Dependent types, pattern matching, elimination

Nicolas Oury

18/01/2007

Pattern matching

- In functional programming languages:

Pattern matching

- In functional programming languages:
data Nat $=0 \mid S$ Nat
data List $=$ Empty | Cons Nat List

Pattern matching

- In functional programming languages:

$$
\begin{aligned}
& \text { data Nat }=0 \mid S \text { Nat } \\
& \text { data List }=\text { Empty } \mid \text { Cons Nat List } \\
& \text { plus } 0 \quad m=m \\
& \text { plus }(S n) m=S \text { (plus } n m)
\end{aligned}
$$

Pattern matching

- In functional programming languages:

$$
\begin{aligned}
& \text { data Nat }=0 \text { | S Nat } \\
& \text { data List }=\text { Empty | Cons Nat List } \\
& \text { plus } 0 \quad m=m \\
& \text { plus (S n) } m=S \text { (plus } n m \text {) } \\
& \text { tail (Cons }-l \text {) }=1 \\
& \text { tail Empty }=\text { error "empty list" }
\end{aligned}
$$

Dependent types

- More precise data types:

Dependent types

- More precise data types:

$$
\operatorname{data} \frac{n: \text { Nat }}{\text { List } n: \star}
$$

Dependent types

- More precise data types:

$$
\operatorname{data} \frac{n: \text { Nat }}{\text { List } n: \star}
$$

- More precise types for constructors:

Dependent types

- More precise data types:

$$
\operatorname{data} \frac{n: \text { Nat }}{\text { List } n: \star}
$$

- More precise types for constructors:

$$
\text { Empty : List } O
$$

Dependent types

- More precise data types:

$$
\operatorname{data} \frac{n: \text { Nat }}{\text { List } n: \star}
$$

- More precise types for constructors:

e : Nat; I : List n
Empty : List O Cons el : List (S n)

Dependent types

- Represent predicates:

Dependent types

- Represent predicates:

$$
\text { data } \frac{n, m: \text { Nat }}{n \leq m: \star}
$$

Dependent types

- Represent predicates:

$$
\text { data } \frac{n, m: \text { Nat }}{n \leq m: \star}
$$

$$
\frac{n: \text { Nat }}{\text { Le_eq } n: n \leq n}
$$

Dependent types

- Represent predicates:

$$
\begin{gathered}
\text { data } \frac{n, m: \text { Nat }}{n \leq m: \star} \\
\frac{n: \text { Nat }}{\text { Le_eq } n: n \leq n} \frac{n, m: \text { Nat; } p: n \leq m}{\text { Le_s } n m p: n \leq(S m)}
\end{gathered}
$$

Pattern matching with dependent types

- More precise types for functions:

Pattern matching with dependent types

- More precise types for functions:

```
tail :: list (S n) -> list n
tail (Cons _ l) = l
```


Pattern matching with dependent types

- More precise types for functions:

```
tail :: list (S n) > list n
tail (Cons _ l) = l
tail Empty = ???
```


Pattern matching with dependent types

- More precise types for functions:

```
tail :: list (S n) -> list n
tail (Cons _ l) = l
tail Empty = ???
```

- What do we want to write for ????

Pattern matching with dependent types

- More precise types for functions:
tail : : list $(S n) \rightarrow$ list n
tail (Cons _ l) = l
tail Empty $=$???
- What do we want to write for ????
- A default case?

Pattern matching with dependent types

- More precise types for functions:
tail : : list (S n) \rightarrow list n
tail (Cons _ l) = l
tail Empty $=$???
- What do we want to write for ????
- A default case?
- A proof the case is useless?
- We want to automatically eliminate such a case
- Undecidable problem

Pattern matching with dependent types

- More precise types for functions:
tail : : list $(S n) \rightarrow$ list n
tail (Cons _ l) = l
tail Empty $=$???
- What do we want to write for ????
- A default case?
- A proof the case is useless?
- We want to automatically eliminate such a case

Pattern matching with dependent types

- More precise types for functions:
tail : : list (S n) \rightarrow list n
tail (Cons - l) = l
tail Empty $=$???
- What do we want to write for ????
- A default case?
- A proof the case is useless?
- We want to automatically eliminate such a case
- Undecidable problem

Undecidability

- Post problem
- $\left(u_{1}, v_{1}\right) \ldots\left(u_{n}, v_{n}\right)$ words on $\{a ; b\}$
- $u_{i_{1}} \ldots u_{i_{k}}=v_{i_{1}} \ldots v_{i_{k}}$ for a non empty $\left(i_{j}\right)_{1 \leq j \leq k}$?
- This is an undecidable problem
\qquad

Undecidability

- Post problem
- $\left(u_{1}, v_{1}\right) \ldots\left(u_{n}, v_{n}\right)$ words on $\{a ; b\}$
- $u_{i_{1}} \ldots u_{i_{k}}=v_{i_{1}} \ldots v_{i_{k}}$ for a non empty $\left(i_{j}\right)_{1 \leq j \leq k}$?
- This is an undecidable problem
- Translates words into an inductive data type :

$$
\begin{aligned}
& \text { Word }= \\
& \epsilon: \text { Word } \\
& \text { A }: \text { Word } \rightarrow \text { Word } \\
& B \quad: \text { Word } \rightarrow \text { Word }
\end{aligned}
$$

- Notation to add a prefix to a word :

$$
\overline{a b b}(w)=A(B(B(w)))
$$

Undecidability

- Post problem
- $\left(u_{1}, v_{1}\right) \ldots\left(u_{n}, v_{n}\right)$ words on $\{a ; b\}$
- $u_{i_{1}} \ldots u_{i_{k}}=v_{i_{1}} \ldots v_{i_{k}}$ for a non empty $\left(i_{j}\right)_{1 \leq j \leq k}$?
- We translates a post problem into an inductive family of data types:

```
I _ _ =
    init : I \epsilon \epsilon
    ulv1 : I u v -> I \overline{u1 [u] }\overline{v1[v]}
```

$$
u n v n: I \quad u \quad v \rightarrow I \overline{u n}[u] \overline{v n}[v]
$$

Undecidability

- Post problem
- $\left(u_{1}, v_{1}\right) \ldots\left(u_{n}, v_{n}\right)$ words on $\{a ; b\}$
- $u_{i_{1}} \ldots u_{i_{k}}=v_{i_{1}} \ldots v_{i_{k}}$ for a non empty $\left(i_{j}\right)_{1 \leq j \leq k}$?
- We translates a post problem into an inductive family of data types:

```
I _ _ =
    init : I \epsilon \epsilon
    ulv1 : I u v -> I \overline{u1 [u] }\overline{v1[v]}
```

$$
u n v n: I \quad u \quad v \rightarrow I \overline{u n}[u] \overline{v n}[v]
$$

- Is this function total?

```
f :: I w w -> nat
f init = O
```


Pattern matching by elimination

- An eliminator :
\forall P,
$\forall \quad \Delta_{1} \quad \mathrm{P} \overrightarrow{s_{1}} \rightarrow$
$\begin{array}{lllll}\forall \Delta_{m} & \mathrm{P} & \overrightarrow{s_{m}} \\ \forall \Delta & \mathrm{P} & \vec{t}\end{array}$
For example, for I : List (S n)

Pattern matching by elimination

- An eliminator :
\forall P,
$\forall \Delta_{1} \mathrm{P} \overrightarrow{s_{1}} \rightarrow$
$\begin{array}{lllll}\forall & \Delta_{m} & \mathrm{P} & \overrightarrow{S_{m}} \\ \forall \Delta & \mathrm{P} & \vec{t} & \end{array}$
- For example, for I : List (S n), List-elim (S n) I :

Pattern matching by elimination

- An eliminator :
$\forall \mathrm{P}$,
$\quad \forall \Delta_{1} \mathrm{P} \overrightarrow{s_{1}} \rightarrow$
$\begin{array}{lllll}\forall \Delta_{m} & \mathrm{P} & \overrightarrow{s_{m}} \rightarrow \\ \forall \Delta & \mathrm{P} & \vec{t}\end{array}$
- For example, for I : List (S n), List-elim (Sn) I :
$\forall \mathrm{P}$,
P O Empty \rightarrow
\forall me : Nat, \forall l' : List $m, P(S m)$ (Cons e l') P (Sn) l

Pattern matching by elimination

- An eliminator :
$\forall \mathrm{P}$,
$\quad \forall \Delta_{1} \mathrm{P} \overrightarrow{s_{1}} \rightarrow$
$\begin{array}{lllll}\forall & \Delta_{m} & \mathrm{P} & \overrightarrow{s_{m}} \rightarrow \\ \forall \Delta & \mathrm{P} & \vec{t}\end{array}$
- For example, for I : List (S n), List-elim (S n) I :
$\forall \mathrm{P}$,
P O Empty \rightarrow
\forall m,e : Nat, $\forall l^{\prime}$: List $m, P(S m)$ (Cons e l')
P (S n) l
- What P to use?

Pattern matching by elimination

Pattern matching by elimination

- We apply the elimination to a goal $\forall \Gamma, T$

Pattern matching by elimination

- We apply the elimination to a goal $\forall \Gamma, T$
- We have an eliminator targeting $P \vec{t}$

Pattern matching by elimination

- We apply the elimination to a goal $\forall \Gamma, T$
- We have an eliminator targeting $P \vec{t}$
- We choose $P \equiv \lambda \vec{x}, \forall \Gamma, \vec{x}=\vec{t} \rightarrow T$

Pattern matching by elimination

- We apply the elimination to a goal $\forall \Gamma, T$
- We have an eliminator targeting $P \vec{t}$
- We choose $P \equiv \lambda \vec{x}, \forall \Gamma, \vec{x}=\vec{t} \rightarrow T$
- So $P \vec{t} \equiv \forall \Gamma, \vec{t}=\vec{t} \rightarrow T$

Pattern matching by elimination

- We apply the elimination to a goal $\forall \Gamma, T$
- We have an eliminator targeting $P \vec{t}$
- We choose $P \equiv \lambda \vec{x}, \forall \Gamma, \vec{x}=\vec{t} \rightarrow T$
- So $P \vec{t} \equiv \forall \Gamma, \vec{t}=\vec{t} \rightarrow T$
- New goals: $\forall \Delta_{i}, \forall \Gamma, \overrightarrow{s_{i}}=\vec{t} \rightarrow T$

Example

```
\(\forall \mathrm{P}\),
    P O Empty \(\rightarrow\)
\(\forall \mathrm{m}, \mathrm{e}:\) Nat, \(\forall \mathrm{l}^{\prime}\) : List m, P (Sm) (Cons el') \(\rightarrow\)
    P (Sn) l
```

 tail : \(\forall \mathrm{n}\) : Nat, \(\forall \mathrm{I}\) : List (Sn), List n

Example

```
\(\forall \mathrm{P}\),
    P O Empty \(\rightarrow\)
\(\forall \mathrm{m}, \mathrm{e}:\) Nat, \(\forall \mathrm{l}^{\prime}\) : List \(m, \mathrm{P}(\mathrm{S} \mathrm{m})\) (Cons e l') \(\rightarrow\)
    P (Sn) l
    - tail : \(\forall \mathrm{n}\) : Nat, \(\forall \mathrm{I}\) : List (Sn), List n
```

 - New goals:

Example

$\forall \mathrm{P}$,
P O Empty \rightarrow
$\forall \mathrm{m}, \mathrm{e}$: Nat, $\forall \mathrm{l}^{\prime}$: List m, $\mathrm{P}\left(\mathrm{S} m\right.$) (Cons e l^{\prime}) \rightarrow
P (Sn) l

- tail : $\forall \mathrm{n}$: Nat, $\forall \mathrm{I}$: List (Sn), List n
$\mathrm{P} \equiv \lambda \mathrm{p} \cdot \lambda 10$: List p ,
$\forall \mathrm{n}, \mathrm{l}:$ List $(\mathrm{S} n), \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow 10=1 \rightarrow$ List n
- New goals:
$\forall n, I$: List (S n), $O=S n \rightarrow$ Empty $=I \rightarrow$ List n

Example

$\forall \mathrm{P}$,
P O Empty \rightarrow
$\forall \mathrm{m}, \mathrm{e}$: Nat, $\forall \mathrm{l}^{\prime}$: List m, $\mathrm{P}\left(\mathrm{S} m\right.$) (Cons e l^{\prime}) \rightarrow P (Sn) l

- tail : $\forall \mathrm{n}$: Nat, $\forall \mathrm{I}$: List (Sn), List n
$\mathrm{P} \equiv \lambda \mathrm{p} \cdot \lambda 10$: List p ,
$\forall \mathrm{n}, \mathrm{l}:$ List $(\mathrm{S} n), \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow 10=1 \rightarrow$ List n
- New goals:
- $\forall n, I$: List (S n), $O=S n \rightarrow$ Empty $=I \rightarrow$ List n

Example

$\forall \mathrm{P}$,
P O Empty \rightarrow
$\forall \mathrm{m}, \mathrm{e}$: Nat, $\forall \mathrm{l}^{\prime}$: List m, $\mathrm{P}(\mathrm{S} m)$ (Cons e l^{\prime}) \rightarrow P (Sn) l

- tail : $\forall \mathrm{n}$: Nat, $\forall \mathrm{I}$: List (Sn), List n
$\mathrm{P} \equiv \lambda \mathrm{p} \cdot \lambda 10$: List p ,
$\forall \mathrm{n}, \mathrm{l}:$ List $(\mathrm{S} n), \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow 10=1 \rightarrow$ List n
- New goals:
- $\forall n, I$: List (S n), $O=S n \rightarrow$ Empty $=I \rightarrow$ List n
- $\forall m, l^{\prime \prime}$: List $m, \forall n, l$: List (S n), SmaSh Cons el $I^{\prime}=I \rightarrow$ List n

Example

$\forall \mathrm{P}$,
P O Empty \rightarrow
$\forall \mathrm{m}, \mathrm{e}$: Nat, $\forall \mathrm{l}^{\prime}$: List m, $\mathrm{P}(\mathrm{S} m)$ (Cons e l^{\prime}) \rightarrow P (Sn) l

- tail : $\forall \mathrm{n}$: Nat, $\forall \mathrm{I}$: List (Sn), List n
$\mathrm{P} \equiv \lambda \mathrm{p} \cdot \lambda 10$: List p ,
$\forall \mathrm{n}, \mathrm{l}:$ List $(\mathrm{S} \mathrm{n}), \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow 10=1 \rightarrow$ List n
- New goals:
- $\forall n, I$: List (S n), $O=S n \rightarrow$ Empty $=I \rightarrow$ List n
- $\forall m, l^{\prime \prime}$: List $m, \forall n, l$: List (S n), S $m=S n \rightarrow$ Cons e $I^{\prime}=I \rightarrow$ List n
tail $\mathrm{n} l \Leftarrow$ case 1

Example

$\forall \mathrm{P}$,
P O Empty \rightarrow
$\forall \mathrm{m}, \mathrm{e}$: Nat, $\forall \mathrm{l}^{\prime}$: List m, $\mathrm{P}(\mathrm{S} m)$ (Cons e l^{\prime}) \rightarrow P (Sn) l

- tail : $\forall \mathrm{n}$: Nat, $\forall \mathrm{I}$: List (Sn), List n
$\mathrm{P} \equiv \lambda \mathrm{p} \cdot \lambda 10$: List p ,
$\forall \mathrm{n}, \mathrm{l}:$ List $(\mathrm{S} n), \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow 10=1 \rightarrow$ List n
- New goals:
- $\forall n, I$: List (S n), $O=S n \rightarrow$ Empty $=I \rightarrow$ List n
- $\forall m, l^{\prime \prime}$: List $m, \forall n, l$: List (S n), SmaSh Cons el $I^{\prime}=I \rightarrow$ List n
tail $\mathrm{n} l \Leftarrow$ case l tail (Sm) (Cons e l^{\prime}) $\Rightarrow l^{\prime}$

Some ideas to remove more useless cases

- Some useless cases are not removed

Some ideas to remove more useless cases

- Some useless cases are not removed:

```
useless :: }\forall\textrm{n}:N\mp@code{Nat, (S n) 
useless n p}\Leftarrow\mathrm{ case p
    useless (S m) P' }=>\mathrm{ ' ???
```


Some ideas to remove more useless cases

- Some useless cases are not removed:

```
useless :: }\forall\textrm{n}:N\mp@code{Nat, (S n) }\leq\textrm{n}->\mathrm{ False
    useless n p}\Leftarrow\mathrm{ case p
    useless (S m) p' }=>\mathrm{ ? ???
```

- ??? : : $\forall \mathrm{n}, \mathrm{p}, \mathrm{q}:$ Nat, $\mathrm{S} \mathrm{p}=\mathrm{Sn} \rightarrow \mathrm{Sq}=\mathrm{n} \rightarrow \mathrm{p} \leq \mathrm{q} \rightarrow$ False
Approximations of sets of inductive terms

Some ideas to remove more useless cases

- Some useless cases are not removed:

```
useless :: }\forall\textrm{n}:N\mp@code{Nat, (S n) }\leq\textrm{n}->\mathrm{ False
    useless n p}\Leftarrow\mathrm{ case p
    useless (S m) p' }=>\mathrm{ ? ??
```

- ??? : : $\forall \mathrm{n}, \mathrm{p}, \mathrm{q}:$ Nat, $\mathrm{Sp}=\mathrm{Sn} \rightarrow \mathrm{Sq}=\mathrm{n} \rightarrow \mathrm{p} \leq \mathrm{q} \rightarrow$ False
- Approximations of sets of inductive terms
- Apply these approximations to new goals

Some ideas to remove more useless cases

- Some useless cases are not removed:

```
useless :: }\forall\textrm{n}:N\mp@code{Nat, (S n) }\leq\textrm{n}->\mathrm{ False
    useless n p}\Leftarrow\mathrm{ case p
    useless (S m) p' }=>\mathrm{ ? ??
```

- ?? ? : : $\forall \mathrm{n}, \mathrm{p}, \mathrm{q}:$ Nat, $\mathrm{S} \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow \mathrm{S} \mathrm{q}=\mathrm{n} \rightarrow \mathrm{p} \leq \mathrm{q} \rightarrow$ False
- Approximations of sets of inductive terms

$$
p: n \leq m \Rightarrow\left\{|n|_{s} \leq|m|_{s} ;|p|_{e_{-} S}=|n|_{S}-|m|_{s}\right\}
$$

- Apply these approximations to new goals

Some ideas to remove more useless cases

- Some useless cases are not removed:

```
useless :: }\forall\textrm{n}:N\mp@code{Nat, (S n) }\leq\textrm{n}->\mathrm{ False
    useless n p}\Leftarrow\mathrm{ case p
    useless (S m) p' }=>\mathrm{ ? ??
```

- ?? ? : : $\forall \mathrm{n}, \mathrm{p}, \mathrm{q}:$ Nat, $\mathrm{S} \mathrm{p}=\mathrm{S} \mathrm{n} \rightarrow \mathrm{S} \mathrm{q}=\mathrm{n} \rightarrow \mathrm{p} \leq \mathrm{q} \rightarrow$ False
- Approximations of sets of inductive terms

$$
p: n \leq m \Rightarrow\left\{|n|_{S} \leq|m|_{s} ;|p|_{\text {le- }}=|n|_{S}-|m|_{s}\right\}
$$

- Apply these approximations to new goals

