
Categorical design
patterns

FOP Away Day, 17 Jan 2007

Ond ej Rypáčekř

University of Nottingham, UK

Design Patterns

Design Patterns : Elements of Reusable Object-
Oriented Software (Gamma, Helm, Johnson, Vlissides)

describe the “good” designs in OOP
informal, ambiguous

Decorator Pattern:
. . . The decorator conforms to the
interface component it decorates so that
its presence transparent to the
component’s clients. The decorator
forwards requests to the component may
perform additional actions before or after
forwarding. . .

Composite pattern

Formal Design Patterns

formal objects in the language
support reasoning about programs
replace inheritance and lots of hand-coding by formally
defined refinement steps

Category of “simple
objects”

Objects: parametric object types (signatures)
Arrows: freely generated from constructors,
method calls, pairs, composition
Objects interpreted directly, not via functional
models and Set [Reichel, Jacobs, Pierce, Hoffman]

Thanks to Command and Visitor patterns, the
category has exponents and co-products
(weakly) terminal co-algebras correspond to
abstract object types and abstract methods

Decorator vs Composite

“Decorator is a singleton
Composite”

Composite pattern –
formally

Composite pattern –
formally

Composite pattern –
formally

Decorator pattern –
formally

Conclusion and further
steps

The approach is very promising
We already have some new results

natural interpretation of terminal co-
algebras as abstract object-types
natural zips correspond to rearrangement
of inputs and outputs in an object
discovered a relation between composite,
decorator and adapter
formalised the relation of Composite and
initial algebras – recursive structure
traversals

Future: lot of work and more results

