts, c[[·]]?
Can certainly relate stack and continuation to context

But proof turns very messy; this is a simple language!

Combined Machine – Existing Technology!

C ≡ (E + 1)×M

· // ⊆ C× Label× C
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Combined Semantics

Transition Rules

x
α // x ′

〈x , ιs, σ〉 α // 〈x ′, ιs, σ〉
(Eval)

〈n, ιs, σ〉 τ // 〈•, ιs, n : σ〉
(Switch)

〈ιs, σ〉 α // 〈ιs ′, σ′〉
〈•, ιs, σ〉 α // 〈•, ιs ′, σ′〉

(Exec)
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Weak Simulation

Definition

A non-empty relation R ⊆ C× C is a weak simulation iff for all
c R d ,

c
α // c ′ implies ∃d ′. d

α +3 d ′ ∧ c ′ R d ′

There exists a maximal R: we name it <

c < d and c 4 d iff c ≈ d

Lemma (Eliding τ)

If c
τ // c ′ is the only possible transition by c , then:

c
τ // c ′

c 4 c ′ and
c

τ // c ′

c < c ′ , or
c

τ // c ′

c ≈ c ′
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Compiler Correctness

Theorem 1 (Soundness)

〈x , ιs, σ〉 < 〈•, compile x ιs, σ〉

Everything program does permitted by expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [ ], [ ]〉 ≈ 〈•, compile x [ ], [ ]〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation
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Compiler Correctness

Theorem 2 (Completeness)

〈x , ιs, σ〉 4 〈•, compile x ιs, σ〉

Program does everything permitted by expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [ ], [ ]〉 ≈ 〈•, compile x [ ], [ ]〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation
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Compiler Correctness

Theorem 3 (Bisimulation)

〈x , ιs, σ〉 ≈ 〈•, compile x ιs, σ〉

Program is a bisimulation of expression semantics

Proof Overview

In this case, soundness and completeness proofs ares identical

Recover separate proofs by replacing ≈ with 4 or <

Completeness may not always be possible or even required

Corollary (Correctness): 〈x , [ ], [ ]〉 ≈ 〈•, compile x [ ], [ ]〉
Selected highlights follow. . .

For full details, see my first year transfer dissertation
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Theorem 3: 〈x , ιs, σ〉 ≈ 〈•, compile x ιs, σ〉

Inductive Case: x ≡ y + z

Have induction hypothesis for y :

∀ιs ′, σ′.
〈
y , ιs ′, σ′〉 ≈ 〈

•, compile y ιs ′, σ′〉
and also for z . Then:

〈•, compile (y + z) ιs, σ〉
≡ { definition of compile }
〈•, compile y (compile z (ADD : ιs)), σ〉

≈ { induction hypothesis for y }
〈y , compile z (ADD : ιs), σ〉

≈ { by lemma 4, given induction hypothesis for z }
〈y + z , ιs, σ〉
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Additional Lemmas

Lemma 4 (Evaluate Left)

Given 〈•, compile z ιs ′, σ′〉 ≈ 〈z , ιs ′, σ′〉,
〈y , compile z (ADD : ιs), σ〉 ≈ 〈y + z , ιs, σ〉

Proof – case y 6≡ m

LHS: y
α // y ′

〈y , compile z (ADD ιs), σ〉
α // 〈y ′, compile z (ADD : ιs), σ〉

(Eval)

RHS: y
α // y ′

y + z
α // y ′ + z

(AddL)

〈y + z , ιs, σ〉 α // 〈y ′ + z , ιs, σ〉
(Eval)
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Additional Lemmas

Lemma 5 (Evaluate Right)

〈z , ADD : ιs, m : σ〉 ≈ 〈m + z , ιs, σ〉

The z 6≡ n case proceeds as lemma 4

Proof Method

Uses simple equational reasoning and logic

No need to consider sets of machine states / expressions

Where there is non-determinism, we can chase diagrams

Weak bisimulation: traces ατ and τα are equivalent



Background Transactional Memory STM Model Bisimulation Conclusion

Chasing Diagrams

Proof of lemma 5 – case z ≡ n

〈m + n, ιs, σ〉
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Conclusion

Future Work

Extension of language with parallelism

Exceptions and interrupts

Proof of STM model

Richer transactional memory constructs?

Forking within transactions
Compensating transactions
Data invariants
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