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Outline

» Brief overview of coalgebras.

» The problem of divergence when considering unguarded
recursion.

» Different approaches to solving the problem.
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A Quick Overview

v

Coalgebras are the dual of algebras
Coalgebras provide elegant models for dynamic systems

 automatas

« transition systems

e abstract machines

* object oriented systems

Coalgebras are defined over a behaviour functor B
B determines what is observable in the system.
More concretely: A coalgebra is an arrow
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X — BX

The carrier X can be thought of as a set of states.
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A Simple Coalgebra: LTS

Labelled transition systems are typical examples of coalgebras.
The behaviour in this case is the Set functor

BX = P(A x X)

As an example, consider the set of states X = {x, y, z}, and set
of actions A= {a, b, c,d}

The system X
N
y B 4

is given by the following coalgebra

a : X—=PAxX)
a(x) = {(ay) (b,2)}
a(y) = {(d,x)}

a(z) = {(e.y)}
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Complete Behaviour

» A coalgebra o: X — BX yields one “step” of behaviour.
» The complete abstract behaviour of a system is obtained

by finality.
X- - - =yX.BX
BX = B(vX.BX)

» The unique map !, into the final coalgebra is often called
unfold
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Observational equivalence
The canonical notion of observational equivalence is
Coalgebraic B-bisimulation
ForseS,te T,RCSxT
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Example: Bisimulation for LTS

For the case of labelled transition systems, the previous
diagram means (s, t) € R iff
V(a,s') e a(s). I(at)ep(t) A (st)eR

V(a,t')e pB(t). Ias)ea(s) A (st)eR
a(s)=0 < p)=0

which corresponds which the ordinary notion of bisimulation.
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A model of Recursion

» Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

» We’ll model recursion by systems of equations

» Example

v(x) = a;x;¥(bix)
o = ¢;¢a)

When are equations guarded?
» Syntactically guarded
e RHS must begin with a non-recursive operator.
 Avoids silly equations like x = x or cycles x = y, y = x, etc.
» Behaviourally guarded.

« It's possible to extract behaviour from the RHS.
» o is syntactically but not behaviourally guarded
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The Problem with Unguarded Equations

v

Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

v

P(x) = {(av X;¢(b;X))}
N—_——

new state

If we cannot obtain behaviour from the RHS of the
equation, then the only possible behaviour is divergence.

v

o =

\4

How to express divergence coalgebraically?
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1) Recursion as Syntactic sugar

» The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

» Programs can be infinite.

» This approach needs a category with more structure like
CPO.

» Approach followed by Bartek Klin, JLAP 2004.

» It's a domain-theory-oriented solution.
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2) Adding divergence to the behaviour

» Consider the behaviour B + 1, where we denote the
elementof 1 by L.

» We can then define ¢ — L.
» Drawback: A coalgebra may detect divergence.
» naughty(t) — if a(t) = L then stop else L

» If we work in the category Set, this might be acceptable!
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3) Ignoring expansions

Consider a behaviour B, X = X + BX
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But equation expansions are visible!

v

Given an equation y = a,

X *a

v

We need to consider a notion of observation that ignores
equation expansion.
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» We define an endofunctor of B, -coalgebras
o, : B, -Coalg — B, -Coalg
Oo(k) = X—F -x+BX
®n(K)
Gpia(k) = X

[k, id]

X+ BX———X+ BX
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3) Transforming the coalgebra

» We define an endofunctor of B, -coalgebras

o, : B, -Coalg — B, -Coalg
do(k) = X—K Xx+BX
Opii(k) = X—rW x4 x9N x| Bx

» Given «, 3: B, -Coalg. We define

(s,a) ~p (t,5)

to be

(s, ®n(a)) ~p (t; ®n(0))

» Claim: if we have n equations, considering ¢, is enough t
eliminate all finite sequences of expansions.
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» Coalgebras provide a nice model of dynamic systems, but
» Divergence can be problematic to model coalgebraically.

» We can transform a coalgebra so that it ignores a given
number of silent steps.

Future Work

» Remove dependence from n by some ¢,

» Correspondence between ~g, and what's expected in
concrete cases.
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