Recursion in Coalgebras

\author{

Mauro Jaskelioff
 mjj@cs.nott.ac.uk
 School of Computer Science \& IT
 | $1 i$ | $\begin{array}{l}\text { The University of } \\ \text { Nottingham }\end{array}$ |
| :--- | :--- |

}

FoP Away Day 2007

Outline

- Brief overview of coalgebras.
- The problem of divergence when considering unguarded recursion.
- Different approaches to solving the problem.

The coalgebraic Approach
A Quick Overview

- Coalgebras are the dual of algebras

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems
- abstract machines

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems
- abstract machines
- object oriented systems

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems
- abstract machines
- object oriented systems
- Coalgebras are defined over a behaviour functor B

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems
- abstract machines
- object oriented systems
- Coalgebras are defined over a behaviour functor B
- B determines what is observable in the system.

The coalgebraic Approach

A Quick Overview

- Coalgebras are the dual of algebras
- Coalgebras provide elegant models for dynamic systems
- automatas
- transition systems
- abstract machines
- object oriented systems
- Coalgebras are defined over a behaviour functor B
- B determines what is observable in the system.
- More concretely: A coalgebra is an arrow

$$
X \rightarrow B X
$$

The carrier X can be thought of as a set of states.

A Simple Coalgebra: LTS

Labelled transition systems are typical examples of coalgebras. The behaviour in this case is the Set functor

$$
B X=\mathcal{P}(A \times X)
$$

A Simple Coalgebra: LTS

Labelled transition systems are typical examples of coalgebras. The behaviour in this case is the Set functor

$$
B X=\mathcal{P}(A \times X)
$$

As an example, consider the set of states $X=\{x, y, z\}$, and set of actions $A=\{a, b, c, d\}$
The system

A Simple Coalgebra: LTS

Labelled transition systems are typical examples of coalgebras. The behaviour in this case is the Set functor

$$
B X=\mathcal{P}(A \times X)
$$

As an example, consider the set of states $X=\{x, y, z\}$, and set of actions $A=\{a, b, c, d\}$
The system

is given by the following coalgebra

$$
\begin{aligned}
\alpha & : X \rightarrow \mathcal{P}(A \times X) \\
\alpha(x) & =\{(a, y),(b, z)\} \\
\alpha(y) & =\{(d, x)\} \\
\alpha(z) & =\{(c, y)\}
\end{aligned}
$$

Complete Behaviour

- A coalgebra $\alpha: X \rightarrow B X$ yields one "step" of behaviour.

Complete Behaviour

- A coalgebra $\alpha: X \rightarrow B X$ yields one "step" of behaviour.
- The complete abstract behaviour of a system is obtained by finality.

$$
\begin{gathered}
X--!_{\alpha}->\nu X . B X \\
\alpha \mid \\
\forall \\
B X \xrightarrow[B!_{\alpha}]{\mid} B(\nu X . B X)
\end{gathered}
$$

Complete Behaviour

- A coalgebra $\alpha: X \rightarrow B X$ yields one "step" of behaviour.
- The complete abstract behaviour of a system is obtained by finality.

$$
\begin{gathered}
X--!_{\alpha}->\nu X . B X \\
\alpha \mid \\
\forall \\
B X \xrightarrow[B!_{\alpha}]{\mid} B(\nu X . B X)
\end{gathered}
$$

- The unique map ${ }_{\alpha}$ into the final coalgebra is often called unfold

Observational equivalence

The canonical notion of observational equivalence is
Coalgebraic B-bisimulation

Observational equivalence

The canonical notion of observational equivalence is
Coalgebraic B-bisimulation
For $s \in S, t \in T, R \subseteq S \times T$

$$
\langle s, \alpha\rangle \sim_{B}\langle t, \beta\rangle \quad \Leftrightarrow \quad \exists \gamma
$$

Observational equivalence

The canonical notion of observational equivalence is
Coalgebraic B-bisimulation
For $s \in S, t \in T, R \subseteq S \times T$

$$
\langle s, \alpha\rangle \sim_{B}\langle t, \beta\rangle \quad \Leftrightarrow \quad \exists \gamma
$$

Theorem:

$$
\langle s, \alpha\rangle \sim_{B}\langle t, \beta\rangle \quad \Leftrightarrow \quad!_{\alpha}(s)=!_{\beta}(t)
$$

Example: Bisimulation for LTS

For the case of labelled transition systems, the previous diagram means $(s, t) \in R$ iff

$$
\begin{gathered}
\forall\left(a, s^{\prime}\right) \in \alpha(s) . \quad \exists\left(a, t^{\prime}\right) \in \beta(t) \wedge\left(s^{\prime}, t^{\prime}\right) \in R \\
\forall\left(a, t^{\prime}\right) \in \beta(t) . \quad \exists\left(a, s^{\prime}\right) \in \alpha(s) \wedge\left(s^{\prime}, t^{\prime}\right) \in R \\
\alpha(s)=\emptyset \quad \Leftrightarrow \quad \beta(t)=\emptyset
\end{gathered}
$$

which corresponds which the ordinary notion of bisimulation.

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded
- RHS must begin with a non-recursive operator.

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded
- RHS must begin with a non-recursive operator.
- Avoids silly equations like $x=x$ or cycles $x=y, y=x$, etc.

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded
- RHS must begin with a non-recursive operator.
- Avoids silly equations like $x=x$ or cycles $x=y, y=x$, etc.
- Behaviourally guarded.

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded
- RHS must begin with a non-recursive operator.
- Avoids silly equations like $x=x$ or cycles $x=y, y=x$, etc.
- Behaviourally guarded.
- It's possible to extract behaviour from the RHS.

A model of Recursion

- Terms of a language as carrier of a coalgebra (which defines the semantics of the language).
- We'll model recursion by systems of equations
- Example

$$
\begin{aligned}
\psi(x) & =a ; x ; \psi(b ; x) \\
\varphi & =\varphi ; \psi(a)
\end{aligned}
$$

When are equations guarded?

- Syntactically guarded
- RHS must begin with a non-recursive operator.
- Avoids silly equations like $x=x$ or cycles $x=y, y=x$, etc.
- Behaviourally guarded.
- It's possible to extract behaviour from the RHS.
- φ is syntactically but not behaviourally guarded

The Problem with Unguarded Equations

- Behaviourally guarded equations are not problematic: one can always obtain a coalgebra for them.

The Problem with Unguarded Equations

- Behaviourally guarded equations are not problematic: one can always obtain a coalgebra for them.
- $\psi(x) \mapsto\{(a, \underbrace{x ; \psi(b ; x)}_{\text {new state }})\}$

The Problem with Unguarded Equations

- Behaviourally guarded equations are not problematic: one can always obtain a coalgebra for them.
- $\psi(x) \mapsto\{(a, \underbrace{x ; \psi(b ; x)}_{\text {new state }})\}$
- If we cannot obtain behaviour from the RHS of the equation, then the only possible behaviour is divergence.

$$
\varphi \quad \mapsto \quad ? ? ?
$$

The Problem with Unguarded Equations

- Behaviourally guarded equations are not problematic: one can always obtain a coalgebra for them.
- $\psi(x) \mapsto\{(a, \underbrace{x ; \psi(b ; x)}_{\text {new state }})\}$
- If we cannot obtain behaviour from the RHS of the equation, then the only possible behaviour is divergence.

$$
\varphi \quad \mapsto \quad ? ? ?
$$

- How to express divergence coalgebraically?

1) Recursion as Syntactic sugar

- The symbols defined by equations are not part of the language. They are syntactic sugar for their infinite expansions.

1) Recursion as Syntactic sugar

- The symbols defined by equations are not part of the language. They are syntactic sugar for their infinite expansions.
- Programs can be infinite.

1) Recursion as Syntactic sugar

- The symbols defined by equations are not part of the language. They are syntactic sugar for their infinite expansions.
- Programs can be infinite.
- This approach needs a category with more structure like CPO.

1) Recursion as Syntactic sugar

- The symbols defined by equations are not part of the language. They are syntactic sugar for their infinite expansions.
- Programs can be infinite.
- This approach needs a category with more structure like CPO.
- Approach followed by Bartek Klin, JLAP 2004.

1) Recursion as Syntactic sugar

- The symbols defined by equations are not part of the language. They are syntactic sugar for their infinite expansions.
- Programs can be infinite.
- This approach needs a category with more structure like CPO.
- Approach followed by Bartek Klin, JLAP 2004.
- It's a domain-theory-oriented solution.

2) Adding divergence to the behaviour

- Consider the behaviour $B+1$, where we denote the element of 1 by \perp.

2) Adding divergence to the behaviour

- Consider the behaviour $B+1$, where we denote the element of 1 by \perp.
- We can then define $\varphi \mapsto \perp$.

2) Adding divergence to the behaviour

- Consider the behaviour $B+1$, where we denote the element of 1 by \perp.
- We can then define $\varphi \mapsto \perp$.
- Drawback: A coalgebra may detect divergence.

2) Adding divergence to the behaviour

- Consider the behaviour $B+1$, where we denote the element of 1 by \perp.
- We can then define $\varphi \mapsto \perp$.
- Drawback: A coalgebra may detect divergence.
- naughty $(t) \mapsto$ if $\alpha(t)=\perp$ then stop else \perp

2) Adding divergence to the behaviour

- Consider the behaviour $B+1$, where we denote the element of 1 by \perp.
- We can then define $\varphi \mapsto \perp$.
- Drawback: A coalgebra may detect divergence.
- naughty $(t) \mapsto$ if $\alpha(t)=\perp$ then stop else \perp
- If we work in the category Set, this might be acceptable!

3) Ignoring expansions

- Consider a behaviour $B_{\perp} X=X+B X$

3) Ignoring expansions

- Consider a behaviour $B_{\perp} X=X+B X$
- But equation expansions are visible!

3) Ignoring expansions

- Consider a behaviour $B_{\perp} X=X+B X$
- But equation expansions are visible!
- Given an equation $\chi=a$,

$$
x \nsim a
$$

3) Ignoring expansions

- Consider a behaviour $B_{\perp} X=X+B X$
- But equation expansions are visible!
- Given an equation $\chi=a$,

$$
x \nsim a
$$

- We need to consider a notion of observation that ignores equation expansion.

3) Transforming the coalgebra

- We define an endofunctor of B_{\perp}-coalgebras

$$
\begin{array}{ll}
\Phi_{n} & : B_{\perp} \text {-Coalg } \rightarrow B_{\perp} \text {-Coalg } \\
\Phi_{0}(k) & =X \xrightarrow{k} X+B X \\
\Phi_{n+1}(k) & =X \xrightarrow{\Phi_{n}(k)} X+B X \xrightarrow{[k, i d]} X+B X
\end{array}
$$

3) Transforming the coalgebra

- We define an endofunctor of B_{\perp}-coalgebras

$$
\begin{array}{ll}
\Phi_{n} & : B_{\perp} \text {-Coalg } \rightarrow B_{\perp} \text {-Coalg } \\
\Phi_{0}(k) & =X \xrightarrow{k} X+B X \\
\Phi_{n+1}(k) & =X \xrightarrow{\Phi_{n}(k)} X+B X \xrightarrow{[k, i d]} X+B X
\end{array}
$$

- Given α, β : B_{\perp}-Coalg. We define

$$
\langle s, \alpha\rangle \approx_{B}^{n}\langle t, \beta\rangle
$$

to be

$$
\left\langle s, \Phi_{n}(\alpha)\right\rangle \sim_{B}\left\langle t, \Phi_{n}(\beta)\right\rangle
$$

3) Transforming the coalgebra

- We define an endofunctor of B_{\perp}-coalgebras

$$
\begin{array}{ll}
\Phi_{n} & : B_{\perp} \text {-Coalg } \rightarrow B_{\perp} \text {-Coalg } \\
\Phi_{0}(k) & =X \xrightarrow{k} X+B X \\
\Phi_{n+1}(k) & =X \xrightarrow{\Phi_{n}(k)} X+B X \xrightarrow{[k, i d]} X+B X
\end{array}
$$

- Given α, β : B_{\perp}-Coalg. We define

$$
\langle s, \alpha\rangle \approx_{B}^{n}\langle t, \beta\rangle
$$

to be

$$
\left\langle s, \Phi_{n}(\alpha)\right\rangle \sim_{B}\left\langle t, \Phi_{n}(\beta)\right\rangle
$$

- Claim: if we have n equations, considering Φ_{n} is enough eliminate all finite sequences of expansions.

Summary

- Coalgebras provide a nice model of dynamic systems, but

Summary

- Coalgebras provide a nice model of dynamic systems, but
- Divergence can be problematic to model coalgebraically.

Summary

- Coalgebras provide a nice model of dynamic systems, but
- Divergence can be problematic to model coalgebraically.
- We can transform a coalgebra so that it ignores a given number of silent steps.

Summary

- Coalgebras provide a nice model of dynamic systems, but
- Divergence can be problematic to model coalgebraically.
- We can transform a coalgebra so that it ignores a given number of silent steps.

Summary

- Coalgebras provide a nice model of dynamic systems, but
- Divergence can be problematic to model coalgebraically.
- We can transform a coalgebra so that it ignores a given number of silent steps.

Future Work

- Remove dependence from n by some Φ_{ω}
- Correspondence between $\approx_{B_{\perp}}$ and what's expected in concrete cases.

