
Recursion in Coalgebras

Mauro Jaskelioff
mjj@cs.nott.ac.uk

School of Computer Science & IT

FoP Away Day 2007



Outline

I Brief overview of coalgebras.

I The problem of divergence when considering unguarded
recursion.

I Different approaches to solving the problem.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras

I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas

• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems

• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines

• object oriented systems
I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B

I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.

I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras
I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.



A Simple Coalgebra: LTS
Labelled transition systems are typical examples of coalgebras.
The behaviour in this case is the Set functor

BX = P(A× X )

As an example, consider the set of states X = {x , y , z}, and set
of actions A = {a,b, c,d}
The system x

a

����
��

��
�

b

��>
>>

>>
>>

>

y

d
00

zc
oo

is given by the following coalgebra

α : X → P(A× X )

α(x) = {(a, y), (b, z)}
α(y) = {(d , x)}
α(z) = {(c, y)}



A Simple Coalgebra: LTS
Labelled transition systems are typical examples of coalgebras.
The behaviour in this case is the Set functor

BX = P(A× X )

As an example, consider the set of states X = {x , y , z}, and set
of actions A = {a,b, c,d}
The system x

a

����
��

��
�

b

��>
>>

>>
>>

>

y

d
00

zc
oo

is given by the following coalgebra

α : X → P(A× X )

α(x) = {(a, y), (b, z)}
α(y) = {(d , x)}
α(z) = {(c, y)}



A Simple Coalgebra: LTS
Labelled transition systems are typical examples of coalgebras.
The behaviour in this case is the Set functor

BX = P(A× X )

As an example, consider the set of states X = {x , y , z}, and set
of actions A = {a,b, c,d}
The system x

a

����
��

��
�

b

��>
>>

>>
>>

>

y

d
00

zc
oo

is given by the following coalgebra

α : X → P(A× X )

α(x) = {(a, y), (b, z)}
α(y) = {(d , x)}
α(z) = {(c, y)}



Complete Behaviour

I A coalgebra α : X → BX yields one “step” of behaviour.

I The complete abstract behaviour of a system is obtained
by finality.

X
!α //_______

α

��

νX .BX
∼=

��
BX B!α

// B(νX .BX )

I The unique map !α into the final coalgebra is often called
unfold



Complete Behaviour

I A coalgebra α : X → BX yields one “step” of behaviour.
I The complete abstract behaviour of a system is obtained

by finality.

X
!α //_______

α

��

νX .BX
∼=

��
BX B!α

// B(νX .BX )

I The unique map !α into the final coalgebra is often called
unfold



Complete Behaviour

I A coalgebra α : X → BX yields one “step” of behaviour.
I The complete abstract behaviour of a system is obtained

by finality.

X
!α //_______

α

��

νX .BX
∼=

��
BX B!α

// B(νX .BX )

I The unique map !α into the final coalgebra is often called
unfold



Observational equivalence
The canonical notion of observational equivalence is

Coalgebraic B-bisimulation

For s ∈ S, t ∈ T , R ⊆ S × T

〈s, α〉 ∼B 〈t , β〉 ⇔ ∃γ

Rr1

xxqqqqqqqq r2

&&MMMMMMMM

∃γ

���
�
�
�

S

α

��

T

β

��

BR

Br1xxqqqqqq
Br2 &&MMMMMM

BS BT

Theorem:

〈s, α〉 ∼B 〈t , β〉 ⇔ !α(s) =!β(t)



Observational equivalence
The canonical notion of observational equivalence is

Coalgebraic B-bisimulation

For s ∈ S, t ∈ T , R ⊆ S × T

〈s, α〉 ∼B 〈t , β〉 ⇔ ∃γ

Rr1

xxqqqqqqqq r2

&&MMMMMMMM

∃γ

���
�
�
�

S

α

��

T

β

��

BR

Br1xxqqqqqq
Br2 &&MMMMMM

BS BT

Theorem:

〈s, α〉 ∼B 〈t , β〉 ⇔ !α(s) =!β(t)



Observational equivalence
The canonical notion of observational equivalence is

Coalgebraic B-bisimulation

For s ∈ S, t ∈ T , R ⊆ S × T

〈s, α〉 ∼B 〈t , β〉 ⇔ ∃γ

Rr1

xxqqqqqqqq r2

&&MMMMMMMM

∃γ

���
�
�
�

S

α

��

T

β

��

BR

Br1xxqqqqqq
Br2 &&MMMMMM

BS BT

Theorem:

〈s, α〉 ∼B 〈t , β〉 ⇔ !α(s) =!β(t)



Example: Bisimulation for LTS

For the case of labelled transition systems, the previous
diagram means (s, t) ∈ R iff

∀(a, s′) ∈ α(s). ∃(a, t ′) ∈ β(t) ∧ (s′, t ′) ∈ R

∀(a, t ′) ∈ β(t). ∃(a, s′) ∈ α(s) ∧ (s′, t ′) ∈ R

α(s) = ∅ ⇔ β(t) = ∅

which corresponds which the ordinary notion of bisimulation.



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations

I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.

• Avoids silly equations like x = x or cycles x = y , y = x , etc.
I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.
• It’s possible to extract behaviour from the RHS.

• ϕ is syntactically but not behaviourally guarded



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?
I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.
• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded



The Problem with Unguarded Equations

I Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

I ψ(x) 7→

(a, x ;ψ(b; x)︸ ︷︷ ︸
new state

)


I If we cannot obtain behaviour from the RHS of the

equation, then the only possible behaviour is divergence.

ϕ 7→ ???

I How to express divergence coalgebraically?



The Problem with Unguarded Equations

I Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

I ψ(x) 7→

(a, x ;ψ(b; x)︸ ︷︷ ︸
new state

)



I If we cannot obtain behaviour from the RHS of the
equation, then the only possible behaviour is divergence.

ϕ 7→ ???

I How to express divergence coalgebraically?



The Problem with Unguarded Equations

I Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

I ψ(x) 7→

(a, x ;ψ(b; x)︸ ︷︷ ︸
new state

)


I If we cannot obtain behaviour from the RHS of the

equation, then the only possible behaviour is divergence.

ϕ 7→ ???

I How to express divergence coalgebraically?



The Problem with Unguarded Equations

I Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

I ψ(x) 7→

(a, x ;ψ(b; x)︸ ︷︷ ︸
new state

)


I If we cannot obtain behaviour from the RHS of the

equation, then the only possible behaviour is divergence.

ϕ 7→ ???

I How to express divergence coalgebraically?



1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.



1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.



1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.



1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.



1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.



2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!



2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!



2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!



2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!



2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!



3) Ignoring expansions

I Consider a behaviour B⊥X = X + BX

I But equation expansions are visible!

I Given an equation χ = a,

χ 6∼ a

I We need to consider a notion of observation that ignores
equation expansion.



3) Ignoring expansions

I Consider a behaviour B⊥X = X + BX

I But equation expansions are visible!

I Given an equation χ = a,

χ 6∼ a

I We need to consider a notion of observation that ignores
equation expansion.



3) Ignoring expansions

I Consider a behaviour B⊥X = X + BX

I But equation expansions are visible!

I Given an equation χ = a,

χ 6∼ a

I We need to consider a notion of observation that ignores
equation expansion.



3) Ignoring expansions

I Consider a behaviour B⊥X = X + BX

I But equation expansions are visible!

I Given an equation χ = a,

χ 6∼ a

I We need to consider a notion of observation that ignores
equation expansion.



3) Transforming the coalgebra

I We define an endofunctor of B⊥-coalgebras

Φn : B⊥-Coalg → B⊥-Coalg

Φ0(k) = X k //X + BX

Φn+1(k) = X
Φn(k) //X + BX

[k ,id ] //X + BX

I Given α, β : B⊥-Coalg. We define

〈s, α〉 ≈n
B 〈t , β〉

to be
〈s,Φn(α)〉 ∼B 〈t ,Φn(β)〉

I Claim: if we have n equations, considering Φn is enough to
eliminate all finite sequences of expansions.



3) Transforming the coalgebra

I We define an endofunctor of B⊥-coalgebras

Φn : B⊥-Coalg → B⊥-Coalg

Φ0(k) = X k //X + BX

Φn+1(k) = X
Φn(k) //X + BX

[k ,id ] //X + BX

I Given α, β : B⊥-Coalg. We define

〈s, α〉 ≈n
B 〈t , β〉

to be
〈s,Φn(α)〉 ∼B 〈t ,Φn(β)〉

I Claim: if we have n equations, considering Φn is enough to
eliminate all finite sequences of expansions.



3) Transforming the coalgebra

I We define an endofunctor of B⊥-coalgebras

Φn : B⊥-Coalg → B⊥-Coalg

Φ0(k) = X k //X + BX

Φn+1(k) = X
Φn(k) //X + BX

[k ,id ] //X + BX

I Given α, β : B⊥-Coalg. We define

〈s, α〉 ≈n
B 〈t , β〉

to be
〈s,Φn(α)〉 ∼B 〈t ,Φn(β)〉

I Claim: if we have n equations, considering Φn is enough to
eliminate all finite sequences of expansions.



Summary

I Coalgebras provide a nice model of dynamic systems, but

I Divergence can be problematic to model coalgebraically.
I We can transform a coalgebra so that it ignores a given

number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.



Summary

I Coalgebras provide a nice model of dynamic systems, but
I Divergence can be problematic to model coalgebraically.

I We can transform a coalgebra so that it ignores a given
number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.



Summary

I Coalgebras provide a nice model of dynamic systems, but
I Divergence can be problematic to model coalgebraically.
I We can transform a coalgebra so that it ignores a given

number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.



Summary

I Coalgebras provide a nice model of dynamic systems, but
I Divergence can be problematic to model coalgebraically.
I We can transform a coalgebra so that it ignores a given

number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.



Summary

I Coalgebras provide a nice model of dynamic systems, but
I Divergence can be problematic to model coalgebraically.
I We can transform a coalgebra so that it ignores a given

number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.


	The Coalgebraic Approach
	Recursion in Coalgebras
	Three approaches
	Ignoring equation expansion

	Summary

