
FOP Away Day 2007
Scalable Functional Reactive

Programming
Neil Sculthorpe

School of Computer Science and Information Technology

University of Nottingham, United Kingdom

FOP Away Day, 17th Jan 2007: Scalable FRP – p.1/12



Outline

• The current Yampa implementation

• The problem, by example

• Proposed solution

• Difficulties of the solution

FOP Away Day, 17th Jan 2007: Scalable FRP – p.2/12



The current Yampa implementation
• A Yampa program can be represented as a

dynamic network of signal functions.

SF (a,b) (g,i)

SF a c

SF c d

SF (d,e) g

SF (b,c,h) (e,f)

SF f h SF h ih i

g

d

e

c

f

a

b
(g,i)(a,b)

FOP Away Day, 17th Jan 2007: Scalable FRP – p.3/12



The current Yampa implementation
• A Yampa program can be represented as a

dynamic network of signal functions.

SF (a,b) (g,i)

SF a c

SF c d

SF (d,e) g

SF (b,c,h) (e,f)

SF f h SF h ih i

g

d

e

c

f

a

b
(g,i)(a,b)

• At each time step, the value of each signal
function is re-calculated.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.3/12



The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

FOP Away Day, 17th Jan 2007: Scalable FRP – p.4/12



The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

• Those signal functions that produce Event

values will be producing NoEvent most of the
time.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.4/12



The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

• Those signal functions that produce Event

values will be producing NoEvent most of the
time.

• Any stateless signal functions that have
unchanged input will remain unchanged.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.4/12



The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

• Those signal functions that produce Event

values will be producing NoEvent most of the
time.

• Any stateless signal functions that have
unchanged input will remain unchanged.

• The same is true of some, but not all (eg.
integral), stateful signal functions.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.4/12



The current Yampa implementation
• Yampa makes extensive use of events.

data Event a = Event a | NoEvent

• Those signal functions that produce Event

values will be producing NoEvent most of the
time.

• Any stateless signal functions that have
unchanged input will remain unchanged.

• The same is true of some, but not all (eg.
integral), stateful signal functions.

• Re-calculating them all every time step is a
waste of computational resources.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.4/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

- Which signal functions will output a
constant signal while their input remains
unchanged.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

- Which signal functions will output a
constant signal while their input remains
unchanged.

- The dependencies of each signal function.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

- Which signal functions will output a
constant signal while their input remains
unchanged.

- The dependencies of each signal function.
• At each time interval, we can propagate

changes through the network.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The current Yampa implementation
• It would be better to re-calculate only the

signal functions that need updating.
• We can a construct graph recording:

- Which signal functions will output a
constant signal while their input remains
unchanged.

- The dependencies of each signal function.
• At each time interval, we can propagate

changes through the network.
• Unfortunately, the Yampa implementation

creates a lot of incidental dependencies.
FOP Away Day, 17th Jan 2007: Scalable FRP – p.5/12



The problem, by example
sfDisF , sfDisR, sfDisL :: SF Input Distance

sfLampCol :: SF Distance Colour

sfOut :: SF (Colour ,Direction)→ Output

turnDir :: Distance → Distance → Distance → Direction

robot :: SF Input Output

robot = proc inp → do

fDis ← sfDisF −≺ inp

lDis ← sfDisR −≺ inp

rDis ← sfDisL −≺ inp

dir ← arr turnDir−≺ (fDis, lDis, rDis)

col ← sfLampCol −≺ fDis

sfOut −≺ (col , dir)

FOP Away Day, 17th Jan 2007: Scalable FRP – p.6/12



The problem, by example

• Ideally, we’d like a dependency graph that
looks like:

outputinput

sfOut

arr turnDir

sfLampCol col

sfDisR

sfDisF

sfDisL
dir

disF

disL

disR

disF

output
input

input

input

FOP Away Day, 17th Jan 2007: Scalable FRP – p.7/12



The problem, by example

• Ideally, we’d like a dependency graph that
looks like:

outputinput

sfOut

arr turnDir

sfLampCol col

sfDisR

sfDisF

sfDisL
dir

disF

disL

disR

disF

output
input

input

input

• But the code so far has been syntactic sugar.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.7/12



The problem, by example

After translation into point free arrow code, it
becomes:

robot =

arr id&&&sfDisF ≫

arr id&&&((λ(inp, fDis)→ inp) ≫ sfDisL) ≫

arr id&&&((λ((inp, fDis), lDis)→ inp) ≫ sfDisR) ≫

arr id&&&((λ(((inp, fDis), lDis), rDis)→ (fDis, lDis, rDis)) ≫ arr turnDir) ≫

arr id&&&((λ((((inp, fDis), lDis), rDis), dir)→ fDis) ≫ sfLampCol) ≫

arr (λ(((((inp, fDis), lDis), rDis), dir), col)→ (col , dir)) ≫

sfOut

FOP Away Day, 17th Jan 2007: Scalable FRP – p.8/12



The problem, by example
• After each signal function, all the values so far

are tupled together, and then passed on.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.9/12



The problem, by example
• After each signal function, all the values so far

are tupled together, and then passed on.
• It is this that creates the incidental

dependencies.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.9/12



The problem, by example
• After each signal function, all the values so far

are tupled together, and then passed on.
• It is this that creates the incidental

dependencies.

output

sfDisF

arr id arr id

\(inp,fDis) -> inp sfDisL

arr id

sfDisR\((inp,fDis),lDis) -> inp

arr id

\(((inp,fDis),lDis),rDis) -> (fDis,lDis,rDis) arr turnDir

arr id

\((((inp,fDis),lDis),rDis),dir) -> fDis sfLampCol

input ((input,fDis),lDis)(input,fDis)

(((input,fDis),lDis),rDis)

((((input,fDis),lDis),rDis),dir)

(col,dir)

(((((input,fDis),lDis),rDis),dir),col)

\(((((inp,fDis),lDis),rDis),dir),col) -> (col,dir) sfOut

FOP Away Day, 17th Jan 2007: Scalable FRP – p.9/12



Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.10/12



Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

• But try to keep the advantages of arrows,
which include:

FOP Away Day, 17th Jan 2007: Scalable FRP – p.10/12



Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

• But try to keep the advantages of arrows,
which include:
- A syntax similar to the syntactic sugar.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.10/12



Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

• But try to keep the advantages of arrows,
which include:
- A syntax similar to the syntactic sugar.
- A clean, modular semantics that supports

reasoning.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.10/12



Proposed Solution
• Abandon the Arrow framework for

implementation purposes.

• But try to keep the advantages of arrows,
which include:
- A syntax similar to the syntactic sugar.
- A clean, modular semantics that supports

reasoning.

• We can then create dependency graphs
without incidental dependencies.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.10/12



Difficulties of the solution

• Yampa’s dynamic nature:

FOP Away Day, 17th Jan 2007: Scalable FRP – p.11/12



Difficulties of the solution

• Yampa’s dynamic nature:

- Dependencies will change as the network
structure changes.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.11/12



Difficulties of the solution

• Yampa’s dynamic nature:

- Dependencies will change as the network
structure changes.

- Signal functions are first class entities, and
thus can be created during runtime.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.11/12



Difficulties of the solution

• Yampa’s dynamic nature:

- Dependencies will change as the network
structure changes.

- Signal functions are first class entities, and
thus can be created during runtime.

• How do you incorporate feedback into a
dependency graph?

FOP Away Day, 17th Jan 2007: Scalable FRP – p.11/12



Summary

• The current Yampa implementation is not as
efficient as it could be.

• This is due to the restrictions of the Arrow
Framework.

• A new implementation is needed, but it
should keep the strengths of Arrows.

FOP Away Day, 17th Jan 2007: Scalable FRP – p.12/12


	Outline
	The current Yampa implementation
	The current Yampa implementation
	The current Yampa implementation
	The problem, by example
	The problem, by example
	The problem, by example
	The problem, by example
	Proposed Solution
	Difficulties of the solution
	Summary

