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The current Yampa implementation
• A Yampa program can be represented as a

dynamic network of signal functions.
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• At each time step, the value of each signal
function is re-calculated.
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The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent
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The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

• Those signal functions that produce Event

values will be producing NoEvent most of the
time.

• Any stateless signal functions that have
unchanged input will remain unchanged.

• The same is true of some, but not all (eg.
integral), stateful signal functions.

• Re-calculating them all every time step is a
waste of computational resources.
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The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
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The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

- Which signal functions will output a
constant signal while their input remains
unchanged.

- The dependencies of each signal function.
• At each time interval, we can propagate

changes through the network.
• Unfortunately, the Yampa implementation

creates a lot of incidental dependencies.
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The problem, by example
sfDisF , sfDisR, sfDisL :: SF Input Distance

sfLampCol :: SF Distance Colour

sfOut :: SF (Colour ,Direction)→ Output

turnDir :: Distance → Distance → Distance → Direction

robot :: SF Input Output

robot = proc inp → do

fDis ← sfDisF −≺ inp

lDis ← sfDisR −≺ inp

rDis ← sfDisL −≺ inp

dir ← arr turnDir−≺ (fDis, lDis, rDis)

col ← sfLampCol −≺ fDis

sfOut −≺ (col , dir)
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The problem, by example

• Ideally, we’d like a dependency graph that
looks like:
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• But the code so far has been syntactic sugar.
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The problem, by example

After translation into point free arrow code, it
becomes:

robot =

arr id&&&sfDisF ≫

arr id&&&((λ(inp, fDis)→ inp) ≫ sfDisL) ≫

arr id&&&((λ((inp, fDis), lDis)→ inp) ≫ sfDisR) ≫

arr id&&&((λ(((inp, fDis), lDis), rDis)→ (fDis, lDis, rDis)) ≫ arr turnDir) ≫

arr id&&&((λ((((inp, fDis), lDis), rDis), dir)→ fDis) ≫ sfLampCol) ≫

arr (λ(((((inp, fDis), lDis), rDis), dir), col)→ (col , dir)) ≫

sfOut
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The problem, by example
• After each signal function, all the values so far

are tupled together, and then passed on.
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The problem, by example
• After each signal function, all the values so far

are tupled together, and then passed on.
• It is this that creates the incidental

dependencies.

output

sfDisF

arr id arr id

\(inp,fDis) -> inp sfDisL

arr id

sfDisR\((inp,fDis),lDis) -> inp

arr id

\(((inp,fDis),lDis),rDis) -> (fDis,lDis,rDis) arr turnDir

arr id

\((((inp,fDis),lDis),rDis),dir) -> fDis sfLampCol

input ((input,fDis),lDis)(input,fDis)

(((input,fDis),lDis),rDis)

((((input,fDis),lDis),rDis),dir)

(col,dir)

(((((input,fDis),lDis),rDis),dir),col)

\(((((inp,fDis),lDis),rDis),dir),col) -> (col,dir) sfOut
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Proposed Solution
• Abandon the Arrow framework for

implementation purposes.
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Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

• But try to keep the advantages of arrows,
which include:
- A syntax similar to the syntactic sugar.
- A clean, modular semantics that supports

reasoning.

• We can then create dependency graphs
without incidental dependencies.
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Difficulties of the solution

• Yampa’s dynamic nature:
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Difficulties of the solution

• Yampa’s dynamic nature:

- Dependencies will change as the network
structure changes.

- Signal functions are first class entities, and
thus can be created during runtime.

• How do you incorporate feedback into a
dependency graph?
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Summary

• The current Yampa implementation is not as
efficient as it could be.

• This is due to the restrictions of the Arrow
Framework.

• A new implementation is needed, but it
should keep the strengths of Arrows.
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