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Outline

I Brief overview of coalgebras.

I The problem of divergence when considering unguarded
recursion.

I Different approaches to solving the problem.



The coalgebraic Approach
A Quick Overview

I Coalgebras are the dual of algebras

I Coalgebras provide elegant models for dynamic systems

• automatas
• transition systems
• abstract machines
• object oriented systems

I Coalgebras are defined over a behaviour functor B
I B determines what is observable in the system.
I More concretely: A coalgebra is an arrow

X → BX

The carrier X can be thought of as a set of states.
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A Simple Coalgebra: LTS
Labelled transition systems are typical examples of coalgebras.
The behaviour in this case is the Set functor

BX = P(A× X )

As an example, consider the set of states X = {x , y , z}, and set
of actions A = {a,b, c,d}
The system x
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is given by the following coalgebra

α : X → P(A× X )

α(x) = {(a, y), (b, z)}
α(y) = {(d , x)}
α(z) = {(c, y)}
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Complete Behaviour

I A coalgebra α : X → BX yields one “step” of behaviour.

I The complete abstract behaviour of a system is obtained
by finality.

X
!α //_______

α

��

νX .BX
∼=

��
BX B!α

// B(νX .BX )

I The unique map !α into the final coalgebra is often called
unfold
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Observational equivalence
The canonical notion of observational equivalence is

Coalgebraic B-bisimulation

For s ∈ S, t ∈ T , R ⊆ S × T

〈s, α〉 ∼B 〈t , β〉 ⇔ ∃γ
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〈s, α〉 ∼B 〈t , β〉 ⇔ !α(s) =!β(t)
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Example: Bisimulation for LTS

For the case of labelled transition systems, the previous
diagram means (s, t) ∈ R iff

∀(a, s′) ∈ α(s). ∃(a, t ′) ∈ β(t) ∧ (s′, t ′) ∈ R

∀(a, t ′) ∈ β(t). ∃(a, s′) ∈ α(s) ∧ (s′, t ′) ∈ R

α(s) = ∅ ⇔ β(t) = ∅

which corresponds which the ordinary notion of bisimulation.



A model of Recursion

I Terms of a language as carrier of a coalgebra (which
defines the semantics of the language).

I We’ll model recursion by systems of equations
I Example

ψ(x) = a ; x ;ψ(b; x)

ϕ = ϕ ;ψ(a)

When are equations guarded?

I Syntactically guarded

• RHS must begin with a non-recursive operator.
• Avoids silly equations like x = x or cycles x = y , y = x , etc.

I Behaviourally guarded.

• It’s possible to extract behaviour from the RHS.
• ϕ is syntactically but not behaviourally guarded
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The Problem with Unguarded Equations

I Behaviourally guarded equations are not problematic: one
can always obtain a coalgebra for them.

I ψ(x) 7→

(a, x ;ψ(b; x)︸ ︷︷ ︸
new state

)


I If we cannot obtain behaviour from the RHS of the

equation, then the only possible behaviour is divergence.

ϕ 7→ ???

I How to express divergence coalgebraically?
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1) Recursion as Syntactic sugar

I The symbols defined by equations are not part of the
language. They are syntactic sugar for their infinite
expansions.

I Programs can be infinite.

I This approach needs a category with more structure like
CPO.

I Approach followed by Bartek Klin, JLAP 2004.

I It’s a domain-theory-oriented solution.
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2) Adding divergence to the behaviour

I Consider the behaviour B + 1, where we denote the
element of 1 by ⊥.

I We can then define ϕ 7→ ⊥.

I Drawback: A coalgebra may detect divergence.

I naughty(t) 7→ if α(t) = ⊥ then stop else ⊥

I If we work in the category Set , this might be acceptable!
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3) Ignoring expansions

I Consider a behaviour B⊥X = X + BX

I But equation expansions are visible!

I Given an equation χ = a,

χ 6∼ a

I We need to consider a notion of observation that ignores
equation expansion.
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3) Transforming the coalgebra

I We define an endofunctor of B⊥-coalgebras

Φn : B⊥-Coalg → B⊥-Coalg

Φ0(k) = X k //X + BX

Φn+1(k) = X
Φn(k) //X + BX

[k ,id ] //X + BX

I Given α, β : B⊥-Coalg. We define

〈s, α〉 ≈n
B 〈t , β〉

to be
〈s,Φn(α)〉 ∼B 〈t ,Φn(β)〉

I Claim: if we have n equations, considering Φn is enough to
eliminate all finite sequences of expansions.
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Summary

I Coalgebras provide a nice model of dynamic systems, but

I Divergence can be problematic to model coalgebraically.
I We can transform a coalgebra so that it ignores a given

number of silent steps.

Future Work

I Remove dependence from n by some Φω

I Correspondence between ≈B⊥ and what’s expected in
concrete cases.
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